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A Blockchain-Driven IIoT Traffic Classification
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Abstract—Nowadays, more and more sensors, devices and
applications are connected in Industrial Internet of Things (IIoT),
producing massive real-time flows which need to be scheduled
for Quality-of-Service provision. To realize application-aware and
adaptive flow scheduling, the problem of traffic classification must
be addressed at first. When edge computing paradigm is intro-
duced into IIoT, the traffic classification service can be deployed
on edge node in the near-end. Recently, deep-learning-based IIoT
traffic classification methods show better performance, but the
computational cost of deep learning model is too high to be
deployed on edge node. Moreover, increasingly unknown flows
generated by new devices and emerging industrial APPs lead to
frequent training of traffic classifiers. It is difficult to migrate
the complex process of classifier training from cloud server to
edge nodes with limited resources. To address these issues, we
take the benefits of hash mechanism and consensus mechanism
in blockchain to design a lightweight IIoT traffic classification
service, which is more applicable for edge computing paradigm.
First, inspired by the hash mechanism in blockchain and the
learning to hash for big data, we propose a new learning-to-
hash method named extension hashing. By this method, we can
build the set of binary coding tress (BCT set), then generating
hash table for more efficient k-nearest neighbor-based classifi-
cation without complex classifier training. Then, we design a
new voting-based consensus algorithm to synchronize the BCT
sets and the hash tables across edge nodes, thereby providing
the traffic classification service. Finally, we conduct data-driven
simulations to evaluate the proposed service. By comparing traf-
fic classification results on public data set, we can see that the
proposed service achieves the highest classification accuracy with
the minimal time cost and memory usage.

Index Terms—Blockchain, consensus mechanism, edge com-
puting, extension hashing, Industrial Internet of Things (IloT),
traffic classification.

I. INTRODUCTION

IN THE era of Industry 4.0, Industrial Internet of Things
(IIoT) draws more and more attentions from the academia
and industry, which offers promising solutions for smart
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factory, data-driven manufacturing system, intelligent trans-
portation system, and so on [1], [2]. With the rapid develop-
ment of IIoT, more and more sensors and smart devices are
connected while a large number of industrial APPs are arising.
These devices and APPs produce a lot of real-time flows which
have strict end-to-end delay bounds. It is a challenge to control
and schedule these real-time flows to satisfy the Quality-of-
Service (QoS) requirements in IIoT [3], [4]. To realize perfect
real-time flow scheduling (e.g., application aware, adaptive,
etc.), the problem of network traffic classification must be
addressed at first [5].

Recently, edge computing paradigm has been applied in
IIoT to offload services from cloud servers to edge nodes that
are deployed close to end users, thereby reducing the data
transmission between cloud servers and IoT devices [6], [7].
Therefore, we can deploy the traffic classification service
on edge nodes for efficient flow identification. The state-
of-the-art works of IIoT traffic classification show that the
deep-learning-based methods are promising solutions, yielding
high classification accuracy [8], [9]. However, the following
two issues are ignored in existing work.

1) Although some deep learning models can be used in the
edge computing paradigm [10]-[12], the performance of
deep-learning-based traffic classification will inevitably
be subject to constrains of limited resources of the edge
node (e.g., CPU and memory). Therefore, we need a
IIoT traffic classification solution with low resource-
consuming, high efficiency and scalability, which is
more applied for edge computing.

2) Increasingly emerging smart devices and industrial APPs
generate more and more unknown flows, leading to fre-
quent training of traffic classifiers. The classifier training
with large-scale flow samples usually consumes a lot
of resources and takes too long time. It is impossible
to finish the training process on edge node. Therefore,
we need an adaptive traffic classification solution with
lowest cost of training, which can be run on the edge
node.

To address the above two issues, it is necessary to design

a lightweight IIoT traffic classification service in the scene
of edge computing. In this article, we borrow the idea of
blockchain to achieve this goal. As a underlying technology
of decentralized public digital ledger system, blockchain is
not limited to electronic payment system while being widely
used in numerous distributed systems. Recently, there are a
lot of works about the decentralized management and secu-
rity of edge computing systems with blockchain [13], [14].
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Fig. 1. Overview of the proposed IIoT traffic classification service.

Inspired by the hash mechanism and the consensus mechanism
in the blockchain, we propose an extension hashing-based
IIoT traffic classification service which can be deployed
across edge nodes. The overview of this service is shown
in Fig. 1.

First, we propose an extension hashing-based traffic classi-
fication method. In general, the hash mechanism is designed
for the security and the privacy of data in blockchain. In
our view, the low computational complexity and less memory
cost of hash codes are as important as security. For exam-
ple, the computation of Hamming distance between two hash
codes is extremely fast taking only two CPU instructions.
Motivated by this, we introduce the learning to hash [15] to
implement efficient k-nearest neighbors (kNNs)-based classi-
fication. The kNN is one kind of lazy classification algorithm
without the process of classifier training. By learning-to-hash
algorithms, the kNN-based classification can be mapped to
the hash table searching whose execution time and memory
cost are both acceptable. However, the learning to hash is
limited to the computer vision field because the existing meth-
ods are only designed for high-dimensional data. Therefore,
we propose a new learning-to-hash method named extension
hashing which is more suitable for network flow features.
In extension hashing method, we need to build the set of
binary coding tress (BCT set) at first, which is used for
flow feature encoding. Then, we can build the hash table
consisting of hash codes and labels for kNN-based classi-
fication. Here, the hash table is not merely the concept in
the blockchain, being inspired by the learning to hash for big
data as well.

Second, based on the extension hashing, we design a
lightweight distributed IIoT traffic classification service in the
scene of edge computing. In this service, the BCT set and
the hash table are stored on every edge node to implement
encoding and kNN-based traffic classification, respectively.
When emerging unknown flows coming, we can use exist-
ing BCT set to encode the flow features into hash codes,
then inserting into hash table. Compared with classifier retrain-
ing, this process has advantage of low computational expense.
To ensure the accuracy of classification, we also can update
the BCT set and the hash table timely while synchronizing
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them across edge nodes by a proposed voting-based consensus
algorithm.

In summary, the main contributions of this article are
described as follows.

1) As we know it is the first work to integrate the learning
to hash and the blockchain to implement IIoT traffic
classification for edge computing. We not only find a
feasible solution of traffic classification on edge node,
but also widen application fields of the learning to hash
and the blockchain.

2) We propose a new learning-to-hash method named
extension hashing, which is more suitable for traffic
classification with minimal resources. We also propose
a voting-based consensus algorithm to implement an
IIoT traffic classification service with extension hash-
ing. Compared with existing work, the proposed method
has strong adaptiveness, low resource-consuming and
high efficiency, without sacrificing accuracy of traffic
classification.

3) We conduct extensive data-driven simulations. On the
public data set, the simulation results show that the
extension hashing-based traffic classification can achieve
the highest accuracy with the minimal time cost and
memory cost.

The remainder of this article is organized as follows. In
Section II, we give an overview of related work about the
network traffic classification. In Section III, we propose a
new learning-to-hash method named extension hashing, which
is more suitable for traffic classification on edge node. In
Section IV, we design a voting-based consensus algorithm to
build an extension hashing-based IIoT traffic classification ser-
vice for edge computing. In Section V, we conduct extensive
simulations on a public data sets for performance evaluation.
Finally, we give the conclusions in Section VI.

II. RELATED WORK

In existing IIoT system, a large amount of data generated
by sensors and devices is transferred in the networks. The
network issues are the key to the success of IIoT system, such
as time-sensitive routing [16], robust network [17], [18], reli-
able communication [19], and so on. For ensuring the network
performance, it is necessary to realize efficient and effective
real-time flow scheduling, especially, application-aware flow
scheduling and adaptive flow scheduling [20]. To this end,
we need to realize the traffic classification for IIoT system,
thereby identifying the flows generated by which applications
or devices for perfect scheduling.

As an indispensable pillar of network protocol and appli-
cation identification, traffic classification plays an important
role in a variety of network and security activities, such
as traffic engineering, QoS, anomaly monitoring, intrusion
detection and so on. In the early stage, the port-based meth-
ods [21] and the payload-based methods [22] are generally
used, but these methods are limited by dynamical port and
encrypted traffic. To overcome these limitations, more and
more machine learning-based traffic classification methods
are proposed, such as modular system combining linear
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binary classifiers [23], bag-of-flows-based classifier [24], self-
learning intelligent classifier [25], robust statistical classifier
combining supervised and unsupervised algorithms [26], deep
neural networks [27], and so on.

Moreover, software-defined networking (SDN) provides a
better way for flow feature sampling [28], thereby realizing
machine learning-based traffic classification more easily. Many
SDN-based traffic classification systems or frameworks are
proposed, such as openflow-based ensemble learning classi-
fiers [29], wildcard-based flow identification for SDN data-
plane [30], FlowSeer system [31] and restricted Boltzmann
machine-based multimedia flow identification with SDN [32].
With the development of artificial intelligence (Al), deep-
learning-based traffic classification methods begin to emerge,
such as a combination model of CNN and RNN for IoT traf-
fic classification [8], a capsule network assisted classification
model for end-to-end IoT traffic classification [9], a deep-
learning-based autonomous identification framework [33], and
SO on.

Nowadays, the edge computing is utilized in IloT system
to offload the service from the cloud to the edge close to end
users, thereby reducing data transmission and improving the
scalability and the intelligence of the system [34]-[36]. To
ensure the real-time flow scheduling, the traffic classification
service need to be deployed on edge nodes. Although the deep-
learning-based traffic classification seems to be promising, the
computational overhead of these deep-learning-based methods
is too high to deploy them on the edge nodes having limited
resources. Moreover, the deep-learning-based methods usually
used the end-to-end models processing flow traces directly
instead of flow features, but the gateway or the SDN controller
usually provides flow statistic features or sampling features in
real applications. Therefore, we propose a lightweight IIoT
traffic classification service, which can be deployed across
edge nodes to process the flow features from the gateway or
the SDN controller.

In this article, the proposed IoT traffic classification service
is inspired by the ideas of learning to hash and blockchain.
The learning to hash is a promising solution for kNN search
of large-scale and high-dimensional data in big data and com-
puter vision fields [15], [37]. Based on the idea of learning
to hash, we can implement more efficient classification by
binary coding and hash table searching, whose execution time
and memory cost are both acceptable. Recently, the blockchain
are widely used in IoT for network security and data manage-
ment [38], [39]. Based on the idea of consensus in blockchain,
we can ensure the synchronization of binary coding trees
(BCTs) and hash tables across edge nodes. As we know this
is the first work to study the IIoT traffic classification with
learning to hash and blockchain.

III. EXTENSION HASHING-BASED TRAFFIC
CLASSIFICATION

In this section, we first describe the idea of learning to hash
and the motivation of our method. Then, we propose a new
learning-to-hash method named extension hashing for traffic
classification.

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

A. Preliminaries

Learning to hash has been viewed as one promising solu-
tion of approximate kNN search for big data, which aims to
learn a data-dependent hash function from a given data set so
that the kNN search results in the hash coding space are as
close as possible to the results in the original space [37], [40].
Because of the less memory usage of hash codes and the high
search efficiency in hash coding space, it has been widely used
in large scale object retrieval, image classification, and other
computer vision or machine learning applications.

To implement the traffic classification with learning-to-hash
methods, we first learn a hash function from the set of col-
lected flow samples, thereby mapping these samples to hash
codes. Then, we can map a given flow sample to a hash
code by the same hash function for kNN searching in the
hash coding space to identify its category. Although existing
learning-to-hash methods can be applied for traffic classifica-
tion directly, these methods are designed for vision features.
Because the vision features extracted from images are usually
high-dimensional, the dimensionality reduction is a key step in
existing methods for generating compact hash codes. However,
the flow samples are usually represented by the feature vec-
tors consisting of several uncorrelated dimensions. Therefore,
the dimensionality reduction is not necessary for flow fea-
tures. Furthermore, we should map the flow features to longer
hash codes instead of compact hash codes for preserving more
information of original space. To this end, we propose a new
learning-to-hash method named extension hashing. The key
notations are listed in Table I.

B. Extension Hashing Method

In this article, we design a new learning-to-hash method
named extension hashing, which is more suitable for traffic
classification. Compared with existing methods, the extension
hashing includes the following three tricks to improve the
performance of traffic classification.

C. Extension Hash Coding Versus Compact Hash Coding

In existing learning-to-hash methods, the high dimen-
sional feature space is first transformed to a low dimen-
sional feature space consisting of uncorrelated dimensions
by dimension-reduction algorithms, e.g., principal component
analysis (PCA). Then, each dimension of low dimensional vec-
tors can be mapped to one bit, achieving the compact binary
coding. However, the feature space of network flows is not
high-dimensional, while each dimension of flow features can
be viewed as an independent attribute. Taking into account
the significant difference in representation of vision features
and flow features, we propose extension binary coding instead
of the compact binary coding. We present a simple and effi-
cient algorithm to compute the mean values of one array in
an iterative manner, thereby building one BCT. The process of
BCT building is described by Algorithm 1, which is motivated
by the traditional binary search algorithm.

When we want to map each dimension of traffic flow fea-
tures into £ bits, we can build one BCT whose height is £ for
each dimension by Algorithm 1, thereby d BCTs being built
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TABLE I
KEY NOTATIONS IN EXTENSION HASHING METHOD

Notations Definitions
Xff A matrix including n feature vectors of flow samples, in which each feature vector is d—dimensional.
fé A d—dimensional feature vector of flow sample.
F40G) The value on the j— dimension of f¢.
i A d—dimensional feature vector of unknown flow.
Ly, A set including n labels of flow samples.
Iy The predict label of the unknown flow.
L The number of bits corresponding to every dimension of flow features.
h A bit vector including d * £ bits.
he(5) The value on the j— dimension of h.
Hy, A hash table consisting of n hash codes and n labels of flow samples.
T A binary coding tree whose height equals to L.
Spor A set of binary coding trees.
Té The j—th binary coding tree in Spcr, whose height equals to L.
An An array including n elements.
we An array of d weight values for weighted hamming distance calculation.
we(j) The j—th weight value in W¢.
Worig(5) The j—th original weight value before normalization.
X Set A set of flow sample matrices.

Algorithm 1: The Construction of Binary Coding Tree

Input : A,: an array including »n elements;
L: the number of bits.

Output: 7,: a binary coding tree whose height equals to

L.
1 if £ ==1 then
2 Compute the mean value of the array A,:
Vi = @, a; € Ay
3 Tr.root <— vy
4 T .lchild < NULL;
s | Tg.rchild <— NULL;
6 else
7 Compute the mean value of the array A,:
Vi = —Zijll 4 ai € A
8 for a; € A, do
9 if a; — v;; > 0 then
10 L Add q; into a new array A ;
11 else
12 L Add q; into another new array A, .;
13 L=L—-1;
14 Tr.root < vy
15 Ty .lchild < Call Alg.1(itself) with the inputs A,
and L;
16 Ty .rchild < Call Alg.1(itself) with the inputs A;"
B and L;

for the hash coding of d-dimensional flow features. Based on
these d BCTs, we can implement the extension hash encoding,
the process of which is shown in Algorithm 2. By Algorithm 2
a d-dimensional flow feature vector f¢ = (f4(1), ..., f%(d)) is
encoded into a hash code represented by a bit array 4 consist-
ing of d x L bits. When £ > 1 the length of the hash code is
greater than the dimensionality of the feature vector. By con-
trast, when applying the existing learning-to-hash methods, a
feature vector can only be encoded into a short hash code

Algorithm 2: The Extension Hash Encoding based on
Binary Coding Trees

Input : f%: a d-dimensional flow feature vector;
Sser = {T}. -+, T%}: a BCT set including d
BCTs whose heights are L.
Output: 4#%: a bit vector including d * L bits.
1forl1 <j<ddo

2 Tp < T} ;

3 i=@—-D=*xL+1;

4 while 7, # NULL do

5 if f4(j) — Tz.root > 0 then
6 i) =1;

7 L Tp < Tp.rchild,

8 else

9 K@) = 0;

10 L Ty < Tr.lchild;

11 i=i+1;

whose length is smaller than its dimensionality. Therefore, we
call the proposed method as extension hashing.

D. Weighted Hamming Distance Versus Hamming Distance

The Hamming distance calculation usually consists of two
steps. The first step is to compute the result of bitwise XOR
between hash codes. The second step is to count the nonzero
bits of the result from the first step. Although the Hamming
distance calculation is very fast, it usually leads to confusing
ranking in kNN search, because it only represents the number
of different bits between two hash codes without consider-
ing the differential information between bits. For example,
the query point g and other two different sample points p
and p; are encoded to binary codes 01101, 10101, and 01110,
respectively. The Hamming distance between g and p; is
the same as which between g and p;, leading to confusing
ranking. To overcome this drawback, the weighted Hamming
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Algorithm 3: The Class Label based Weight Calculation

Algorithm 4: The Extension Hash Table Construction

Input : Xff: a nx d flow sample matrix consisting of n
d-dimensional feature vectors of flow samples;
L,: a class label set consisting of n labels of flow
samples.
Output: W?: an array of d weight values where the j-th
weight corresponds to the j-th dimension.
1 Based on the class label set L,, flow samples are divided
into m classes to get the index set I;.;
2 I4(k) includes the indexes of flow samples belonging to
the k class.;
sfor1 <j<ddo

4 Nai(j) < counting the number of distinct values of
X40.))s
5 for 1 <k <mdo
6 Neiass(k, j) < counting the number of distinct
L values of Xff(ld(k),j).;
7| Worigl) = zzﬁﬁv’iﬁl@,ﬂ —1/m;

8 Normalization:;
9 for 1 >j>ddo

. Worig (/)
10 W) = el
L (]) Zf: 1 Worig (/)

distance is usually calculated instead of the Hamming
distance [41].

In the weighted Hamming distance calculation, one weight
value is assigned to each bit, which can represent the impor-
tance of this bit. Instead of counting the nonzero bits, the
weighted summation is calculated based on the result of bit-
wise XOR and weight values of bits. The weighted Hamming
distance between any two hash codes h‘f and hg is defined as

k
i (W, ) = D2 Whm) [ om) — | (1)
m=1

where W(m) denotes the mth weight value in the weight value
array.

To acquire more accurate distance measure, more suitable
weight values should be given. In traffic classification task, we
infer the class labels of unknown flows based on the labels of
known flow samples. Therefore, we also can directly compute
the weight values based on the labels and the feature values
of known flow samples. To this end, we propose a class label-
based weight calculation algorithm shown in Algorithm 3.

Weight values computed by Algorithm 3 represent the
impact of the distribution of each dimensional feature values
on traffic flow classes. If there is no same feature values on
the ith dimension of flow samples from different classes, we
have

Nai (j) _

Z;{nzl Nelass (kvj)
Under this condition, the maximum original weight value
Worig(j) = 1 — 1/m is assigned to the ith dimension. In other
words, there is a great possibility of distinguishing among differ-
ent traffic flow classes by this dimension. If the ith dimensional

2

Input : Xff : a nxd flow sample matrix consisting of n
d-dimensional feature vectors of flow samples;
L,: a class label set consisting of n labels of flow
samples;
L: the number of bits corresponding to each
dimension.
Output: Sgcr = {T}, -+, T4}: a BCT set including d
BCTs whose heights are £;
W4 an array of d weight values;
H,: a hash table consisting of n hash codes and
n labels of flow samples.
1forl <j<ddo
2 | T, < Call Alg.1 with the inputs X¢(:, /) and L;
3 Insert T/, into Spcr;

4 W? < Call Alg.3 with the inputs X¢ and Ly;

sforl <i<ndo

6 | Hy(i).code < Call Alg.2 with the inputs X¢(i, :) and
Spcr;

7 | Hp(i).label < Ly(i);

feature values of all flow samples are the same, we have

Nan () _
ZZL] Nclass (k’ ])

In our view, the ith dimension is meaningless to the traf-
fic classification. Thus, the minimal original weight value
Worig(j) = 0 is assigned to the ith dimension. Finally, the
original weight values should be normalized to ensure that the
summation of all weight values equal to 1.

1/m. 3)

E. Traffic Classification Using Extension Hashing

Based on the proposed extension hashing method, we can
implement the traffic classification efficiently and effectively.
The process of extension hashing-based traffic classification
can be divided into two stages, namely, the extension hash
table construction and the kNN classification with extension
hash codes.

In the first stage, we build a CT set based on all
d-dimensional feature vectors of flow samples at first. Then,
each feature vector is encoded into a hash code based on d
BCTs in set. Finally, we get a hash table which consists of all
hash codes and labels of flow samples. Because the hash codes
occupy less memory, the hash table can be directly loaded into
memory for accelerating the kNN search. Algorithm 4 shows
the process of extension hash table construction.

In the second stage, the feature vector of unknown flow is
also encoded into a hash code based on the BCT set at first.
Then, an exhaustive kNN search in hash table can be imple-
mented very efficiently by computing the weighted Hamming
distances. Finally, we can predict the label of unknown flow
by a majority vote of its k nearest neighbors. Algorithm 5
shows the process of kNN classification with extension hash
codes.
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Algorithm 5: The Extension Hash Code based kNN
Classification

Algorithm 6: The Voting-based Consensus for New Hash
Table and BCT Set

Input : ff : a d-dimensional feature vector of unknown
flow;
Spcr: a BCT set including d BCTs;
W4: an array of d weight values;
H,,: a hash table consisting of n hash codes and
n labels of flow samples.
Output: /,: the predict label of the unknown flow.
1 h, < Call Alg.2 with the inputs f, and Spcr;
2for1 <i<ndo
3 L Dh(i) = Z]"Z:l W ()% | K, — H,(i).codé |;

4 Rank Dh to find k nearest neighbors;
5 I, < Find the class label most common among the k
nearest neighbors;

Pre-Block Hash

The management of Hash Table and BCT Set by Blockchain

g

i T T

Edge Server

Fig. 2. Blockchain-driven IIoT traffic classification service.

IV. FRAMEWORK OF BLOCKCHAIN-DRIVEN IIOT TRAFFIC
CLASSIFICATION SERVICE

To implement IIoT traffic classification across the edge
nodes, we design a blockchain-driven service framework as
shown in Fig. 2.

In our service framework, when the gateway or the SDN
controller extracting the features of each flow to be classified,
it invokes the traffic classification service from the edge server
in the near-end, thereby the flow can be distinguished for
effective application-aware scheduling or traffic engineering.

To implement extension hashing-based traffic classification
service on edge nodes, we can deploy an improved blockchain
system for management of BCT sets and hash tables across
distributed edge nodes. In the initialization stage, a set of
binary coding trees (BCT set) and a hash table are constructed
by Algorithm 1 and Algorithm 4, respectively. Then they are
both encapsulated into the first block in the blockchain.

Input : XSet = {Xgl, e ,X;‘fm}: m flow sample matrices
generated on m edge nodes, respectively;
LSet = {Ly,, -+ ,Ly,,}: m class label sets
corresponding to m flow sample matrices;
L: the number of bits corresponding to each
dimension.
Output: Sg*., H;*": a new BCT set and a new hash
table.
1 Step 1: The process of local hash table construction;
for 1 <j<mdo
3 S%CT, H), < Call Alg.4 with the inputs X,‘f/ Ly; and

(5]

L;

4 | Broadcasting S]BCT and HJ, to other m — 1 edge nodes;

5 Step 2: The process of voting-based consensus;

6 for 1 <j<mdo

7 for 1 <k <mdo

8 if k # j then

9 Using X,‘fi and Ly, as unknown flow matrix
and its label set;;

10 Predicting the label set L;j of Xffj by Alg.5
with the inputs Sll_f?cr and Hﬁ 5

11 Computing the prediction accuracy of Slt(;cr
and H,’i by comparing Ly, and ij;

12 Voting for SﬁCT and H’,j with the highest prediction

accuracy;;

13 Broadcasting the vote result to other m — 1 edge
nodes and receiving the vote results from other m — 1
edge nodes;;

14 if SJBCT and HJ, with the highest votes then

15 Sp. = Sper and HI®Y = Hy;

16 Encapsulating Sg and H;*" into a new block.;

17 Broadcasting the new block to other m — 1 edge

nodes;;

18 Receiving the results of validate and Updating

blockchain.;

19 else

20 if The new block information from the node k

then

21 Sger = S];?CT and H'" = H;

22 Validating the new block with the voting
results and sending back the result of
validating;;

23 Waiting the synchronous update of
blockchain.;

When the traffic classification service is running, the BCT
set and the hash table are used for ecoding and kNN-based
classification, respectively. In the updating stage, we design
a voting-based consensus algorithm shown in Algorithm 6 to
generate and validate a new block, including a new hash table
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and a new BCT set across these edge nodes, while appending
the new block into the blockchain. Finally, we can implement
traffic classification with the same BCT sets and hash tables
across edge nodes. In this service, we also assume each edge
node is a validated peer by remote cloud service, thereby con-
structing permissioned blockchain to manage the hash tables
and BCT sets on them.

V. PERFORMANCE EVALUATION
A. Simulation Setup

To evaluate the performance of the proposed traffic clas-
sification service, we conduct a large number of data-driven
simulations. As we know, there is no public data set of flow
statistical features from real IIoT systems. Therefore, we select
one public data set of labeled Internet traffic flows, namely,
Andrew W. Moore’s data set! for objective evaluation.

The Andrew W. Moore’s data set is usually used to eval-
uate the feature-based traffic classification methods, which
consists of 11 subsets. The first ten subsets are collected
from a website by a high-performance network monitor, and
each from a different period of the 24-h day. The 11th sub-
set is collected at the same site 12 months later to evaluate
how well the traffic classification methods perform when
classifying new flow data. In this data set, each flow is
characterized by 248 features, including server port, client
port, total packets, packet inter arrival time, and so on.
One application class label is assigned to each flow. There
are 12 different application classes in this data set, namely,
“WWW,” “MAIL,” “FTP-CONTROL,” “FTP-PASV,” “FTP-
DATA,” “ATTACK,” “P2P,” “DATABASE,” “MULTIMEDIA,”
“SERVICES,” “INTERACTIVE,” and “GAMES.” In some
work the flows belonging to “FTP-CONTROL,” “FTP-PASV”
and “FTP-DATA” classes are labeled as “BULK” class, thereby
the flows are classified into 10 different classes. In this article,
we deal with 12 classes for more accurate classification.

In simulations we focus on the accuracy, the time cost and
the memory cost of traffic classification methods. Because the
edge node in IIoT system is usually a portable server or a
small server with limited resources, we conduct simulations
on a general Mac mini PC, which has a 3-GHz Intel Core i7
CPU and 16-GB DDR3 memory.

B. Simulations on the Andrew W. Moore’s Data Set

To achieve the fairness of comparison, we adopt the same
train and test data in [27] while the same evaluation metric is
also used. The train set consists of the first ten subsets of flow
samples in the Andrew W. Moore’s data set, which includes
377 526 flows. The 11th subset is used as the unknown flow set
including 19626 flows for test. The performance of different
traffic classification methods can be assessed by comparing the
predict labels and the actual labels given in the data set. The
accuracy is used as the evaluation metric, which is the number
of unknown flows that were classified correctly divided by the
total number of unknown flows.

1 http://www.cl.cam.ac.uk/research/srg/netos/projects/archive/nprobe/data/
papers/sigmetrics/index.html
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C. Comparison of Accuracy

We first compare the extension hashing-based methods with
other three kinds of representative methods.

The first kind of methods is the traditional methods includes
the Naive Bayes (NB), the NB with the kernel density estima-
tion (NB+Kernel), the NB with the feature selection method
named fast correlation-based filter (NB+FCBF), the NB with
Kernel and FCBF (NB+Kernel4+FCBF), the nearest neigh-
bor search (NN) and the NN with the feature selection
(NN+FCBF). The NN is special case of kNN with k£ = 1.
In [27] the results show that the feature selection provides a
major improvement in traffic classification task, while select-
ing 11 important features from raw 248 features by FCBEF.
Thus, we also evaluate the methods with feature selection.

The second kind of methods is the newest work on the
Andrew W. Moore’s data set, which is based on neural
network, including the Bayesian neural network (BNN) and
the perceptron network (PN).

The third kind of methods is the representative learning-
to-hash-based methods, including the iterative quantization
hashing-based approximate nearest neighbor search (ITQ-
ANN), and the ITQ-ANN with the feature selection (ITQ-
ANN+-FCBF). Because ITQ hashing only generate the com-
pact hash code, the length of hash code cannot exceed the
limit of dimensions of feature vectors. Thus, we evaluate it
with 248, 128, and 64 b, respectively. When using ITQ with
FCBF, the length of hash codes cannot be greater than 11.
Because the proposed extension hashing can yield the longer
hash code to improve the performance, we evaluate extension
hashing with 248, 496, and 744 b, respectively. For 11-D new
features generated by FCBF, we evaluate the extension hash-
ing with 11, 22, and 33 b, respectively. Table II shows the
accuracy of these different traffic classification methods.

From Table II we can see that the accuracy of EH-
ANN-+FCBEF is the best when the feature vectors are encoded
into 33-b hash codes (each dimension of feature vectors corre-
sponding to 3 b). It demonstrates that it is feasible to introduce
the idea of learning to hash into the traffic classification.
Although the accuracy of ITQ-ANN is unchanged with differ-
ent lengthes of hash codes, the accuracy of ITQ-ANN-+FCBF
is less with the decrease of the length of hash codes. It
demonstrates that existing learning-to-hash methods cannot be
directly used for traffic classification. The compact binary cod-
ing does not apply to the features of Internet traffic. We also
can see that the accuracies of EH-ANN and EH-ANN+FCBF
are both increasing as the length of hash codes increases. It
is verified that more information of features can be preserved
by extension binary coding.

From Table II we also find one interesting point. The accura-
cies of EH-ANN and EH-ANN-FCBF are higher than that of
NN and NN+4FCBF. In computer vision field, the learning-to-
hash methods are usually used to find the approximate nearest
neighbor instead of the exact nearest neighbor. These methods
try to obtain less memory usage and high search efficiency
by sacrificing the accuracy. However, in the Internet traffic
classification, we can get higher accuracy. We think the rea-
son is the differences of feature spaces. For the features of
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TABLE II
ACCURACY OF DIFFERENT TRAFFIC CLASSIFICATION METHODS ON THE ANDREW W. MOORE’S DATA SET

Methods Accuracy

NB 20.75%

NB+Kernel 37.65%

" NB+FCBF 93.38%
Traditional Methods NB+Kernel+FCBF 93.73%
NN 86.76%

NN+FCBF 95.32%

BNN 95.3%

Neural Network PN 96.7%
ITQ-ANN(248-bit hash code) 79.47%

ITQ-ANN(128-bit hash code) 79.47%

. . ITQ-ANN(64-bit hash code) 79.47%
Representative Learning-to-Hash 1.\ NN ECBF(11-bit hash code)  82.96%
ITQ-ANN+FCBF(8-bit hash code) 83.01%

ITQ-ANN+FCBF(4-bit hash code) 81.68%

EH-ANN(248-bit hash code) 88.94%

EH-ANN(496-bit hash code) 95.49%

Extension Hashin EH-ANN(744-bit hash code) 95.49%
g EH-ANN+FCBF(11-bit hash code) 86.59%
EH-ANN+FCBF(22-bit hash code) 95.48%

EH-ANN+FCBF(33-bit hash code)  98.72%

Without Feature Selection (FCBF) With Feature Selection (FCBF) 7 07 :
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Internet traffic, we can get a more suitable feature space for
classification by extension hashing.

Then, we evaluate the effect of the k-value on the
performance of traffic classification. In simulations, we eval-
uate the accuracies of NN, EH-ANN, NN+FCBF and EH-
ANN-+FCBF with £k = 10,20, ..., 100, respectively. The
results are shown in Fig. 3.

From Fig. 3, we can see that the effect of the k-value on the
performance of traffic classification is little. When using the
hash codes consisting of more bits, the accuracies of traffic
classification are increased. It is evaluated that the extension
hashing is reasonable. Moreover, we find that the increasing of
accuracies cannot be sustainable as the length of hash codes
increases. This point is definitely worth further investigation.

D. Evaluations of Time Cost

In this section, we evaluate the time cost of different traf-
fic classification methods. In simulations, 19626 unknown
flows in the 11th subset are classified by each of methods,
thereby computing the average time spent in classification

Different methods

Fig. 4. Time costs of different traffic classification methods.

as the time cost. Fig. 4 shows the time costs of NN,
ITQ-ANN, EH-ANN, NN+4-FCBF, ITQ-ANN+FCBF and EH-
ANN-+FCBF. The time costs of NN and NN-FCBF are mainly
for the nearest neighbor search, while the time costs of other
four learning-to-hash-based methods are for the feature encod-
ing and the nearest neighbor search. Although feature encoding
brings extra time cost, it is trivial in comparison to the time
cost of nearest neighbor search (see Table III).

From Fig. 4, we can see that the time costs of ITQ-ANN and
EH-ANN are still significantly less than that of NN whether
using feature selection method (FCBF) or not. It is verified
that we can take advantage of learning to hash to decrease the
time cost sharply. We also can see that the feature selection is
very important for traffic classification, by which we can get
much smaller and more useful features to reduce the time cost
and the memory usage of traffic classification.
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TABLE III
TIME COSTS OF HASH TABLE CONSTRUCTION, FEATURE ENCODING AND NEAREST NEIGHBOR SEARCH

Time Cost (seconds)

Methods hash table construction feature encoding nearest neighbor search
ITQ-ANN(248-bit) 163.46 7.50E-6 0.1562
EH-ANN(248-bit) 6.12 1.02E-5 0.1715
ITQ-ANN+FCBF(11-bit) 4.12 1.17E-7 0.0067
EH-ANN+FCBF(11-bit) 0.23 1.01E-6 0.0057
From Table III, we can see that the time costs of hash Without Faatura Selection (FCRF]
NN

table construction and feature encoding, which are acceptable
for traffic classification. Moreover, by the proposed EH-based
methods, we can reconstruct the hash table more quickly,
thereby not affecting the on-line traffic classification. We also
can see that the time cost is affected by the number of bits
of hash codes. To further reduce the time cost, the feature
selection can be used. Table III shows that the time cost of
EH-ANN+FCBF (11 b) is only 0.0057 + 1.01E — 6 seconds.
Compared with classifier training, it is suitable for real-time
traffic classification.

E. Evaluations of Memory Usage

In nearest neighbor search, all samples need to be loaded
into memory to accelerate the process of search. Therefore,
the memory usage is represented by the size of data loaded
into memory for traffic classification in the experiments. By
NN, 377526 feature vectors of sample flows are loaded into
memory. If learning-to-hash-based methods are used instead of
NN, we only load 377 526 hash codes into memory. Obviously,
the size of hash codes is significantly smaller than that of
feature vectors. Fig. 5 shows that we can take advantage of
learning to hash and feature selection to achieve the lowest
memory usage.

From Fig. 5, we can see that the size of raw features of
sample flows is above 700 MB, while the size of 248-b hash
codes of sample flows is less than 90 MB. It is verified that
it is more feasible to load hash codes into memory instead of
raw feature vectors. The hash codes with the same lengthes
have the same memory usage. The EH-ANN-based methods
only generates longer hash codes, but the accuracies of traffic
classification are more higher. Therefore, from two perspec-
tives: 1) accuracy and 2) memory usage, the EH-ANN-based
methods with feature selection are promising.

F. Discussion About Simulation Results

From the above evaluations, we can see that the extension
hashing-based traffic classification yields the highest accuracy
with minimal time cost and memory usage. We also find the
accuracy of classification can be improved by introducing fast
correlation-based filter (FCBF). The FCBF is one kind of
feature selection algorithm, by which we can select a little
important features instead of all features to avoid the effect of
irrelevant features on traffic classification, thereby improving
the performance. Although we can obtain high accuracy with
shorter hash code after feature selection, the extension hashing
can still be used for mapping the selected features to longer

ITQ-ANN(248-bit)
ITQ-ANN{128-bit) 1%"

ITQ-ANN(&4-bit) 1.
EH-ANN(248-bit)
EH-ANN(496-bit) 1'."."."
EH-ANN(744-bit)

0 100 200 300 400 500 600 700
The size of data loaded into memory (MB)

With Feature Selection (FCBF)

NMN+FCBF

EH-ANN+FCBF{11-bit)

EH-ANN+FCBF(22-bit)

EH-ANN+FCBF(33-bit)

0 5 10 15 20 25 30
The size of data loaded into memory (MB)

Fig. 5. Memory usage of different traffic classification methods.

hash codes, leading to higher accuracy. Therefore, we can get
the highest accuracy by “EH-ANN-+FCBF” method with 33-b
hash code in the above evaluations.

Furthermore, we can keep increasing the length of hash
codes to obtain higher accuracy. However, the longer hash
codes yield higher time cost and memory usage. Table IV
shows the performance of EH-ANN+FCBF with hash codes
of different length. From Table IV, we can see that the
improvement of accuracies is little when encoding each dimen-
sion of flow features into more than 3 b, while the growths
of time cost and memory usage are fast. Therefore, we think
33 b is an appropriate length for EH-ANN+FCBF method on
the Andrew W. Moore’s data set.

To simulate the actual status of edge nodes, the above
evaluations are implemented on general Mac mini PC. The
extension hashing-based traffic classification can be deployed
on edge nodes with limited resources. In distributed edge
computing, the BCT sets and the hash tables are same on
edge nodes. The performance of traffic classification on every
edge node likes the above stand-alone simulation results.
Many unknown flows in real-world scenario may affect the
performance. In the future work, we will build real service
prototype for evaluation.
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2133

Accuracy Time Cost of kNN (seconds)

Memory Usage (MB)

Methods
EH-ANN+FCBF(11-bit hash code)  86.59%
EH-ANN+FCBF(22-bit hash code)  95.48%
EH-ANN+FCBF(33-bit hash code)  98.72%
EH-ANN+FCBF(44-bit hash code)  98.78%
EH-ANN+FCBF(55-bit hash code)  98.92%

0.0057 3.96
0.0134 7.92
0.0203 11.88
0.0239 15.84
0.0313 19.8

VI. CONCLUSION

To implement the IIoT traffic classification for edge com-
puting paradigm, we propose a blockchain-driven service
framework in this article. First, inspired by the hash mech-
anism, we borrow the idea of learning to hash to propose
an extension hashing method for efficient and scalable traffic
classification. Then, inspired by the consensus mechanism, we
propose a voting-based consensus algorithm for synchronizing
and updating BCT sets and hash tables needed for extension-
hashing-based traffic classification across edge nodes. Finally,
extensive data-driven simulations show that we can take full
advantage of extension hashing to achieve the highest clas-
sification accuracy with the minimal time cost and memory
usage. Therefore, we can implement a lightweight IloT traffic
classification service in the scene of edge computing, which
has strong adaptiveness, low resource-consuming and high
efficiency.
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