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Abstract—Distributed streaming applications require the un-
derlying network flows to transmit packets continuously to keep
their output results fresh. These results will become stale if no
updates come, and their staleness is determined by the slowest
flow. At this point, coflows can be semantically comprised. Hence,
efficient coflow transmission is critical for streaming applications.
However, prior coflow-based solutions have significant limitations.
They use a one-shot performance metric—CCT (coflow comple-
tion time), which cannot continuously reflect the staleness of the
output results for a streaming application.

To this end, we propose a new performance metric—coflow age
(CA), for coflows generated by distributed streaming applications.
The CA tracks the longest time-since-last-service among all flows
in a coflow. In such a context, we consider a data center
network with multiple coflows that continuously transmit packets
between their source-destination pairs and address the problem
of minimizing the average long-term CA while simultaneously
satisfying the throughput constraints from the coflows. To solve
this problem efficiently, we design a randomized algorithm
and a drift-plus-age algorithm, and show that they can make
the average long-term CA to achieve nearly two times and
arbitrarily close to the optimal value, respectively. Through
extensive simulations, we further demonstrate that both of the
proposed algorithms can significantly reduce the CA of coflows,
without violating the throughput requirement of any coflow, when
compared to the state-of-the-art solution.

I. INTRODUCTION

An emerging trend in big data processing is to extract
meaningful results from continuous data streams (e.g., sensor
readings and online social media) with distributed computation
running on a large data center [1–3]. Because the extracted
results are usually used by real-time business-critical decision
algorithms, their value will decrease as time goes by. On the
other hand, distributed stream computation will generate a
group of flows to transmit packets (e.g., key-value records
[4]) among different machines across the data center network.
Each packet carries the most up-to-date information. From the
perspective of streaming applications, they wish to receive
packets from every flow continuously, so as to output fresh
results to the real-time decision algorithms.

The coflow has recently become an elegant model to specif-
ically abstract a semantical-related collection of flows for
a broad spectrum of applications [5]. Different applications
impose different semantics on their flows. For example, in a
batch processing application, only completing all flows in a

coflow is meaningful. In contrast to batch processing, flows
generated by streaming applications have no strict concept of
completion, and they must transmit packets continuously to
prevent them from being straggling behind. In other words, the
results extracted by a streaming application at a certain time
can be considered fresh only if all its flows can transmit a new
packet. Therefore, to optimize the performance of a streaming
application, we need to schedule packet transmissions at the
level of coflow rather than individual flows.

However, prior solutions (e.g., [6–12]) only focus on
coflows generated by batch processing applications. Moreover,
they cannot be adopted in streaming applications due to the
one-shot performance metric they used, namely CCT (coflow
completion time). The CCT is defined for a static set of packets
and can only be figured out after all packet transmissions
finish. Apparently, CCT is unable to continuously reflect the
staleness of a streaming application’s output results.

Motivated by this situation, we present a new performance
metric, called as coflow age (CA), for coflows generated by
distributed streaming applications. The CA of a coflow is
defined as the maximum age of all its flows, where the age of
an individual flow represents the time elapsed since the most
recent packet is received by the destination. More specifically,
if a packet is successfully delivered to its destination, the
age of the corresponding flow drops to zero immediately and
grows linearly otherwise. The metric CA1 essentially captures
the slowest flow in a coflow each time, i.e., the flow whose
destination did not receive a new packet for the longest time.
It is a constantly evolving measurement and is aligned with
the needs of streaming applications.

For a better intuition of the CA, we use an example in
Fig. 1, where there is a WordCount streaming application
that calculates the count of each distinct word in the input
stream over time. This application has one split task (on
server S1) and two count tasks (on servers S2 and S3

1It should be noted that the concept of CA is borrowed from the age-
of-information (AoI) which is an important performance metric in wireless
networks [13, 14]. The AoI measures the time elapsed since the newest data
was generated at the source rather than since the most recent data was received
by the destination. Even though both AoI and CA are age-based metrics, CA
is more relevant. The reason is that the interest of a streaming application is
in how long it did not obtain new output results, rather than in continuously
monitoring the freshness of the input data.
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Fig. 1. An example for illustrating that the metric CA can reflect the staleness
of the output results of a streaming application (i.e., WordCount).

respectively). It generates a coflow C when processing the
unbounded input stream, which has two flows f1 (S1→S2)
and f2 (S1→S3). Suppose f1 and f2 transmit packets like
Fig. 1(b). Then, at t = 1, the CA of coflow C is 1 and the
complete output results for “Hello World” cannot be obtained,
because f2’s destination S3 has not received a new packet
since t = 0. The CA of C will keep increasing until t = 2,
because at t = 2, S3 receives the required packet for counting
words in “Hello World”. Nevertheless, the CA of C only
decreases to 1 at t = 2. The reason is that f1 becomes
straggling behind at this time with respect to the output for
“Bye World”. As time goes by, the CA of C will constantly
evolve. Needless to say, persistently pushing the CA of C to
a low value can improve the stream processing efficiency for
the WordCount application.

To optimize CA, the scheduler must decide which coflows
to transmit packets each time. Given that there are usually
more than one coflows sharing the same data center network,
some coflows may transmit packets repeatedly while others
less often. In fact, the frequency at which the output results
are produced is also important for streaming applications [15],
implying that the coflows may have throughput requirements.
So, we ponder a fundamental question: can we design coflow
scheduling algorithms that minimize the CA while simultane-
ously satisfying throughput requirements of coflows?

In this paper, we provide a cautiously optimistic answer by
developing two efficient online algorithms. To be particular,
we first develop a stationary randomized algorithm, which
selects each flow for transmission purely according to a pre-
computed scheduling probability. This algorithm is practical
yet straightforward, and it can achieve a solution that nearly
equals to two times the optimal one. By taking advantage of
additional information (e.g., current age of flows) when select-
ing flows for transmission, we further develop a drift-plus-age

algorithm. This algorithm is designed to reduce the average
CA while controlling the growth of a well defined Lyapunov
function to satisfy the throughput requirements of coflows. We
have proved that the drift-plus-age algorithm can arbitrarily
approach the optimal solution. We have conducted extensive
trace-driven simulations to demonstrate the effectiveness of
our proposed algorithms in optimizing the CA. Compared
with the state-of-the-art solution [7] which is age-agnostic, the
stationary randomized and the drift-plus-age algorithms can
reduce the average CA by 31.8% and 47.5% on average of 100
tries respectively while satisfying the throughput requirements
of all coflows.

In summary, the main contributions of this paper include:
• We present a new performance metric CA to quantify

the transmissions of coflows generated by distributed
streaming applications.

• We study and formulate the problem of minimizing the
average long-term CA while guaranteeing the throughput
requirements of coflows. Moreover, we present two online
algorithms (i.e., a stationary randomized algorithm and a
drift-plus-age algorithm) to solve the problem.

• We prove that the proposed two algorithms can achieve
nearly two times and arbitrarily close to the optimum
respectively, by conducting rigorous theoretical analysis.

• We conduct comprehensive trace-driven simulations to
evaluate the performance of our proposed algorithms,
in terms of reducing the average CA and guaranteeing
throughput requirements of coflows.

The rest of this paper is organized as follows. In Section II,
we develop the mathematical model and present our problem
formulation. We show the design details of the proposed two
algorithms in Section III. Extensive simulations are presented
in Section IV. Section V discusses the related work and
Section VI concludes this paper.

II. MODELING AND PROBLEM FORMULATION

We consider the data center network as a non-blocking
switch where the bottlenecks only take place at the ingress
and egress ports of the switch, corresponding to the incoming
and outgoing links at each server. Such a network is reasonable
yet practical and has been widely adopted in coflow studies
[6, 7, 11]. The network is shared by a set of coflows that
are submitted by multiple streaming applications. Each coflow
contains a set of flows that continuously transmit packets
between two fixed groups of servers. As streaming applications
are typically long-running, the source and destination nodes of
each flow can be known a prior [5], while the packet arrivals
are uncertain.

Concerning the above scenario, our goal is to find the
optimal scheduling strategy we can apply to the packets
of coflows to minimize the CA while satisfying throughput
requirements of coflows.

A. Notation

We first introduce the important notations used throughout
this paper. We denoteM = {1, 2, . . . ,M} as the set of servers



in the data center network and consider a discrete time mode,
where the time is divided into T time slots. We denote T =
{0, 1, . . . , T − 1} as the set of time slots. The granularity of
each time slot is typically the time taken to transmit a single
MTU2-sized packet over the fastest link in the network [16].
For simplicity, in each time slot t ∈ T , we assume each server
i ∈M can transmit or receive at most one packet through its
outgoing or incoming link. We denote K = {1, 2, . . . ,K} as
the set of coflows. Each coflow k ∈ K consists of Nk flows,
among which the n-th flow is denoted by fk,n. The source
and destination nodes of flow fk,n are denoted as sk,n and
dk,n (sk,n, dk,n ∈M), respectively.

To indicate the scheduling strategy, we denote xk,n(t) as
if a scheduler selects fk,n for transmission at time t. Note
that there may be no packet get ready for transmission at
time t even when flow fk,n is selected for transmission (i.e.,
xk,n(t) = 1). So, we define pk,n as the probability that a
packet of flow fk,n arrives at its source sk,n. We assume that
this probability pk,n does not change with time, but may differ
for different flows. It is worth noting that such probability-
based modeling method may be simple, but it suffices to
capture the uncertain property in packet arrivals and has also
been widely adopted in existing literature [16, 17].

Let yk,n(t) be a random variable representing whether a
packet is delivered from sk,n to dk,n at time slot t. Specifi-
cally, if flow fk,n is selected for transmission at time t, i.e.,
xk,n(t) = 1, then yk,n(t) = 1 with probability pk,n and
yk,n(t) = 0 with probability 1 − pk,n. On the other hand,
if xk,n(t) = 0, then yk,n(t) = 0 with probability one. By
applying the law of iterated expectations, we have

E{yk,n(t)} = pk,nE{xk,n(t)}. (1)

B. Mathematical model
We now present the mathematical model for our problem.
Coflow age (CA): As mentioned in the above section, CA is

a constantly evolving measurement. As a performance metric,
CA is more aligned with the essential needs of streaming
applications to quantify how long their output results have
not been updated. Before presenting CA, we first introduce
the age of an individual flow, which has a tractable form of
evolution and can track the time since the last packet is served.
To be particular, let ak,n(t) denote the instantaneous age of
flow fk,n at the end of time slot t. The evolution of ak,n(t)
is shown as follows

ak,n(t) =

{
0, if yk,n(t) = 1,
ak,n(t− 1) + 1, otherwise,

(2)

which means that if a packet of fk,n is successfully delivered
to dk,n at the end of time slot t, then the age of this flow will
drop to 0; otherwise, ak,n(t) = ak,n(t − 1) + 1, as the last
received packet is one time slot older.

We now can define the instantaneous CA of coflow k at the
end of time slot t as the maximum age of all its flows.

Ak(t) = max
n=1,...,Nk

ak,n(t). (3)

2MTU (Maximum Transmission Unit) is the largest packet size that can
be sent over a network connection. For instance, the MTU of an Ethernet
connection is typically 1500 bytes.

However, from a realistic world’s view, the age of a flow
cannot be observed at every time instant, as the length of each
time slot cannot be infinitely small. This motivates us to turn
to long-term CA as follows

Āk = max
n=1,...,Nk

{
lim
T→∞

1

T

T−1∑
t=0

E{ak,n(t)}

}
. (4)

The term limT→∞
1
T

∑T−1
t=0 E{ak,n(t)} captures the long-

term age of flow fk,n. Thus, Eq. (4) measures the maximum
long-term age of the flows in coflow k. The expectation is
with respect to the randomness in packet arrivals and the
scheduling policy. It should be noted that the long-term CA
is not necessarily in conflict with the instantaneous CA, and
a lower long-term CA can lead to a lower instantaneous CA
on average across all time slots.

Throughput constraints: In real-world scenarios, stream-
ing applications can impose constraints on the frequencies
at which their output results are produced [15, 18]. For
example, a streaming application may monitor the user logs
continuously to obtain the number of clicks on a recommended
URL once every few seconds. To indicate such frequency
requirements, we consider that the flows in the same coflow
have identical throughput requirements. The rationale here is
that the CA of a coflow can be minimally influenced when
considering identical throughput requirements for its flows.
Specifically, we denote qk as the throughput requirement for
each of the flows in coflow k. Then, we have

lim
T→∞

1

T

T−1∑
t=0

E{yk,n(t)} ≥ qk,∀k ∈ K,∀n ∈ {1, . . ., Nk}.

(5)
The L.H.S. of the above inequality is the long-term throughput
of flow fk,n. Hence, Eq. (5) essentially means that the long-
term throughput of flow fk,n should be at least qk.

Scheduling constraints: When scheduling the packets of
different coflows, the constraints associated with the incoming
and outgoing links on each server impose that

K∑
k=1

Nk∑
n=1

xk,n(t)e(sk,n = i) ≤ 1,∀t ∈ T ,∀i ∈M, (6)

K∑
k=1

Nk∑
n=1

xk,n(t)e(dk,n = i) ≤ 1,∀t ∈ T ,∀i ∈M. (7)

Note here e(χ) = 1 if event χ is true and e(χ) = 0 otherwise.
Eq. (6) means that in any given time slot t, the scheduler can
select at most one flow for transmission through the outgoing
link of server i. Similarly, Eq. (7) ensures that at most one
flow can be selected for transmission through the incoming
link of server i in each time slot t.

Decision variable: For each flow fk,n at each time slot t,
the decision variable xk,n(t) can only take 0 or 1,

xk,n(t) ∈ {0, 1},∀k ∈ K,∀n ∈ {1, . . ., Nk},∀t ∈ T . (8)

C. Problem formulation

With the above mathematical model, we study the problem
of minimizing the average CA while satisfying the throughput



constraints of coflows. We denote this problem as P1 which
is formulated as follows:

min
{xk,n(t)}

1

K

K∑
k=1

Āk (9)

s.t. Eqs. (1), (5), (6), (7), (8).

Clearly, the objective in Eq. (9) is to minimize the average
long-term CA across all coflows. It should be noted that it
is inherently a hard task to solve the problem P1, due to the
following challenges. First, as P1 is a long-term stochastic op-
timization, the control decisions (i.e., xk,n(t)) at current time
slot will impact that at future time slots. Second, minimizing
the average age in stochastic scheduling problems with more
than one flow is NP-hard in general [14], while P1 involves
multiple coflows and each coflow contains a set of flows.
Third, the packet arrivals are highly dynamic and uncertain
with much randomness. Hence, efficient online scheduling
algorithms are highly desired here to solve the problem P1.

III. SCHEDULING ALGORITHMS

In response to the challenges of solving the problem P1,
we present two online algorithms. The first algorithm solves
the problem P1 over the class of stationary randomized poli-
cies and returns a solution that approximately equals to two
times the optimal solution. In contrast, the second algorithm
is derived using Lyapunov optimization techniques and can
arbitrarily approach the optimal solution.

A. Stationary randomized algorithm

The key idea of this algorithm is to find the best scheduling
policy among the class of stationary randomized policies when
solving the problem P1. More specifically, in the algorithm
design, we first transform the original problem P1 into a
convex optimization where the decision variables are a set
of scheduling probabilities. Each possible set of scheduling
probabilities can characterize a stationary randomized policy.
However, even we have the solution for this convex optimiza-
tion, it does not give a scheduling strategy for P1 directly.
Therefore, we need another technique, which is usually called
sampling, to get a feasible solution.

To ease the presentation, let Π denote the class of stationary
randomized policies, where each R ∈ Π is a scheduling
policy that selects flow fk,n for transmission with probability
θk,n ∈ (0, 1]. Therefore, each policy R can actually be char-
acterized by the set of scheduling probabilities {θk,n,∀k, ∀n},
where θk,n = E{xk,n(t)},∀k, ∀n, ∀t. With the scheduling
probabilities, we have the following theorem.

Theorem 1: Under a R ∈ Π with scheduling probabilities
{θk,n,∀k, ∀n}, the long-term throughput and the expected
time-averaged age of each flow can be reformulated as

lim
T→∞

1

T

T−1∑
t=0

E{yk,n(t)} = pk,nθk,n, (10)

lim
T→∞

1

T

T−1∑
t=0

E{ak,n(t)} =
1

pk,nθk,n
. (11)

Proof: Let Ik,n[l] be a random variable representing the
number of time slots between the (l − 1)-th and l-th packets
delivered for flow fk,n. Under the policy R, each packet of
fk,n can successfully be delivered with probability pk,nθk,n.
In other words, for each fk,n at any t, its destination dk,n
receives a packet from the source sk,n only if fk,n is scheduled
and there exists a packet at sk,n. The probability when Ik,n[l]
equals to η (= 1, 2, . . .) is P{Ik,n[l] = η} = pk,nθk,n(1 −
pk,nθk,n)η−1. It should be noted that under the policy R, the
sequence of packet delivers is a renewal process. Thus, we
can use renewal theory to derive Eq. (10) and Eq. (11). In
particular, we have the following equalities

lim
T→∞

1

T

T−1∑
t=0

E{yk,n(t)} =
1

E{Ik,n[l]}
= pk,nθk,n, (12)

lim
T→∞

1

T

T−1∑
t=0

E{ak,n(t)} =
E{I2k,n[l]}
2E{Ik,n[l]}

+
1

2

=
1

pk,nθk,n
.

(13)

where Eq. (12) and Eq. (13) follow from the elementary
renewal theorem and the generalization for renewal-reward
processes [19], respectively.

Given the above theorem, we now can formulate the fol-
lowing optimization problem, denoted as P2:

min
{θk,n}

1

K

K∑
k=1

max
n=1,...,Nk

1

pk,nθk,n
(14)

s.t. pk,nθk,n ≥ qk,∀k ∈ K,∀n ∈ {1, . . ., Nk}, (15)
K∑
k=1

Nk∑
n=1

θk,ne(sk,n=i) ≤ 1,∀i ∈M, (16)

K∑
k=1

Nk∑
n=1

θk,ne(dk,n=i) ≤ 1,∀i ∈M, (17)

0 < θk,n ≤ 1,∀k ∈ K,∀n ∈ {1, . . ., Nk}, (18)
where Eq. (14) is derived by substituting Eq. (11) into Eq.
(9). Substituting Eq. (10) into Eq. (5) results in Eq. (15). Eqs.
(16) and (17) are obtained by substituting θk,n = E{xk,n(t)}
into Eqs. (6) and (7), respectively. Finally, Eq. (18) depicts the
value range for the decision variable θk,n.

Problem P2 is a convex optimization because its objective
function and constraint functions are all convex with respect to
θk,n. It can be solved with standard convex optimization tools
[20] or by using Lagrange multipliers and KKT conditions
[21]. Since θk,n only indicates scheduling probability for
a flow fk,n, the solution of P2 may not give a feasible
scheduling strategy for the original problem P1. Hence, we
propose to use another technique—sampling.

The whole procedure of the stationary randomized algo-
rithm is summarized in Algorithm 1. At the beginning of each
time slot t, Algorithm 1 starts by initializing a variable Ui
which is used to indicate whether the incoming link of server
i ∈M has been occupied (Step 1). Then, in the for loop (Step
2-5), it selects a flow for each outgoing link independently.
Specifically, it samples a flow fk,n for the outgoing link



Algorithm 1 Stationary Randomized Algorithm
Input: Coflow information: pk,n, sk,n, dk,n, qk,∀k,∀n
Output: Scheduling strategy: xk,n(t),∀k,∀n, ∀t

1: At the beginning of each time slot t, initialize Ui = 1,∀i.
2: for i = 1, . . . ,M do
3: Sample a flow fk,n with probability θk,n from {fk,n :

e(sk,n = i),∀k,∀n}. {θk,n} is the optimal solution of
problem P2, which can be calculated off-line.

4: If Udk,n
= 0, repeat step 3. Otherwise, set xk,n(t) = 1

and update Udk,n
= 0.

5: end for
6: return {xk,n(t)}

of each server i with probability θk,n, and the sample set
is the set of flows that share a same source node i, i.e.,
{fk,n : e(sk,n = i),∀k, ∀n}. Note that if the sampled flow
cannot be accommodated by the incoming link of its relevant
destination node, Algorithm 1 will repeat the sampling process
until it finds a flow that can be accommodated. To analyze the
performance of Algorithm 1, we first give a lower bound of
the problem P1 through Theorem 2. Then, we use Theorem 3
to prove that our Algorithm 1 can approximately achieve two
times the optimal solution to the problem P1.

Theorem 2: Let the optimal objective value of the original
problem P1 be denoted by O∗P1. The lower bound of O∗P1 can
then be characterized by the optimal objective value O∗P3 of
the following problem P3:

min
{xk,n(t)}

1

2K

K∑
k=1

max
n=1,...,Nk

{
1

q̂k,n
− 1

}
, (19)

s.t. q̂k,n ≥ qk,∀k, ∀n ∈ {1, . . ., Nk}, (20)
Eqs. (1), (6), (7), (8).

where q̂k,n = limT→∞
1
T

∑T−1
t=0 E{yk,n(t)}. This means that

for any setting (M,K,Nk, sk,n, dk,n, pk,n, qk), O∗P1 ≥ O∗P3.
Proof: For any feasible solution of problem P1, define

Yk,n(T ) =
∑T−1
t=0 yk,n(t) as the total number of delivered

packets for flow fk,n during the T time slots. Recall that Ik,n[l]
is defined as a random variable representing the number of
time slots between the (l− 1)-th and l-th delivered packets of
flow fk,n. Hence, for each fk,n, we have

T =

Yk,n(T )∑
l=1

Ik,n[l] + γk,n, (21)

where γk,n is the number of remaining time slots after the last
delivered packet of fk,n.

Considering the evolution behavior of ak,n(t), we can infer
that ak,n(t) evolves as {0, 1, . . . , Ik,n[l]−1} and it will repeat
this pattern throughout the entire time-horizon including the
last γk,n time slots. Hence, we can express the time-averaged
age of flow fk,n as follows

1

T

T−1∑
t=0

ak,n(t)=
1

T

Yk,n(T )∑
l=1

(Ik,n[l]−1)Ik,n[l]

2
+

(γk,n−1)γk,n
2


=

1

2

Yk,n(T )

T

1

Yk,n(T )

Yk,n(T )∑
l=1

I2k,n[l] +
γ2k,n
T
− 1

 , (22)

where the last equality is obtained by using Eq. (21). Let the
sample mean of Ik,n and I2k,n be defined by the following two
equalities, respectively.

W̄ [Ik,n] =
1

Yk,n(T )

Yk,n(T )∑
l=1

Ik,n[l], (23)

W̄ [I2k,n] =
1

Yk,n(T )

Yk,n(T )∑
l=1

I2k,n[l]. (24)

Then, substituting Eq. (24) into Eq. (22) and applying Jensen’s
inequality, we yield

1

T

T−1∑
t=0

ak,n(t) ≥ 1

2

[
Yk,n(T )

T
(W̄ [Ik,n])2 +

γ2k,n
T
− 1

]

=
1

2

[
1

T

(T − γk,n)2

Yk,n(T )
+
γ2k,n
T
− 1

]
,

(25)

By minimizing 1
2

[
1
T

(T−γk,n)
2

Yk,n(T ) +
γ2
k,n

T − 1
]

with respect to the
variable γk,n, we have

1

T

T−1∑
t=0

ak,n(t) ≥ 1

2

(
T

Yk,n(T ) + 1
− 1

)
. (26)

Taking the expectation of Eq. (26), applying Jensen’s inequal-
ity on the result, and combining Eq. (3), we have

1

T

T−1∑
t=0

E{ak,n(t)} ≥ 1

2

(
1

E{Yk,n(T )
T }+ 1

T

− 1

)
. (27)

Taking T→∞ and denoting q̂k,n as the long-term throughput
of fk,n, i.e., q̂k,n = limT→∞

1
T

∑T−1
t=0 E{yk,n(t)}, we yield

lim
T→∞

1

T

T−1∑
t=0

E{ak,n(t)}

≥ lim
T→∞

1

2

(
1

E{Yk,n(T )
T }+ 1

T

−1

)

≥ 1

2

(
1

q̂k,n
− 1

)
. (28)

Combining Eq. (28) and the objective function in Eq. (9), the
theorem can then be inferred.

Theorem 3: Under Algorithm 1, the average long-term CA
of all coflows approximately equals to two times the optimal
objective value O∗P1 of problem P1.

Proof: Define Oalg1 as the average long-term CA of
all coflows achieved by Algorithm 1. Also, define O∗P2 as
the optimal objective value of P2. Since Algorithm 1 is
based on the optimal solution of P2, Oalg1 can actually be
characterized by O∗P2. Therefore, we only need to compare
O∗P2 to O∗P1. Define q̂Lk,n as the long-term throughput of
fk,n, under the optimal solution of problem P3. Consider
a stationary randomized policy R ∈ Π, where the schedul-
ing probabilities {θk,n,∀k, ∀n} make the relevant long-term
throughput q̂Rk,n = pk,nθk,n equal to q̂Lk,n for every fk,n. In
other words, R satisfies all throughput constraints, and hence
is a feasible solution to problem P2. Let ORP2 be the objective
value of problem P2, under the policy R. Clearly, ORP2 ≥ O∗P2.
Combining Theorem 2, we have O∗

P2

O∗
P1
≤ OR

P2

O∗
P3

. Comparing O∗P3



with ORP2, we have ORP2 = 2 × O∗P3 + 1. This implies that
O∗

P2

O∗
P1
≤ 2 + 1

O∗
P3

. Thus, the theorem can be inferred.
The above theorem demonstrates that Algorithm 1 is nearly

2-competitive for the original problem P1, although it simply
uses a sampling technique based on fixed scheduling probabil-
ities calculated offline. In what follows, by taking advantage
of Lyapunov optimization techniques [22], we develop another
algorithm which is a little better than Algorithm 1 in terms of
the optimality but requires additional information such as the
current age of individual flows.

B. Drift-Plus-Age algorithm

The drift-plus-age algorithm focuses on decomposing the
original problem P1 into several sub-problems that can be
sequentially solved in each time slot. In the design of this
algorithm, we first transform the long-term throughput con-
straint in Eq. (5) into queue stability problem and then define
a Lyapunov function to measure the aggregate congestion of
all queues. The Lyapunov function has large value when the
flows have less throughput than the required qk. We proceed to
define a Lyapunov drift to indicate the expected change in the
Lyapunov function from one time slot to the next. Finally, at
the beginning of each time slot, we minimize an upper bound
on a drift-plus-age expression. The implication here is that
the drift-plus-age algorithm is designed to reduce the average
long-term CA while satisfying the throughput requirements of
coflows by controlling the growth of the Lyapunov function.

Transforming throughput constraint: To accommodate
the long-term throughput constraint in Eq. (5), we introduce
a set of virtual queues Qk,n(t) for each flow fk,n. Initially,
each queue is empty at the beginning of the first time slot, i.e.,
Qk,n(0) = 0,∀k, ∀n. The queuing dynamics are as follows

Qk,n(t+ 1) = max{Qk,n(t)− yk,n(t) + qk, 0},∀k, ∀n. (29)

These queues take qk as input and yk,n(t) as output. They es-
sentially store the historical deviation from expected through-
puts of coflows. The term qk can be interpreted as the number
of packets that should be delivered for flow fk,n during the
time slot t. On the other hand, yk,n(t) can be viewed as the
number of packets actually delivered during this time slot. As
shown in Theorem 4, the constraint in Eq. (5) can exactly
be characterized by these queues under the condition that the
virtual queue is stable, i.e., limT→∞Qk,n(T )/T=0. Note that
we will prove the strong stability of these virtual queues in
Theorem 6 later.

Theorem 4: Eq. (29) is essentially equivalent to the long-
term throughput constraint in Eq. (5), if the stability condition
limT→∞Qk,n(T )/T=0,∀k, ∀n can be satisfied.

Proof: Considering the max function in Eq. (29), we have

Qk,n(t+ 1) ≥ Qk,n(t)− yk,n(t) + qk. (30)

Summing Eq. (30) over t = 0, 1, · · ·, T − 1 and then dividing
the result by T , we yield

Qk,n(T )−Qk,n(0)

T
≥ − 1

T

T−1∑
t=0

yk,n(t) + qk. (31)

By taking expectations of both sides of the Eq. (31) and then
substituting Qk,n(0) = 0 and limT→∞Qk,n(T )/T = 0 into
the result, we yield Eq. (5). Thus, the theorem is proved.

Characterizing drift-plus-age expression: We denote
Q(t) as the concatenated vector of all queues, i.e., Q(t) =
[Q1,1(t), . . . , Q1,N1(t), Q2,1(t), . . . , QK,NK

(t)]. Then, we de-
fine the Lyapunov function as

L(Q(t))=
1

2

K∑
k=1

Nk∑
n=1

Qk,n(t)2. (32)

Such Lyapunov function quantitatively indicates the conges-
tion of all queues. Moreover, it is large when queue backlogs
are high, making more flows to have less throughput than
the relevant required values. Obviously, the Lyapunov function
needs to be persistently pushed towards a lower value, to keep
the throughput constraint satisfied. To this end, we introduce
the following Lyapunov drift to quantify the expected change
in the Lyapunov function from one time slot to the next,

∆(Q(t)) = E {L(Q(t+ 1))− L(Q(t))|Q(t)} . (33)
As reducing ∆(Q(t)) in every time slot t only works for guar-
anteeing throughput requirements, we also need to consider the
CA given by the objective function in problem P1. Therefore,
we add up the drift and the CA—known as drift-plus-age, and
then strive to minimize the drift-plus-age at the beginning of
each time slot. In other words, we have the following sub-
problem P4 in each time slot t,

min
{xk,n(t)}

∆(Q(t)) +
V

K

K∑
k=1

max
n=1,...,Nk

E{ak,n(t)} (34)

s.t. Eqs. (1), (6), (7), (8),
where V (≥ 0) is a control parameter that depicts how
much we shall emphasize the CA minimization, compared to
guaranteeing throughput requirements.

Bounding drift-plus-age expression: Since directly min-
imizing the drift-plus-age expression in Eq. (34) relies on
unknown information Qk,n(t + 1), we seek to minimize its
upper bound. To derive the upper bound of the drift-plus-age
expression, we need the following theorem.

Theorem 5: In each time slot t, given any value of Q(t),
the Lyapunov drift ∆(Q(t)) is bounded by

∆(Q(t)) ≤ H −
K∑
k=1

Nk∑
n=1

E{Qk,n(t)(yk,n(t)− qk)}, (35)

where H = 1
2

∑K
k=1

∑Nk

n=1(1 + q2k).
Proof: By taking advantage of the fact that for any

ρ, %, σ ≥ 0, (max[ρ− %+σ, 0])2 ≤ ρ2 + %2 +σ2− 2ρ(%−σ),
we have the following inequality

Q2
k,n(t+ 1) ≤Q2

k,n(t) + y2k,n(t)

+ q2k − 2Qk,n(t)(yk,n(t)− qk).
(36)

Rearranging the terms in Eq. (36), and then combining the
definition of ∆(Q(t)) and the fact that y2k,n(t) ≤ 1, we yield
Eq. (35). Thus, the theorem is proved.

Based on Theorem 5, we now can obtain the upper bound
of the drift-plus-age expression in Eq. (34), by adding the
expression V

K

∑K
k=1 maxn=1,...,Nk

E{ak,n(t)} to both sides of



Algorithm 2 Drift-Plus-Age algorithm
1: At the beginning of each time slot t, observe the current

queue backlog Qk,n(t);
2: Determine the decision variables xk,n(t), ∀k ∈ K,
∀n ∈ {1, . . . , Nk} to minimize the objective
function V

K

∑K
k=1 maxn=1,...,Nk

E{ak,n(t)} −∑K
k=1

∑Nk

n=1 E{Qk,n(t)(yk,n(t)−qk) in problem P5.
3: At the end of this time slot t, update ak,n(t) for each flow

in each coflow, according to Eq. (2) and the actual value
of the random variable yk,n(t).

Eq. (35). Till now, we have transformed the original problem
P1 to the following optimization P5 at each time slot t

min
{xk,n(t)}

V

K

K∑
k=1

max
n=1,...,Nk

E{ak,n(t)}

−
K∑
k=1

Nk∑
n=1

E{Qk,n(t)(yk,n(t)−qk)}

(37)

s.t. Eqs. (1), (6), (7), (8).

The transformed problem P5 is an integer programming with
convex objective function. To solve it efficiently, one can use
some commercial softwares, e.g., CPLEX [23] and Gurobi
[24]. Yet, one can also develop efficient approximation algo-
rithm. Due to page limit, we omit the details for brevity.

Algorithm 2 summarizes the whole procedure of the drift-
plus-age algorithm. At the beginning of each time slot, based
on current values of the queue backlog as well as the age
of each flow, this algorithm strives to solve problem P5, so
as to obtain the scheduling strategies {xk,n(t)}. Then, at the
end of this time slot t, it updates the age of each flow in
each coflow, based on Eqs. (2) (3) and the actual value of the
random variable yk,n(t). We now analyze the performance of
Algorithm 2 through Theorem 6.

Theorem 6: For any positive real value V , implementing
Algorithm 2 for all time slots can achieve the following
performance guarantee:

1

K

K∑
k=1

Āk ≤
H

V
+O∗P1, (38)

Q = lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

Nk∑
n=1

E{Qk,n(t)} ≤ H + V O∗P1

α
, (39)

where O∗P1 denotes the optimal objective value of problem
P1, α > 0 and Q is the time-averaged queue length.

Proof: Consider a scheduling policy R ∈ Π that chooses
the scheduling decision xk,n(t), independent of the current
queue backlogs, and yields the following steady values for all
time slots t = 0, 1, 2, . . . :

1

K

K∑
k=1

max
n=1,...,Nk

E{ak,n(t)} = O∗P1, (40)

E{yk,n(t)} ≥ qk + α, α ≥ 0. (41)

As the existence of such scheduling policy can be proved by
applying similar techniques in [22, 25], we omit the details for
brevity. Algorithm 2 aims to select decisions that can minimize

the upper bound of drift-plus-age expression, including the
decisions in the above policy R. Thus, combining Eqs. (35),
(40) and (41), we have

∆(Q(t))+
V

K

K∑
k=1

max
n=1,...,Nk

E{ak,n(t)}

≤ H + V O∗P1 − α
K∑
k=1

Nk∑
n=1

E{Qk,n(t)}.

(42)

Summing Eq. (42) over t = 0, 1, . . . , T − 1 and dividing the
result by T , we yield

E{L(Q(T ))}
T

− E{L(Q(0))}
T

+

1

K

K∑
k=1

max
n=1,...,Nk

1

T

T−1∑
t=0

E{ak,n(t)}

≤ H + V O∗P1 −
α

T

T−1∑
t=0

K∑
k=1

Nk∑
n=1

E{Qk,n(t)}.

(43)

Rearranging the terms of Eq. (43), using the fact that
L(Q(t)) ≥ 0 and ak,n(t) ≥ 0, we yield

1

T

T−1∑
t=0

K∑
k=1

Nk∑
n=1

E{Qk,n(t)}

≤ H + V O∗P1 + E{L(Q(0))}/T
α

.

(44)

By taking T→∞, we can yield Eq. (39). Similarly, rearranging
the terms of Eq. (43), we get

1

K

K∑
k=1

max
n=1,...,Nk

1

T

T−1∑
t=0

E{ak,n(t)}

≤ H

V
+O∗P1 +

E{L(Q(0))}
V T

.

(45)

Taking T→∞ again and using Eq. (4), we yield Eq. (38).
Theorem 6 demonstrates that by applying Algorithm 2 with

an arbitrarily larger V , we can make the average long-term
CA of all coflows arbitrarily close to the optimum O∗P1 while
satisfying the throughput requirements as virtual queues are
stable according to Eq. (39).

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithms via
large-scale simulations based on a real-world data trace.

Comparing methods: We compare the following two meth-
ods with the proposed algorithms throughout our simulations:
• MinAF: The MinAF (Minimum-coflow-Age-First) prior-

itizes all coflows according to their CAs, and schedules
a coflow with minimum CA each time.

• LASF (Aalo): All coflows are prioritized and scheduled
based on their current coflow sizes—how many packets
a coflow has already been transferred. We refer to this
method as Least-Attained-Service-First (LASF), and it is
conceptually equivalent to Aalo’s scheduling policy [7].

To ease the presentation, we denote the proposed two
algorithms as SR (Stationary Randomized) and DPA (Drift-
plus-Age), respectively.
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Fig. 2. The 25th, 50th, 75th, 95th percentile and average CA across all coflows
and all time slots.

A. Methodology

Simulator: As the transmission unit is packet, we develop a
packet-level simulator to evaluate the proposed algorithms. We
choose the network size based on Facebook data center fabric
[6, 7] and simulate a network with 150 servers (i.e., M = 150).
In our simulation, the length of each time slot is taken as the
time to transmit a maximum-sized packet (e.g., 1500-byte)
[16], i.e., 10µs. In this context, the incoming/outgoing link of
each server is uniformly set to be 1.2Gbps.

Workload: We conduct the simulations based on a data
trace collected on a 3000-machine 150-rack cluster of Face-
book [6, 7]. This data trace contains 526 coflows that are
scaled down to the rack-level, making it exactly match the
simulated data center network. Recall that in this paper, a
coflow refers to a set of flows that constantly transmit packets
from a fixed set of sources to another fixed set of destinations.
Thus, we use a subset of coflows (i.e., K=100) and make them
long-running to coexist in the network. We keep the original
senders/receivers for each coflow, but randomly generate pack-
ets for each sender-receiver pair with a fixed probability (i.e.,
pk,n). Each pk,n is randomly selected in the range of (0, 1).
The throughput requirement for the flows in each coflow k,
i.e., qk, is set to minn pk,n/K.

Metrics: We evaluate all the methods with the following
six metrics by default: the 25th, 50th, 75th, 95th and average
CA of all coflows, and the number of unsatisfied coflows.
As aforementioned, the CA of a coflow is the maximum
age of all its flows, which is measured in time slots. An
unsatisfied coflow refers to a coflow that is unsatisfied with
its throughput requirement. We run each method 100 tries.
Each try lasts for a total of 500 time slots, with random
workload as is aforementioned. Note that DPA is simulated
with V = 9.5× 104.

B. Performance of the proposed algorithms

CA minimization: We first demonstrate the performance
merits of our proposed algorithms in minimizing the CA of
coflows. Fig. 2 depicts the 25th, 50th, 75th, 95th and average
CA across all coflows and all time slots, for DPA, SR, MinAF,
and LASF. Each bar value in this figure is an average of 100
tries. The error bar represents the standard deviation of the
relevant measurement. We can observe that among the four
methods, DPA is the best while SR is the second-best, with
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Fig. 3. CDF of CA across all coflows and all time slots.

respect to the 25/50/75/95th and average CA. Specifically,
compared to the methods of MinAF and LASF, our DPA
can reduce the 25th/50th/75th/95th/average CA of all coflows
across all time slots by 100%/77.9%/79.4%/12.0%/29.8%
and 100%/69.2%/80.9%/51.6%/47.5%, respectively. More-
over, for our SR algorithm, such CA reductions over Mi-
nAF and LASF can also be 50%/54.4%/52.0%/6%/9% and
0%/36.3%/49.3%/48.2%/31.8%, respectively. These results di-
rectly demonstrate the efficiency of our proposed algorithms
in reducing the CA of coflows. From Fig. 2, we can further
observe that our DPA has a much stabler performance than
the other methods, in terms of the 25th, 50th, 75th, and 95th
percentile CA. For instance, the 95th percentile CA of DPA
varies from 13 to 17, with standard deviation being 0.85; for
LASF, it varies from 26 to 37, and the standard deviation is
2.48. As for the average CA, our DPA algorithm achieves a
little bit lower stability performance than MinAF and LASF.
However, the highest value of the average CA of the 100-try
achieved by DAP is even smaller than the lowest value of
both MinAF and LASF. SR’s stability performance is not as
prominent as DPA does. The underlying reason is that except
for the random process in the workload, SR involves one more
random process than DPA, i.e., scheduling coflows according
to precomputed probabilities.

TABLE I
AVG. NUMBER OF UNSATISFIED COFLOWS OF 100 TRIES.

Scheduling methods DPA SR MinAF LASF
Number of unsatisfied coflows 0 ± 0 0 ± 0 1.77 ± 1.09 0 ± 0

Throughput requirement guarantee: We now investigate
the performance of our proposed algorithms in guaranteeing
the throughput requirements of coflows. As shown in Table I,
all the methods, excluding MinAF, can satisfy the throughput
requirements of all coflows. More specifically, for MinAF, the
number of unsatisfied coflows can vary from 0 to 5, with
the average number of unsatisfied coflows and the standard
deviation being 1.77 and 1.09, respectively. The reason is that
MinAF makes low-age coflows to be scheduled repeatedly,
leaving high-age coflows to transmit packets less often and
hence resulting in unsatisfied coflows.

Deep dive analysis: To understand the underlying reasons
for the improvements of our proposed algorithms, we first plot
the CDFs of the CA across all coflows and all time slots during
one specific try of each method in Fig. 3. The results from
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Fig. 4. The 25th, 50th, 75th, 95th percentile and average CA of coflows over time.

Fig. 3 are in line with that from Fig. 2, namely, both DPA and
SR outperform the other two methods. To be more specific,
most of the CA values, i.e., 90%, are less than 5 (time slots) for
DPA; the corresponding fractions for SR, MinAF, and LASF
are 81.3%, 59.2%, and 60.1%, respectively. Combining Fig. 2
and Fig. 3, we observe that LASF performs worse than MinAF
in minimizing CA. This is because that LASF prefers coflows
with small current sizes, while such coflows often have a large
coflow width (i.e., number of flows) and account for a small
portion of the entire data-trace. As such, more server ports
will be occupied, leaving fewer scheduling opportunities for
the majority of coflows in the trace.

We further plot the 25/50/75/95/average CA of coflows
over time for different methods in Fig. 4. We can clearly
observe from this figure that most of the curves rise as time
goes by. This is reasonable because the CA of each coflow
will continually grow if it has not been served. We further
observe that most of the time, DPA performs better than other
methods. One may question why MinAF achieves the lowest
95th percentile CA before the time slot 300. The reason is that
the low-age coflows scheduled by MinAF may not transmit
any packet given the randomness in the workload, thus making
high-age coflows to have some probabilities to be scheduled
in the future. Despite this, when time goes by long enough,
the 95th percentile CA of MinAF will increase beyond those
of our DPA and SR algorithms.

V. RELATED WORK

In this section, we only review the closely related work
along either coflow scheduling or age optimization.

Coflow scheduling: Coflow scheduling has gained signifi-
cant research attention in recent years. However, all existing
efforts on coflow scheduling rely on the CCT metric to achieve
different design goals including fairness [11, 12], guaranteeing
deadlines [6, 26] and minimizing CCTs [6–10, 27]. Neverthe-
less, the CCT is a one-shot performance metric, and it cannot
reflect the staleness of the output results of the streaming
application. Hence, we present a new metric named CA, which
is capable of continuously measuring how long the coflow
destinations have not received new packets and accordingly
can satisfy the needs of streaming applications better.

AoI optimization: Despite the growing literature in AoI
optimization (e.g., [13, 14, 28]), some intrinsic differences
prevent us from directly adopting them for solving our CA

minimization problem. First, they are only applicable in wire-
less networks, where the wireless channels are unreliable. In
contrast, the links in the data center network are relatively
stable. Second, they care more about the freshness of the input
data, while we only concern how long the output results have
not been updated. Finally, they do not take into account the
application-level semantics and thus are coflow-agnostic.

VI. CONCLUSIONS

In this paper, we propose a new performance metric, namely
CA, to quantify the transmissions of coflows generated by
distributed streaming applications. The metric CA tracks the
longest time-since-last-service among all flows in a coflow,
and it is more aligned with the essential needs of streaming
applications on the freshness of their output results. With
coflows generated by streaming applications running on a
shared data center, we study the problem of minimizing
the average long-term CA while guaranteeing the throughput
requirements of coflows. We develop a rigorous mathemati-
cal model and formulate a long-term stochastic optimization
problem which is challenging to solve due to its inherent
complexity and the uncertainties in packet arrivals. To solve
this problem efficiently, we have designed two efficient algo-
rithms: stationary randomized algorithm (SR) and drift-plus-
age algorithm (DPA). We have validated the performance of
each algorithm via rigorous theoretical analysis and large-scale
simulations. Theoretical results have shown that SR is nearly
2-competitive for the original problem while DPA is near-to-
optimal. Simulation results further demonstrate that DPA is
better than SR, but both of them can outperform the state-of-
the-art method in minimizing the CA and incur no violation
on the throughput requirements of coflows.
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