
Discovering Graph Functional Dependencies
Wenfei Fan1,2 Chunming Hu2 Xueli Liu3 Ping Lu2

1University of Edinburgh 2BDBC, Beihang University 3Harbin Institute of Technology
wenfei@inf.ed.ac.uk, xueli.hit@gmail.com, {hucm, luping}@buaa.edu.cn

ABSTRACT
This paper studies discovery of GFDs, a class of functional de-
pendencies defined on graphs. We investigate the fixed-parameter
tractability of three fundamental problems related to GFD discov-
ery. We show that the implication and satisfiability problems are
fixed-parameter tractable, but the validation problem is co-W[1]-
hard. We introduce notions of reduced GFDs and their topological
support, and formalize the discovery problem for GFDs. We de-
velop algorithms for discovering GFDs and computing their covers.
Moreover, we show that GFD discovery is feasible over large-scale
graphs, by providing parallel scalable algorithms for discovering
GFDs that guarantee to reduce running time when more proces-
sors are used. Using real-life and synthetic data, we experimentally
verify the effectiveness and scalability of the algorithms.

KEYWORDS
GFD discovery, parallel scalable, fixed-parameter tractability
ACM Reference Format:
Wenfei Fan, Chunming Hu, Xueli Liu, Ping Lu. 2018. Discovering Graph
Functional Dependencies. In SIGMOD’18: 2018 International Conference on
Management of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3183713.3196916

1 INTRODUCTION
Functional dependencies have recently been studied for property
graphs [18, 20], referred to as graph functional dependencies (GFDs).
Unlike relational databases, real-life graphs often do not come with
a schema. On such graphs, GFDs provide a primitive form of in-
tegrity constraints to specify a fundamental part of the semantics
of the data. The need for GFDs is evident in specifying the integrity
of graph entities, detecting spam in social networks, optimizing
graph queries, and in particular, consistency checking.

Example 1: Consistency checking is a major challenge to
knowledge acquisition and knowledge base enrichment. Errors are
common in real-world knowledge bases, e.g., those depicted in Fig. 1.

(a) YAGO3 [36]: A person JohnWinter is given credit for produc-
ing film Selling Out (G1 in Fig. 1). But John is a high jumper.
In fact, the film was created by producer Jack Winter.

(b) YAGO3: Saint Petersburg is located in two places, as a city
in both Russia and Florida (G2 in Fig. 1).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196916

create
y

product
x

person

Q3

x y
person

Q2

person

parent

x
city

y

z
_

_
located

located

Saint

city

located

located
Petersburg

Russia
country

city
Florida

G2G1

create

person

John
Winter

product

Selling
out

Q1

G3

person person

Owen John
Brown Brown

parent

parent

parent

Figure 1: Graphs and graph patterns

(c) DBpedia [1]: John Brown and Owen Brown are claimed to
be a parent of each other (G3 in Fig. 1).

GFDs of [18, 20] are able to catch these inconsistencies.
(1) Consider GFD φ1 = Q1[x ,y](y.type = “film” → x .type =
“producer”). Here Q1 is shown in Fig. 1, and x and y are variables
denoting two nodes in Q1, each carrying an attribute type (not
shown). On a graph G, φ1 states that in any subgraph of G that
matches Q1 via isomorphism, if product y has type film, then the
type of person x is producer. It catches the error in G1.
(2) Consider GFD φ2 = Q2[x ,y, z](∅ → y.name = z.name), where
patternQ2 is shown in Fig. 1, ∅ denotes an empty set of literals, and
name is an attribute. It says that if city x is located in y and z, then
y and z must be the same place; i.e., a city can be located in only
one place. It catches the error in G2. Note that nodes y and z are
labeled with wildcard ‘_’, which can match, e.g., country and city.
(3) Consider GFD φ3 = Q3[x ,y](∅ → false), where Q3 is depicted
in Fig. 1, and false is a Boolean constant. It states that there exist
no person entities x and y who are parent of each other, i.e., Q3
specifies an “illegal” structure. It catches the error in G3. 2

To make practical use of GFDs, however, we need effective al-
gorithms to discover meaningful GFDs from real-life graphs. This
is challenging. A GFD Q[x̄](X → Y) is a combination of a graph
pattern Q and a functional dependency (FD) X → Y , positive (spec-
ifying Y “entailed” by Q and X , e.g., φ1, φ2), or negative (specifying
“illegal” cases with false, e.g., φ3). GFD discovery is much harder
than discovering relational FDs [27, 41], as GFDs additionally re-
quire topological constraints Q . It is more challenging than graph
pattern mining [13, 19, 26, 28, 35, 37], since it has to discover both
positive and negative GFDs (e.g., φ3). Worse yet, validation and
implication of GFDs are coNP-complete and NP-complete, respec-
tively [20], which are embedded in GFD discovery.

Contributions. This paper tackles these challenges.
(1) We investigate three fundamental problems related to GFD
discovery (Section 3). The satisfiability problem is to determine
whether GFDs discovered are not “dirty”, i.e., the GFDs have a
model; implication is to decide whether aGFD discovered is “redun-
dant”, i.e., implied by a set of GFDs already known; and validation
is to ensure that GFDs mined from a graph G are satisfied by G.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

427

https://doi.org/10.1145/3183713.3196916
https://doi.org/10.1145/3183713.3196916

We show that while the implication and satisfiability problems
are fixed-parameter tractable [21], the validation problem is co-
W[1]-hard [11]. However, we show that for GFDs with patterns of
a bounded size, all these problems become tractable. These results
are not only of theoretical interest, but also help us formulate the
discovery problem and develop practical discovery algorithms.

(2) We formalize the discovery problem for GFDs (Section 4). We
introduce a notion of support for positive and negative GFDs in
graphs to find “frequent” GFDs, and define reduced GFDs and GFD
covers to exclude “redundant” GFDs. We show that the GFD sup-
port is anti-monotonic. Based on these, we formalize the discovery
problem for GFDs, to strike a balance between the complexity of
GFD discovery and the enhanced expressiveness of GFDs.

(3) We develop a sequential algorithm for discovering GFDs of [20]
(Section 5). In contrast to prior discovery algorithms, we combine
pattern mining and FD discovery in a single process. Moreover, we
provide effective pruning strategies. We also develop an algorithm
for computing a cover of the set Σ of discoveredGFDs, i.e., aminimal
set of “non-redundant”GFDs that is equivalent to Σ. This algorithm
involves the implication analysis of GFDs.

(4) We develop a parallel algorithm for discovering GFDs in frag-
mented graphs (Section 6). We employ distributed incremental joins
to balance the workload. We show that the algorithm is parallel scal-
able [33] relative to the sequential algorithm of (3), i.e., it guarantees
to reduce response time with the increase of processors. Thus it
is feasible to discover GFDs from (possibly big) real-life graphs by
adding processors when needed. We also develop a parallel scalable
algorithm for computing a cover of discovered GFDs.

(5) Using real-life and synthetic graphs, we experimentally evaluate
the algorithms (Section 7). We find the following. (a)GFD discovery
is parallel scalable. It is on average 3.78 times faster on real-life
graphs when processors n increase from 4 to 20. (b) GFD discovery
is feasible in practice. The sequential GFD mining algorithm takes
1.3 hours on YAGO2 with 7.64 millions of entities and edges. The
performance is substantially improved by parallelization. When n =
20, it takes 591 seconds on average on real-life graphs (314 seconds
on YAGO2), and 30 minutes on synthetic graphs with 30M nodes
and 60M edges. (c) Computing GFD cover is also parallel scalable.
It is on average 1.75 times faster when n varies from 4 to 20. (d) Our
algorithms find useful GFDs, positive and negative.
Related work. We categorize related work as follows.
FDs for graphs. FDs have been studied for RDF [5–7, 10, 22, 24, 25,
34, 42]. A direct extension of FDs to relational encoding was stud-
ied in [34]. Based on triple patterns with variables, [5, 10] define
FDs with homomorphism. The implication and satisfiability prob-
lems for the FDs are shown decidable [5], but their complexity
bounds are open; axiom systems are provided [10, 25] via relational
encoding of RDF. Using clustered values, [42] defines FDs with
path patterns; [42] is extended to support CFDs (conditional func-
tional dependencies [15]) for RDF [24]. FDs are also defined in [6],
using tree patterns. AMIE [7, 22] extends association rules with
conjunctive horn clauses for knowledge graph enhancement.

This work adopts GFDs of [20] for the following reasons. (a)
GFDs are defined for general property graphs, not limited to RDF.

(b) GFDs support (cyclic) graph patterns with variables, e.g., φ3 of
Example 1, as opposed to [6, 24, 42]. (c) GFDs support bindings of
semantically related values like CFDs [15], e.g., φ1, and a negative
form with false, e.g., φ3, which cannot be expressed as the FDs
of [5–7, 10, 22, 24]. The need for supporting these is evident in
consistency checking, as indicated by axioms for knowledge bases
(e.g., [32]), and by the experience of cleaning relational data [15].

Note that neither [20] nor [18] considers GFD discovery.
In contrast to GFDs, AMIE supports neither pattern matching

via subgraph isomorphism nor constant-value binding. Moreover,
it cannot express negative rules and rules with wildcard.
Dependency discovery. Discovery algorithms have been well studied
for relational dependencies, e.g., FDs [27, 41], CFDs [8, 16] and
denial constraints [9]. As remarked earlier, GFD discovery is much
harder. Closer to this work are algorithms for discovering FDs
over graphs [24, 42]. The method of [42] first pre-clusters property
values; it then adapts the levelwise process of TANE [27] to discover
FDs defined with path patterns over RDF. It is extended in [24],
which first enumerates frequent graph structures, and then adopts
CFDMiner [16] to mine CFDs in each subgraph found.

To the best of our knowledge, no prior work has studied (a)
discovery of dependencies with (possibly cyclic) patterns, which
involves enumeration of isomorphic subgraph mappings and is
inherently intractable, as opposed to path patterns [24, 42], (b)
negative GFDs, which demand a support quite different from the
conventional notion for graph patterns, but are particularly useful
for consistency checking in knowledge bases [32], (c) dependencies
whose validation is intractable, (d) topological support and reduced
dependencies, and (e) parallel discovery algorithms, not to mention
parallel scalability. GFD discovery is unique in these aspects.

Following the practice of conventional relational FD mining, we
discover GFD candidates from (possibly dirty) graphs, for domain
experts to inspect and select before they are used as data quality
rules. We aim to find meaningful GFDs that are non-redundant and
frequent by defining reduced GFDs and their topological support.
Graph pattern mining. Related to GFD discovery is graph pattern
mining from graph databases [26, 28, 30]. Apriori [28] and pattern-
growth [26] methods expand a frequent pattern by adding nodes
and edges. [30] connects two graphs via Pearson correlation. Multi-
objective subgraphmining [37] optimizes subgraphs via skyline pro-
cessing. As observed in [29], pattern mining over graph databases
does not help GFD discovery, since the anti-monotonicity of the
support of [26, 28, 30] no longer holds over a single graph.

Closer to this work are mining techniques for a single graph
[13, 19, 35, 39]. GRAMI [13] considers patterns without edge labels,
and models isomorphic subgraph enumeration as constraint satis-
faction. Themethod of [35]mines frequent subgraphs via a two-step
filter-and-refinement process, in MapReduce. Arabesque [39] uses
“pattern-centric” MapReduce programming in pattern mining. The
method of [19] mines top-k diversified association rules Q ⇒ p
defined with a graph pattern Q and a single edge p.

GFD discovery differs from the prior work in the following. (a)
It requires both graph pattern mining and FD mining. We develop
new data structures and techniques to combine the two in a single
process. (b) No prior work has studied “negative patterns” coupled

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

428

with FDs. (c) To find a cover ofGFDs, we have to checkGFD implica-
tion, an intractable problem, which is not an issue for graph pattern
mining. (d) We offer parallel scalability, a performance guarantee
not found in the prior algorithms except [19, 20]. Our algorithms
differ from [19, 20] in problem statements and methods. We balance
the workload via distributed and incremental joins, while [19, 20]
require special treatments for skewed graphs.

2 GRAPH FUNCTIONAL DEPENDENCIES
We first review GFDs [20], starting with basic notations.

2.1 Preliminaries
Assume an alphabet Θ of the node and edge labels in graphs. We
consider directed graphsG = (V ,E,L, FA), where (1)V is a finite set
of nodes; (2) E ⊆ V ×V , in which (v,v ′) is an edge from nodev tov ′;
(3) each v ∈ V is labeled L(v) ∈ Θ; each e ∈ E is labeled L(e) ∈ Θ;
and (4) for each node v , FA (v) is a tuple (A1 = a1, . . . ,An = an),
where ai is a constant, Ai is an attribute of v , written as v .Ai = ai ;
and Ai , Aj if i , j. The attributes carry its content as in property
graphs, social networks and knowledge bases.

We use two notions of subgraphs.
◦ A graph G ′ = (V ′,E ′,L′, F ′A) is a subgraph of G if V ′ ⊆ V ,
E ′ ⊆ E; moreover, for each node v ∈ V ′, L′(v) = L(v) and
F ′A (v) = FA (v); and for each edge e ∈ E ′, L′(e) = L(e).
◦ A subgraph G ′ of G is induced by a set V ′ of nodes if E ′
consists of all the edges in G with endpoints both in V ′.

Graph patterns. A graph pattern is a graph Q[x̄] = (VQ , EQ , LQ ,
µ), where (1) VQ (resp. EQ) is a set of pattern nodes (resp. edges);
(2) LQ is a function that assigns a label LQ (u) (resp. LQ (e)) to each
node u ∈ VQ (resp. edge e ∈ EQ); we allow LQ (u) and LQ (e) to be
labeled with wildcard ‘_’; (3) x̄ is a list of variables, and (4) µ is a
bijective mapping from x̄ to VQ that assigns a distinct variable to
each node v in VQ . For x ∈ x̄ , we use µ (x) and x interchangeably
when it is clear in the context.
Example 2: Figure 1 shows three graph patterns: (1) Q1 depicts a
person connected to a product with an edge labeled create; here µ
maps x to person and y to product; (2) Q2 shows a city x located
in y and z labeled ‘_’; and (3) Q3 is a pattern of person entities. 2

Pattern matching. For labels ℓ and ℓ′, we write ℓ ≺ ℓ′ if ℓ ∈ Θ
and ℓ′ is ‘_’. For instance, country ≺ _. We write ℓ ⪯ ℓ′ if ℓ ≺ ℓ′
or ℓ = ℓ′. Intuitively, a wildcard ‘_’ indicates generic entities or
properties, and hence may map to any label in Θ.

A match of pattern Q in graph G is a subgraph G ′ =
(V ′,E ′,L′, F ′A) of G that is “isomorphic” to Q . That is, there ex-
ists a bijective function h from VQ to V ′ such that (1) for each node
u ∈ VQ , L′(h(u)) ⪯ LQ (u); and (2) e = (u,u ′) is an edge inQ if and
only if (iff) e ′ = (h(u),h(u ′)) is an edge in G ′ and L′(e ′) ⪯ LQ (e).

We also denote the match as a vector h(x̄), consisting of h(x)
(i.e., h(µ (x))) for all x ∈ x̄ , in the same order as x̄ .

For instance, a match h2 of pattern Q2 in G2 of Fig. 1 is x 7→
Saint Petersburg, y 7→ Russia and z 7→ Florida.

2.2 Functional Dependencies for Graphs
A graph functional dependency (GFD) is Q[x̄](X → Y) [20], where
◦ Q[x̄] is a graph pattern, called the pattern of φ; and
◦ X and Y are two (possibly empty) sets of literals of x̄ .

Here a literal of x̄ has the form of either x .A = c or x .A = y.B,
where x ,y ∈ x̄ , A and B denote attributes (not specified in Q), and
c is a constant. Intuitively, φ is a combination of two constraints:
◦ a topological constraint imposed by pattern Q , and
◦ attribute dependency specified by X → Y .

Here Q specifies the scope of φ such that X → Y is imposed only
on matches of Q . Literals x .A = c enforce constant bindings like
CFDs [15]. As syntactic sugar, we allow Y to be Boolean false, as it
can be expressed as, e.g., y.A = c ∧ y.A = d for distinct constants c
and d , for any variable y ∈ x̄ and attribute A of y.

For instance, Example 1 shows GFDs φ1,φ2 and φ3.

Semantics. Consider a match h(x̄) of Q in a graph G, and a literal
x .A = c . We say that h(x̄) satisfies the literal if there exists attribute
A at the node v = h(x) and v .A = c; similarly for x .A = y.B. We
write h(x̄) |= X if h(x̄) satisfies all the literals in a set X of literals.

We write h(x̄) |= X → Y if h(x̄) |= X implies h(x̄) |= Y .
A graph G satisfies GFD φ, denoted by G |= φ, if for all matches

h(x̄) of Q in G, h(x̄) |= X → Y . Graph G satisfies a set Σ of GFDs,
denoted by G |= Σ, if for all φ ∈ Σ, G |= φ.

To check whether G |= φ, we need to examine all matches of Q
in G. Moreover, we consider schemaless graphs and hence,

(1) for x .A = c inX , if h(x) has no attributeA, then h(x̄) satisfies
X → Y . Indeed, node h(x) is not required to have attribute
A since graphs have no schema. In contrast, if x .A = c is
in Y and h(x̄) |= Y , then h(x) must have attribute A by the
definition of satisfaction; similarly for x .A = y.B.

(2) When X is ∅, h(x̄) |= X for any match h(x̄) of Q . When
Y = ∅, Y is constantly true, and φ is trivial.

Intuitively, if a match h(x̄) ofQ inG violates X → Y , i.e., h(x̄) |=
X but h(x̄) ̸ |= Y , then the subgraph induced by h(x̄) is inconsistent,
i.e., its entities have inconsistencies.
Positive and negative. A GFD is called negative if it has the form
Q[x̄](X → false) and X is satisfiable, i.e., there exist graph G and a
match h(x̄) of Q in G such that h(x̄) |= X . It is positive otherwise.

There are two cases of negative GFDs φ.
(a) When X = ∅, i.e., φ has the form Q[x̄](∅ → false); it says

that in a graphG , there exists no match ofQ , i.e.,Q specifies
an “illegal” structure, e.g., Q3 of Fig. 1.

(b) When X , ∅, it states that the combination of pattern Q and
condition X is “inconsistent”.

Example 3: In Fig. 1, G2 ̸ |= φ2. Indeed, a match of Q2 in G2 is h2
x 7→ Saint Petersburg, y 7→ Russia and z 7→ Florida. Here X in φ2 is
trivially true (∅) but y.name , z.name (Russia vs. Florida). Hence
φ2 findsG2 inconsistent. Similarly,G1 ̸ |= φ1 andG3 ̸ |= φ3. GFD φ3
is negative, while φ1 and φ2 given in Example 1 are positive. 2

Normal form. We consider w.l.o.g. positive GFDs of the form φ
= Q[x̄](X → l), where l is a literal, i.e., Y in φ has a single l . Note
that this does not lose generality, a positive GFD Q[x̄](X → Y)
is equivalent to a set of GFDs Q[x̄](X → l) for each l ∈ Y . More
specifically, this can be verified by using the following notations.

A set Σ of GFDs implies another GFD φ, denoted by Σ |= φ, if
for all graphs G, G |= Σ implies G |= φ.

A set Σ of GFDs is equivalent to a set Σ′, denoted by Σ ≡ Σ′, if
Σ |= φ ′ for all φ ′ ∈ Σ′ and vice versa.

In the sequel for positive GFDs, we consider the normal form.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

429

3 FIXED PARAMETER TRACTABILITY
We next revisit three fundamental problems for GFDs.

(1) A set Σ of GFDs is satisfiable if there exists a graph G such that
(a) G |= Σ, and (b) there exists a GFD Q[x̄](X → Y) in Σ such that
Q has a match in G. Intuitively, condition (b) ensures that at least
one of the GFDs can be applied to nonempty graphs.

The satisfiability problem for GFDs is to decide whether a given
set Σ of GFDs is satisfiable.

It is to check, e.g., whether discovered GFDs are meaningful.

(2) The implication problem for GFDs is to determine, given a set Σ
of GFDs and another GFD φ, whether Σ |= φ.

The implication analysis is necessary for computing a cover of
discovered GFDs, and eliminating redundant GFDs.

(3) The validation problem is to decide, given a set Σ of GFDs and a
graph G, whether G |= Σ, i.e., no violation of the GFDs exists in G.

In parallel GFD discovery, the validation analysis is a must since
we have to ensure that GFDs discovered from a fragment of a
distributed graph G is satisfied by the entire G.

Fixed-parameter tractability. It is shown that the satisfiability,
implication and validation problems for GFDs are coNP-complete,
NP-complete and coNP-complete, respectively [20].

We next study their fixed-parameter tractability. An instance of
a parameterized problem P is a pair (x ,k), where x is an input as
in the conventional complexity theory, and k is a parameter that
characterizes the structure of x . It is called fixed-parameter tractable
if there exist a computable function f and an algorithm for P such
that for any instance (x ,k) of P , it takes O (f (k) · |x |c) time to
find the solution, where c is a constant (see, e.g., [11] for details).
Intuitively, if k is small, then it is feasible to solve the problem
efficiently, although f (k) could be exponential, e.g., 2k .

In practice, 97.25% of SWDF patterns and 66.41% of DBPedia
queries consist of only one single-triple patterns [23]. Therefore, it
is practical to study the parameterized problems for GFDs.

For a set Σ of GFDs, we use k to denote max(|x̄ |) for all
Q[x̄](X → Y) in Σ, i.e., the number of vertices in Q . We parameter-
ize the implication problem by k as follows:
◦ Input: A set Σ of GFDs and a GFD φ.
◦ Parameter: k = max{|x̄ | | Q[x̄](X → Y) ∈ Σ ∪ {φ}}.
◦ Question: Does Σ |= φ?

Similarly, we parameterize the other problems by k .
Theorem 1: For GFDs, (a) the implication and satisfiability prob-
lems are fixed-parameter tractable with parameter k . However, (b)
the validation problem is co-W[1]-hard even with parameters k and
d , where d denotes the maximum degree of the nodes in graphG. 2

HereW[1] is the class of parameterized problems that are FPT-
reducible to a weighted satisfiability problem (see [11]). It is conjec-
tured thatW[1]-hard problems are not fixed-parameter tractable.
Thus the validation analysis remains nontrivial when k is small.

To prove Theorem 1, we first review characterizations of GFD
satisfiability and implication (Lemmas 3 and 7 of [20]).
Characterization. We start with some notations. A GFD φ ′ =
Q ′[x̄ ′](X → Y) is embedded in a pattern Q if there exists an iso-
morphism from pattern Q ′ of φ ′ to a subgraph of Q .

The set ΣQ ⊆ Σ of GFDs embedded in Q consists of all GFDs
φ ′ ∈ Σ that are embedded in Q .

For a setX of literals, closure(ΣQ ,X) is the set of literals deduced
by applying ΣQ to Q and by the transitivity of equality in X . We
refer to closure(ΣQ ,X) as enforced(ΣQ) when X is empty.

We say that closure(ΣQ ,X) is conflicting if it contains x .A = c
and x .A = d for c , d , i.e., for all G |= Σ, X is not satisfiable.

The characterizations are given as follows [20].
A set Σ of GFDs is satisfiable if and only if for all patternsQ that

appear in Σ, enforced(ΣQ) is not conflicting.
For a GFD φ = Q[x̄](X → l), Σ |= φ if and only if either

closure(ΣQ ,X) is conflicting or l ∈ closure(ΣQ ,X).
Proof: (a) Based on the characterization, we give an algorithm for
the satisfiability analysis of GFDs as follows: (1) compute the set
ΣQ of GFDs embedded in Q for each GFD Q[x̄](X → l) in Σ, and
compute enforced(ΣQ); (2) if enforced(ΣQ) is conflicting for all
GFDs Q[x̄](X → l) in Σ, then return false; otherwise, return true.
This process is in O (|Σ|2 × kk) time, thus in PTIME for constant k .

Given a set Σ of GFD and GFD φ = Q[x̄](X → l), we check
whether Σ |= φ as follows: (1) compute the set ΣQ of GFDs embed-
ded in Q and closure(ΣQ ,X); (2) if closure(ΣQ ,X) is conflicting or
if l ∈ closure(ΣQ ,X), then return true; otherwise return false. It
takes O ((|φ | + |Σ|) × kk) time, which is in PTIME for constant k .

(b) We show that the validation problems is co-W[1]-hard by re-
duction from the complement of the k-clique problem, which is
W[1]-complete [12]. The k-clique problem is to decide, given an
undirected graph G and a natural number k , whether there is a
clique of size k in G. We omit the details of the reduction here. 2

k-bounded GFDs. A pattern Q[x̄] is k-bounded if |x̄ | ≤ k , for a
constant k . A set Σ of GFDs is k-bounded if for all Q[x̄](X → Y) in
Σ, Q[x̄] is k-bounded. It is easy to verify the following.
Proposition 2: When k is a constant, the satisfiability, implication
and validation problems are in PTIME for k-bounded GFDs. 2

Proof: The algorithms given in the proof of Theorem 1 for satisfia-
bility and implication are in PTIME for constant k . For validation,
an O (|Σ| · |G |k) time algorithm works as follows: for each GFD
Q[x̄](X → Y) in Σ, enumerate all matches h(x̄) ofQ inG and check
whether h(x̄) |= X → Y ; this is in PTIME for constant k . 2

4 THE DISCOVERY PROBLEM
We next formalize the discovery problem for GFDs. Given a graph
G, GFD discovery aims to find a set Σ of GFDs such that G |= Σ.
Clearly it is not desirable to return all such GFDs, since Σ contains
unnecessarily large amount of trivial and redundant GFDs. Instead,
we prefer (1) GFDs that contain no redundant and trivial GFDs,
and (2) frequent GFDs that capture regularities and constraints.

We focus on connected patterns and defer the handling of dis-
connected patterns to a later paper. A pattern Q[x̄] is connected if
every pair of nodes in Q[x̄] is connected by an undirected path.

4.1 Reduced GFDs and GFD Cover
We first formulate nontrivial and reduced GFDs, following the
practice of mining relational dependencies (e.g., [8, 16]).
Nontrivial GFDs. A GFD φ = Q[x̄](X → l) is trivial if either (a)
X is “equivalent” to false, i.e., it cannot be satisfied; or (b) l can be

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

430

derived from X via the transitivity of equality. Obviously, we are
only interested in discovering nontrivial GFDs.

Reduced GFDs. We start with an ordering.

(1) Given patternsQ[x̄](VQ , EQ , LQ , µ) andQ ′[x̄ ′](V ′Q , E ′Q , L′Q , µ ′),
we say that Q reduces Q ′, denoted by Q[x̄] ≪ Q ′[x̄ ′], if Q either
removes nodes or edges from Q ′, or upgrades some labels in Q ′

to wildcard. That is, Q is a topological constraint less restrictive
than Q ′. For instance, Q2 ≪ G2 if we treat G2 of Fig. 1 as a pattern.

(2) In a graph pattern Q[x̄], we designate a variable z ∈ x̄ and refer
to it as the pivot of Q . Intuitively, we use pivot to explore the data
locality of subgraph isomorphism: for any v in graph G, if there
exists a match h of Q inG such that h(z) = v , then h(x̄) consists of
only nodes in the dQ -neighbor of v . Here dQ is the radius of Q at
z, i.e., the longest shortest path from z to any node in Q . The dQ
neighbor of v includes all nodes and edges within dQ hops of v .

In practice, a pivot indicates user specified interest. Ideally, we
pick a pivot that is selective, e.g., it bears an “uncommon” label.

For instance, forQ2 of Example 1, we may pick pivot x and write
φ2 as Q2[x ,y, z](∅ → y.name = z.name); similarly for φ1 and φ3.

(3) Consider positive GFDs φ1 = Q1[x̄1](X1 → l1) and φ2 =
Q2[x̄2](X2 → l2). We say that φ1 reduces φ2, denoted by φ1 ≪ φ2, if
there is an isomorphism f fromQ1 to a subgraph ofQ2 such that (a)
f (z1) = z2, where zi denotes the pivot ofQi , i.e., f preserves pivots;
(b) f maps variables in X1 and l1 to those in X2 and l2, respectively,
such that f (X1) ⊆ X2 and f (l1) = l2, where f (X) substitutes f (x)
for each variable x in X ; and (c) either Q1 ≪ Q2 via mapping f or
f (X1) ⊊ X2. Intuitively, Q1 reduces Q2 and X1 reduces X2.

Example 4: Recall φ1 = Q1[x ,y](X1 → l) (Example 1), where X1
= {y.type = “film”}, and l is x .type = “producer”. Let x be pivot.
(1) Consider GFD φ1

1 = Q
1
1[x ,y, z](X 1 → l) with pivot x , where (a)

Q1
1[x ,y, z] is obtained by adding an edge (y, z) to Q1, z is labeled

award, and (b) X 1
1 is X1 ∪ {y.name = ‘Selling out’}. Then φ1 ≪ φ1

1.
(2) Consider GFD φ2

1 = Q1
1[x ,y, z](X 2

1 → l), where X 2
1 consists of

y.name = ‘Selling out’. Then φ1 3 φ2
1 since X1 ⊈ X 2

1 . 2

Based on GFD ordering, we define reduced GFDs.
Reduced positive GFDs. We say that a positive GFD φ is reduced in
graph G if G |= φ but G ̸ |= φ ′ for any GFD φ ′ ≪ φ. It is minimum
in G if it is both nontrivial and reduced.

A reduced positive φ guarantees the following: (a) left-reduced
[8, 16, 27], i.e., G ̸ |= Q[x̄](X ′ → l) for any proper subset X ′ ⊊ X ,
and hence X does not include redundant literals; and (b) pattern-
reduced, i.e., G ̸ |= Q ′[x̄ ′](X → l) for any Q ′[x̄ ′] with Q ′[x̄ ′] ≪
Q[x̄], X → l is defined on Q ′[x̄ ′] (with variable renaming).
Reduced negative GFDs. A negative GFD φ is minimum if it is ex-
tended from a positive minimum GFDψ = Q[x̄](X → l) by either
(a) adding an edge to Q and obtaining φ = Q ′[x̄](∅ → false), or (b)
adding a literal to X and getting φ = Q[x̄](X ′ → false). That is, it
is triggered by minimum change toψ on pattern Q or literals X .
Cover of GFDs. Consider a set Σ of GFDs such that G |= Σ.

We say that Σ is minimal if for all φ ∈ Σ, Σ . Σ \ {φ}, i.e.,
Σ includes no redundant GFDs. A cover Σc of Σ on graph G is a
subset of Σ such that (a) G |= Σc , (b) Σc ≡ Σ, (c) all GFDs in Σc

are minimum, and (d) Σc is minimal itself. That is, Σc contains no
redundant or non-interesting GFDs (see [3] for more about covers).

4.2 Frequent GFDs
We want to find “frequent” GFDs φ on a graph G, indicating how
often φ can be applied and thus whether φ captures regularity and
is “interesting”. This is typically measured in terms of support.

The notion of support is, however, nontrivial to define for GFDs.
To see this, consider a GFD φ = Q[x̄](X → Y). Following the con-
ventional notion, the support of φ would be defined as the number
of matches of Q in G that satisfy X → Y . However, as observed
in [13, 29], this definition is not anti-monotonic. For example, con-
sider patternQ[x] with a single node labeled person x , andQ ′[x ,y]
with a single edge from person x to person y labeled hasChild. In
real-life graphs G, we often find that the support of Q ′ is larger
than that ofQ althoughQ is a sub-pattern ofQ ′, since a personmay
have multiple children; similarly for GFDs defined with Q and Q ′.

We next propose a notion of support for GFDs in terms of the
support of its pattern and correlation of its attributes.
Pattern support. Consider a graph G, and a positive GFD φ with
pattern Q[x̄], where Q has pivot z. Denote Q (G, z) the set of nodes
that match z induced by h(z) for all matches h of Q in G.

We define the support of pattern Q as:
supp(Q,G) = |Q (G, z) |.

It quantifies the frequency of the entities inG that satisfy the topol-
ogy constraint posed by Q “pivoted” at z.

It is for the anti-monotonicity of support ofGFDs that we employ
pivots in the definition above. The anti-monotonicity allows us to
speed up the discovery process along the same lines as conventional
data mining. To simplify the discussion we do not include pivots in
supp(Q,G) when it is clear from the context.
Correlation measure. To quantify the variable dependencies inQ[x̄],
we define the correlation ρ (φ,G) of GFD φ as

ρ (φ,G) =
|Q (G,Xl , z) |

|Q (G, z) |
.

Here Q (G,Xl , z) denotes the subset of Q (G, z) such that h(x̄) |= X
and h(x̄) |= l (recall that φ = Q[x̄](X → l)).

Intuitively, ρ (φ,G) characterizes the dependency of l on X with
“true” implication of l from X , i.e., l holds when X holds, excluding
the cases when either X is not satisfied by h(x̄), or both X and l
are not satisfied by h(x̄). One can verify that if we include these
two cases, then Q (G,X → l , z) = Q (G, z) as long as G |= φ, where
Q (G,X → l , z) is the subset of Q (G, z) with h(x̄) |= X → l . That is,
it does not accurately measure the correlation of X and l .

Support of positive GFD φ. The support of φ in G is defined as
supp(φ,G) = supp(Q,G) ∗ ρ (φ,G) = |Q (G,Xl , z) |.

Anti-monotonicity. We next justify that the support is well defined
in terms of anti-monotonicity and GFD ordering.
Theorem 3: For any graph G and nontrivial positive GFDs φ1 and
φ2, if φ1 ≪ φ2 then supp(φ1,G) ≥ supp(φ2,G). 2

Proof: Let φ1 = Q1[x̄1](X1 → l1) and φ2 = Q2[x̄2](X2 → l2), with
pivot z1 and z2, respectively. To see supp(φ1,G) ≥ supp(φ2,G),
we show that Q2 (G,X2l2, z2) ⊆ Q1 (G,X1l1, z1). That is, for any
node v in G, if there is a match h2 of Q2 in G such that h2 (z2) = v ,

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

431

h2 (x̄2) |= X2 and h2 (x̄2) |= l2, then there is a match h1 of Q1 in G
such that h1 (z1) = v , h1 (x̄1) |= X1 and h1 (x̄1) |= l1. 2

For instance, for φ1 and φ1
1 of Example 4, we have supp(φ1,G) ≥

supp(φ1
1,G) since φ1 ≪ φ1

1. Indeed, every producer x induced from
the match Q1

1 (G,X
1
1l ,x) is a producer in Q1 (G,X1l ,x).

Support of negative GFDs. A negative φ = Q[x̄](X → false) has
two forms (Section 2): (a)X = ∅, and henceQ (G, z) = ∅ at any pivot
z in a “consistent” graphG; and (b) X , ∅ and is satisfiable. Putting
φ in the normal form Q[x̄](X → l) by taking false as a literal l ,
in both cases, Q (G,Xl , z) = ∅. Thus we can no longer discover
negative GFDs by computing Q (G,Xl , z) and Q (G, z).

We are interested in negativeGFDφ that results from a “minimal
trigger” to a positiveQ ′[x̄ ′](X ′ → l ′), either by “vertical extension”
ofQ ′with a single edge (possible with new nodes), or by “horizontal
extension” of X ′ with a single literal. Thus we define

supp(φ,G) = maxφ ′∈Φ′ (supp(φ
′,G)),

where (1) if X = ∅, Φ′ consists of patterns Q ′[x̄ ′] with the same
pivot z such that supp(Q ′,G) > 0, and Q ′ is obtained from Q by
removing an edge (possibly nodes too); and (2) if X , ∅,Φ′ consists
of positive GFDs φ ′ = Q[x̄](X ′ → l) with the same pivot z such
thatG |= φ ′, and there exists a literal l ′ in X with X = X ′ ∪ {l ′}. In
case (1) (resp. case (2)), we refer to pattern Q ′ ∈ Φ′ (resp. positive
GFD φ ′ ∈ Φ′) with the maximum support inΦ′ as a base of φ.

That is, supp(φ,G) of negative GFD φ is decided by its base
pattern Q ′ or base positive GFD φ ′. If Q ′ or φ ′ has a sufficiently
large support, φ suggests a meaningful negative GFD.

Moreover, Theorem 3 holds on generic GFDs, positive or nega-
tive (proof omitted here). This is the first anti-monotonicity result
for mining functional dependencies with graph patterns. It ensures
the feasibility of GFD discovery (see Section 5 for details).

Given graph G, a GFD φ and a support threshold σ , we say φ is
frequent in G w.r.t. σ if supp(φ,G) ≥ σ .
Open World Assumption (OWA). The OWA states that absent data
cannot be used as counterexamples in knowledge bases [19, 22].
The support of GFDs is consistent with the OWA: (1) for a positive
GFD φ, its support quantifies the entities that exist and conform to
φ; and (2) for negative φ, its support is determined by the support of
positive GFD φ ′ justified in (1); that is, negative GFDs characterize
“non-existence” cases in the observed world; the unknown data does
not have impact on the discovery of negative GFDs.

4.3 The Discovery Problem
We now state the discovery problem for GFDs.
◦ Input: A graph G, a natural number k ≥ 2, and a support
threshold σ > 0.
◦ Output: A cover Σc of all k-bounded minimum GFDs φ that
are σ -frequent, i.e., supp(φ,G) ≥ σ .

Observe that the validation and implication problems are embed-
ded in GFD discovery, for checking G |= φ and computing a cover
Σc of k-bounded GFDs φ discovered.

We take k as a parameter to balance the complexity of discovery
and the interpretablility of GFDs. Indeed, (a) GFDs with too large
patterns are less likely to be frequent, and are hard to interpret for
end users (Section 3), and (b) by Proposition 2, the implication and

validation problems for GFDs are in PTIME when k is fixed. While
the mining takes “pay-as-you-go” cost with larger k , we find that
k-bounded GFDs suffice to cover meaningful rules to detect errors
with high accuracy when k is fairly small (Section 7).

Remarks. (1) To reduce excessive literals, we often select a set
Γ of active attributes from G that are of users’ interest or are at-
tributes with high confidence to be “cleaned”. We only discover
GFDs with literals composed of attributes in Γ. (2) The selection of
σ is domain-specific. We set σ empirically based on the support of
active attributes and pattern support, to make sure the discovered
GFDs have sufficient pattern support. One can adopt a low σ to
find non-frequent GFDs, just like [7, 22]. (3) Our techniques apply
to the discovery of general GFDs without these restrictions.

5 SEQUENTIAL GFD DISCOVERY
We start with a sequential algorithm for GFD discovery, denoted
as SeqDisGFD. It consists of two algorithms: (1) SeqDis that, given
G, k and σ , discovers the set Σ of k-bounded minimum σ -frequent
GFDs, and (2) SeqCover that, given Σ, computes a cover Σc of Σ. We
present SeqDis and SeqCover in Sections 5.1 and 5.2, respectively.

5.1 Sequential GFDMining
A brute-force algorithm first enumerates all frequent patterns Q in
G following conventional graph pattern mining (e.g., [13, 39]), and
then generates GFDs with Q by adding literals. However, enumer-
ation of all k-bounded GFDs is costly when G is large. To reduce
the cost, algorithm SeqDis integrates the two processes into one,
to eliminate non-interesting GFDs as early as possible.
Overview. Algorithm SeqDis runs in k2 iterations. At each itera-
tion i , it discovers and stores all the minimum σ -frequent GFDs
of size i (with i edges) in a set Σi . In the first iteration, it “cold-
starts” GFD discovery by initializing a GFD generation tree T with
frequent GFDs that carry a single-node pattern. The tree T is then
expanded by interleaving two levelwise spawning processes: verti-
cal spawning to extend graph patterns Q , and horizontal spawning
to generate dependencies X → Y . At each iteration i (0 < i < k2),
SeqDis generates and verifies GFD candidates, and fills the level-i
part of tree T . It works in two steps as follows.
(1) Pattern verification. Algorithm SeqDis first performs vertical
spawning, which generates new graph patterns at level i ofT (to be
discussed shortly). Each pattern Q ′ expands a level i − 1 pattern Q
by adding a new edge e (possibly with new nodes). It then performs
pattern matching to find matches for all the patterns at level i .
(2) GFD Validation. It then performs horizontal spawning, which
associates a set of literals with the newly verified graph patterns at
level i of T to generate a set of GFD candidates. For each batch of
GFD candidates, it performsGFD validation to findGFDs in Σi , i.e.,
those candidates at level i that are satisfied by G, and are frequent
and minimum. The validation process terminates when all the GFD
candidates pertaining to the patterns at level i are validated.

The two steps iterate until no new GFDs can be spawned, or all
the k-bounded GFDs are checked (i.e., i = k2).

We next present the details of vertical spawning and horizontal
spawning. Underlying the process is the maintenance of a GFD
generation tree, which stores GFD candidates.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

432

x.type='producer'

x y
(person) (product)create

x y
(person) (product)create

z
receive

(award)

Q
1

Q'
1

y.type='film'

Q . lvec[x.type='producer']1

Q' . lvec'[y.type='film']
1

v()Q ,
1

Q .lvec
1

v()Q' ,
1

Q' .lvec
1

y.type='film'X:

x.type='producer'X':

z.name='Academy best picture'}
{x.type='producer', X'':

Figure 2: GFD generation tree

Generation tree. The generation of GFD candidates is controlled
by a tree T = (VT ,ET). (1) Each node v ∈ VT at level i of T stores a
pair (Q[x̄], lvec), where (a) v .Q[x̄] is a graph pattern with i edges,
and (b)v .lvec is a vector, in which each entry lvec[l] records a literal
tree rooted at a literal l . Here l is x .A = c or x .A = y.B, for x ,y ∈ x̄ ,
A,B are active attributes in Γ, and c is a constant in G. Each node
at level j of lvec[l] is a literal set X such thatQ[x̄](X → l) is a GFD
candidate. There is an edge (X1,X2) in v .lvec[l] if X1 = X2 ∪ {l ′}
for a literal l ′. (2) Each node v (Q[x̄], lvec) has an edge (v,v ′) ∈ ET
to another v ′(Q ′[x̄], lvec′) if Q ′ extends Q by adding a single edge.

Example 5: A fraction of GFD generation treeT is shown in Fig. 2.
It contains a node v (Q1[x̄], lvec) at level 1, and v (Q ′1[x̄], lvec) at
level 2. Nodev (Q1[x̄], lvec) stores graph patternQ1[x̄] of Fig. 1, and
its literal tree Q1.lvec[l] rooted at x .type = “producer”. At node
v (Q ′1[x̄], lvec), a literal tree is rooted at a different literal y.type =
“film”. There exists an edge from X ′ to X ′′ in Q ′1.lvec, since X

′′ =
X ′∪ {z.name = “Academy best picture”}. There exists an edge from
v (Q1[x̄], lvec) tov (Q ′1[x̄], lvec) inT , sinceQ ′1 is obtained by adding
a single edge (y, z) to pattern Q1. The literal at node X in Q1.lvec
encodes the GFD φ1 of Example 1. Similarly, X ′′ in node Q ′1.lvec
encodes GFD φ4 = Q ′1[x ,y, z]({x .type = “producer”, z.name =
“Academy best picture”} → y.type = “film”). 2

For φ = Q[x̄](X → l) at level i , the length |X | is at most J =
i |Γ |(|Γ | + 1), where Γ consists of active attributes in G.

GFD Spawning. Generation tree T spawns new GFD candidates
by performing the following two “atomic” operations.
Vertical spawning. Operation VSpawn(i) creates new nodes v ′.Q ′
at level i by adding one edge e to patterns v .Q at level i − 1. It adds
an edge (v,v ′) to T , growing T levelwise vertically.

Intuitively,VSpawn(i) adds new patterns toT , for 1 ≤ i ≤ k2. For
each GFD φ = Q[x̄](X → l) at level i − 1, it generates patternQ ′ by
adding one edge to Q . It finds matches h(x̄) of Q ′. It also associates
Q ′ with (a) “frequent” edges e ′ that connect to nodes in h(x̄), and
(b) literals h(x).A = c or h(x).A = h(y).B for x ,y ∈ x̄ , taking A,B
from Γ and constants c from G . VSpawn expands patterns with e ′.

Moreover, for each Q1 at level i , VSpawn maintains a set P (Q1)
of edges from the parents ofQ1 at level i−1 (see its use in Section 6).
IfQ ′1 is added to iso(Q1), P (Q ′1) is merged into P (Q1). Here iso(Q1)
is the set of patterns at level i that are isomorphic to Q1.

Example 6: Consider tree T of Fig. 2. A pattern Q ′1 is spawned by
VSpawn(2) from Q1, by adding an edge e = (y, z). 2

Horizontal spawning. HSpawn generates literals with the attributes
and constants. More specifically, HSpawn(i, j) executes at level j
of the literal trees of all level-i patterns in T . It generates a set of

GFD candidates φ = Q[x̄](X → l), where Q ranges over all level-i
patterns, |X | = j, and literals in X and l take attributes in Γ and
constants in G collected by VSpawn (see details shortly).

That is, when j = 0,HSpawn(i, j) addsQ[x̄](∅ → l) with a literal
l ofG . For j > 0, it generates level-j GFDs φ ′ = Q[x̄](X ∪ {l ′} → l)
from a GFD φ = Q[x̄](X → l) at existing level-i nodes by adding a
literal l ′ toX . It growsT levelwise horizontally, but adds no patterns.
We denote the set of GFDs generated by HSpawn(i, j) as ΣCi j .

Example 7: Continuing Example 6, HSpawn(2, j) is performed on
the newly added patterns at level 2 of T . For pattern Q ′1 and literal
tree Q ′1.lvec rooted at l = (y.type = “film”), HSpawn(2, 2) extends
X ′ at level j = 1 to X ′′ at j = 2, by adding z.name = “Academy best
picture”. This yields φ4 = Q1[x ,y, z](X ′′ → l) (see Fig. 2). 2

Algorithm SeqDis also “upgrades”a node label LQ (v) in a GFD
φ to wildcard ‘_’ if LQ (v) ranges over all labels of Θ in variants of
φ, to get a more general pattern; similarly for edge LQ (e).

Pruning. By the lemma below, at pattern Q and literal l , HSpawn
stops expanding X as soon as it is verified that G |= Q[x̄](X → l).
VSpawn stops expanding Q if supp(Q,G) < σ . These strategies
ensure the feasibility of GFDs discovery in practice.
Lemma 4: For a cover Σc of GFDs above support σ ,

(a) Σc includes no trivial GFDs φ;
(b) for any φ = Q[x̄](X → l), ifG |= φ, then Σc does not include

φ ′ = Q[x̄](X ′ → l) if X ⊊ X ′; and
(c) if aGFD φ = Q[x̄](X → l) has supp(Q,G) < σ , then Σc does

not include φ ′ = Q ′[x̄](X ′ → l ′) if Q ≪ Q ′. 2

Proof: (a) For trivial GFD φ, we have that supp(φ,G) = 0 < σ . (b)
After we check a GFD φ as stated in (b) above, HSpawn can safely
stop generating φ ′. Indeed, if supp(φ) ≥ σ , then φ is a candidate for
Σc butφ ′ is not, sinceφ ′ is not reduced. If supp(φ) < σ , then by The-
orem 3, supp(φ ′) ≤ supp(φ) and hence φ ′ cannot make a candidate
for Σc either. (c) IfQ ≪ Q ′, then supp(Q,G) ≥ supp(Q ′,G) as veri-
fied in the proof of Theorem 3 (we omit the details here). Moreover,
supp(φ ′,G) ≤ supp(Q ′,G) by the definition of supp(φ ′,G). Since
supp(Q,G) < σ , supp(φ ′,G) ≤ supp(Q ′,G) ≤ supp(Q,G) < σ .
That is, φ ′ cannot be in Σc , and can be pruned by VSpawn. 2

Discovering negative GFDs. Unlike conventional FD mining,
SeqDis discovers both positive and negative GFDs simultaneously.
It uses a set ΣN to maintain negative GFDs. Recall that a negative
GFD can be (a)Q[x̄](∅ → false), or (b)Q[x̄](X → false) ifX , ∅. At
each iteration i , SeqDis triggers (1) negative vertical NVSpawn that
extends VSpawn to find negative GFDs of case (a), in the pattern
matching step, and (2) negative horizontal NHSpawn that extends
HSpawn to find GFDs of case (b), in the validation step.
Discover negative GFDs in case (a). In this case,Q is expanded from
a patternQ ′ by adding a single edge, where supp(Q ′,G) ≥ σ , since
otherwise supp(φ,G) = max supp(Q ′,G) < σ . Hence NVSpawn(i)
is triggered by VSpawn(i) at iteration i , once the set Qi of all the
level-i patterns is generated and verified. It finds all patterns Q ′ ∈
Qi with supp(Q ′, z̄) = 0, and adds φ = Q ′[x̄](∅ → false) to ΣN . It
guarantees that supp(φ,G) ≥ σ by the existence of Q ′.
Discover negative GFDs in case (b). In this case a negative GFD φ ′

extends a positive minimum φ = Q[x̄](X → l) by adding a

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

433

single literal to X . Moreover, supp(φ,G) ≥ σ since otherwise
supp(φ ′,G) = max supp(φ,G) < σ . Hence NHSpawn(i, j) extends
HSpawn(i, j) as follows. As soon as HSpawn(i, j) verifies that
G |= φ and supp(φ,G) ≥ σ , it generates negative candidates
φ ′ = Q[x̄](X ′ → false), where X ′ extends X with a single lit-
eral. It checks whether Q (G,X ′, z) = 0 and adds φ ′ to ΣN if so. It
guarantees that supp(φ ′,G) ≥ σ due to the existence of φ.

Example 8: The negative GFD φ3 of Example 3 is discovered as
follows, in case (a). Algorithm SeqDis first finds a pattern Q as
a single edge from person x to person y, and adds an edge with
VSpawn(1) to get Q3 as in Fig. 1. It triggers NVSpawn(1) to verify
that supp(Q3,x) = 0, and adds φ3 to ΣN as a negative GFD. 2

5.2 Sequential Cover Computation
Given a set Σ of GFDs computed by SeqDis, algorithm SeqCover
computes a cover Σc of Σ. It is based on the characterization of
GFD implication [20] reviewed in Section 3.

Algorithm SeqCover. Making use of the characterization and fol-
lowing the algorithms for computing cover of relational FDs (see,
e.g., [3]), SeqCover works as follows: for each φ ∈ Σ, it checks
whether Σ \ {φ} |= φ based on the characterization; if so, it removes
φ from Σ. It iterates until no more φ can be removed, and ends up
with Σc . This is inherently sequential, inspecting φ one by one.

Algorithm SeqDis correctly generates and validates the set Σ
of all k-bounded σ -frequent minimum GFDs, removing trivial and
non-reduced GFDs by Lemma 4. Moreover, SeqCover correctly
computes a cover of Σ. (1) For each φ ∈ Σ, it performs implication
test following the characterization of GFD implication. (2) When it
terminates, no φ is implied by Σc . Thus Σc is a cover of Σ.

5.3 Analysis of Sequential GFD Discovery
We next analyze the complexity of algorithm SeqDisGFD, which
consists of the following two parts.
Mining cost (SeqDis). Denote by C(k,G) the number of k-bounded
GFD candidates in graphG . Algorithm SeqDis checksC(k,G)many
candidates, and validates each. Validating a GFD involves subgraph
isomorphism, which takes O (|G |k) time in the worst case. This
is the best a sequential algorithm could do so far: “for subgraph
isomorphism, nothing better than the naive exponential |G2 | |G1 |

bound is known” [14]. This is due to the intractable nature of the
problem, unless P = NP. Thus SeqDis takes O (C(k,G) · |G |k) time
in the worst case, denoted by t1 (|G |,k,σ).
Implication (SeqCover). Let Σ = {φ1, . . . ,φM }. Denote by T (Σ,φi)
the cost of checking Σ \ {φi } |= φi by a “best” sequential algorithm
Ac . Denote by t2 (Σ,k) the sum of T (Σ,φi) for i ∈ [1,M]. It takes
O (t2 (Σ,k)) time as SeqCover removes redundant GFDs one by one.

Taken together, the overall cost of algorithm SeqDisGFD, de-
noted by t (|G |,k,σ), is inO (t1 (|G |, t ,σ) + t2 (Σ,k)) time. As argued
above, this indicates the worst-case sequential cost for GFD discov-
ery, which subsumes subgraph isomorphism.

6 PARALLEL GFD DISCOVERY
Real-life graphs are often big and GFD discovery is costly. Nonethe-
less, we show that GFD discovery is feasible in large-scale graphs
by providing a parallel scalable algorithm.

6.1 Parallel Scalability Revisited
To characterize the effectiveness of parallel GFD discovery in large-
scale graphs, we revisit the notion of parallel scalability [33]. Con-
sider a yardstick sequential algorithm A that, given a graph G, a
bound k and support σ , finds a cover Σc of k-bounded minimum
σ -frequentGFDs. Denote its worst-case running time as t (|G |,k,σ).

A GFD discovery algorithmAp is parallel scalable relative toA
if its cost by using n processors can be expressed as

T (|G |,n,k,σ) = Õ
(t (|G |,k,σ)

n

)
,

where the notation Õ hides log(n) factors (see, e.g., [40]).
Intuitively, parallel scalability guarantees speedup ofAp relative

to a “yardstick” sequential algorithm [33]. A parallel scalable Ap
“linearly” reduces the sequential cost ofA. We show the following.
Theorem 5: There exists an algorithm DisGFD for GFD discovery
that is parallel scalable relative to SeqDisGFD. 2

The main conclusion we can draw from Theorem 5 is that the
more processors are used, the faster algorithm DisGFD is. Hence
DisGFD can scale with large G by adding processors as needed. It
makes GFD discovery feasible in real-life graphs.
A proof sketch. We provide such a DisGFD as a proof of Theo-
rem 5. It consists of two algorithms: (a) ParDis (Section 6.2) that
“parallelizes” its sequential counterpart SeqDis to discover the set Σ
of k-bounded minimum σ -frequentGFDs fromG , and (b) ParCover
(Section 6.3) that “parallelizes” SeqCover to compute a cover Σc of
Σ. We will show that both algorithms are parallel scalable relative
to their sequential counterparts in SeqCover (Section 5.2). 2

Both algorithms work with a master Sc and n workers, on a
graphG that is evenly partitioned into n fragments (F1, . . . , Fn) via
vertex cut [31], and distributed across n workers (P1, . . . , Pn).

6.2 Parallel GFD Mining
We start with algorithm ParDis, shown in Fig. 3. The algorithm runs
in supersteps. Similar to SeqDis, it uses Σi to store all minimum
σ -frequent GFDs with i edges, at superstep i . Algorithm ParDis
first initializes Σ and tree T (lines 1-2), and then performs at most
k2 supersteps (lines 3-15). At each superstep i (0 < i < k2), ParDis
generates and verifies GFD candidates in parallel, by further “paral-
lelizing” the core steps i.e., pattern verification (vertical spawning)
and GFD validation (horizontal spawning) of SeqDis, respectively.
(1) Parallel pattern verification. ParDis performs vertical spawning
VSpawn(i) (Section 5.1) at master Sc to generate graph patterns at
level i ofT (line 4). It conducts parallel pattern matching if there ex-
ist new patterns spawned (line 7; see details below), to find matches
for all the patterns at level i that contribute to GFD candidates.
(2) Parallel GFD validation. Algorithm ParDis then performs hori-
zontal spawning HSpawn(i, j) (Section 5.1) at Sc with the verified
graph patterns to generate a set of GFD candidates. Operation
HSpawn(i, j) iterates for j ∈ [1, J], where J = i |Γ |(|Γ | + 1) (see
Section 5.1), followed by parallel validation of the candidate GFDs
(lines 9-14). Once each superstep i terminates, Σ is expanded with
all verified minimum frequent GFDs Σi (lines 15).

The two steps iterate until no new GFDs can be spawned, or all
the k-bounded GFDs are checked (i.e., i = k2).

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

434

Algorithm ParDis

Input: a fragmented graph G , integer k , support threshold σ .
Output: a set Σ of all k-bounded minimum σ -frequent GFDs φ .
1. set Σ := ∅; GFD tree T := ∅; integer i := 1; flagV := true;
2. SpawnGFD(T); /* initialize T with single-node GFDs;
3. while i ≤ k2 and flagV do /* superstep i */;
4. VSpawn(i); Σi := ∅;
5. flagV := false if no new pattern is spawned;
6. if flagV then
7. parallel graph pattern matching;
8. j := 1; flagH := true;
9. while j ≤ J and flagH do
10. set ΣCi j := HSpawn(i, j);
11. flagH := false if no new GFD candidates are spawned;
12. if flagH then
13. parallel GFD validation for ΣCi j ;
14. Σi := Σi ∪ ΣCi j ; j := j + 1;
15. Σ := Σ ∪ Σi ; i := i + 1;
16. return Σ;

Figure 3: Algorithm ParDis

When one of the conditions is satisfied, ParDis returns Σ (line 16).
We next present the details of parallel verification and parallel

validation, which dominate the cost of GFD discovery.
Parallel pattern matching. Denote the set of graph patterns gen-
erated byVSpawn(i) asQ ′i . Algorithm ParDis conducts incremental
pattern matching in parallel as follows.
(1) At Sc , for each pattern Q ′ ∈ Q ′i , ParDis constructs a work unit
(Q, e) that “decomposes”Q ′ into a verified patternQ , and an edge e
added to Q to obtain Q ′. The work unit is a request that “performs
a join Q (Fs) ▷◁ e (Ft) to compute Q ′(Fs) locally at fragment Fs , for
all t ∈ [1,n]”. That is, e is treated as a single-edge pattern. It then
distributes the work units to n workers to be computed in parallel,
following a workload balancing strategy (see details below).
(2) Upon receiving a set of work units, each worker Ps incrementally
computes Q ′(Fs), by (a) joining the locally verified matches Q (Fs)
with e (Ft) for t ∈ [1,n], where e (Ft) is shipped from Pt to Ps if
s , t ; and (b) verifying matches Q ′(Fs) with isomorphism check.
After this, each worker Pi stores matchesQ ′(Fs) for the next round.
Once all the patterns are verified, it sends a flag Terminate to Sc .

The correctness of the computation is ensured by Q ′(G) =⋃
s ∈[1,n] Q

′(Fs) and Q ′(Fs) =
⋃
t ∈[1,n] Q (Fs) ▷◁ e (Ft).

Load balancing. We initially evenly partition the edges of G across
n workers via vertex cut. This helps us cope with skewed graphs,
in which a large number of low-degree nodes connect to dense,
small groups. Moreover, at each superstep, if Q ′(Fs) is “skewed”,
i.e.,much larger than otherQ ′(Ft)’s, we re-distributeQ ′(Fs) evenly
across workers. It balances (a) parallel validation workload, and (b)
parallel matching work unit Q ′(Fs) ▷◁ e ′(Ft) in the next superstep.

Parallel validation. Once all workers send Terminate to Sc , al-
gorithm ParDis starts to perform HSpawn(i, j) to generate GFD
candidates ΣCi j master at (i, j) of T . It then posts ΣCi j to the n
workers, to validate the GFD candidates in parallel.

Workload balancing is performed when necessary, using the
same strategy as for parallel pattern matching.

(1) For each φ = Q[x̄](X → l) in ΣCi j , each worker Ps computes
in parallel (a) local supports supp(φ, Fs) = Q (Fs ,Xl , z) at pivot z

Algorithm ParCover

Input: A set Σ of GFDs, and the GFD tree T generated by ParDis.
Output: A cover Σc of Σ.
1. set Σc := ∅; setW := ∅
2. for each pattern Q j of T do /* partition of Σ with T */
3. create groups ΣQj ⊆ Σ;
4. construct ΣQj ;W :=W ∪ ΣQj
5. evenly distribute work unitsW to all workers;
6. Σci := ParImp(Wi); /* local checking loadWi at worker Pi */
7. Σc := the union of all Σci ;
8. return Σc ;

Figure 4: Algorithm ParCover

and (b) a Boolean flag SATiφ , set to true if Fs |= φ. It then sends
supp(φ, Fs) and SATiφ to Sc by using Q (Fs) from VSpawn(i).

(2) When all workers Ps ’s complete their local validation, for each
GFD φ ∈ ΣCi j , algorithm ParDis checks at master Sc whether
supp(φ,G) = ∑s ∈[1,n] supp(φ, Fs) ≥ σ , and

∧
s ∈[1,n] SATsφ = true.

If so, it adds φ to Σi as a verified frequent GFD.
The two steps iterate until either no new GFDs can be spawned,

or when j reaches J = i |Γ |(|Γ | + 1), the maximum length of X . By
the levelwise generation of candidates and Lemma 4, the GFDs
validated are guaranteed to be minimum.

Parallel scalability. To show that ParDis is parallel scalable rel-
ative to SeqDis, it suffices to show that its parallel matching and
validation of each candidate φ are in O (|G |

k

n) time, no matter in
which superstep φ is processed. For if it holds, ParDis takes at most
Õ (C(k,G) · |G |

k

n) = Õ (
t1 (|G |,k,σ)

n) time. We next analyze the costs
of parallel matching; the argument for validation is similar.

The cost at each worker is dominated by the following steps:
(a) broadcast its local share of e (Fs) to other workers, which is in
O (|G |n) time since vertex cut evenly distributes e (Fs); (b) receive
e (Ft) from other workers, in time O (

(n−1) |G |
n) < O (|G |

2

n), since
n ≪ |G | and k ≥ 2; (c) balancing load Q (Fs) ▷◁ e (G), where e (G)
denotes the set of matches of pattern edge e inG; (d) locally compute
Q (Fs) ▷◁ e (G), in time O (|G |

k

n), as the load is evenly distributed in
step (c) (load balancing). One can verify by induction on the size
|Q | ofQ that step (c) is inO (|G |

k

n) time. Taken together, the parallel
cost of pattern matching is O (|G |

k

n). Note that this is the worst-
case time complexity. In practice, (a) redundant GFD candidates
are pruned early by the strategies of Lemma 4, and (b) incremental
pattern matching reduces unnecessary recomputation.

6.3 Parallel Cover Computation
We next develop algorithm ParCover, shown in Fig. 4.
Group checking. Algorithm ParCover parallelizes SeqCover by
leveraging the characterization of GFD implication (see Section 3).
(a) It partitions Σ into “groups” ΣQ1 , . . . ΣQm , where each ΣQ j ⊆ Σ
(j ∈ [1,m]) is the set ofGFDs in Σ that pertain to “the same pattern”
Q j . Thus for any GFD in a group, its pattern is not isomorphic to
the pattern of any GFD in another group (i.e., the two graphs are
not isomorphic). (b) It checks implication of the GFDs within each
group, in parallel among all the groups. That is, the implication

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

435

checking is pairwise independent among the groups. More specifi-
cally, denote by ΣQ j ⊆ Σ the set of GFDs with patterns embedded
in Q j . One can verify the following property.

Lemma 6: [Independence] For any GFD φ ∈ ΣQ j (for j ∈ [1,m]),
Σ \ {φ} |= φ if and only if ΣQ j \ {φ} |= φ. 2

Algorithm. Given Σ, algorithm ParCover partitions Σ into
ΣQ1 , . . . ΣQm , one for each pattern Q j in Σ (line 3). It constructs
group ΣQ j for each pattern Q j (line 4). This is done by taking ad-
vantage of the GFD generation tree T (see Section 5.1). It traces
the ancestors of Q j that are in T , by following the parent edges of
P (Q j), and so on. Then ΣQ j includes such GFDs and those in ΣQ j .
This reduces isomorphism tests when computing groups ΣQ j .

ParCover first constructs workloadW as a set of ΣQ j for 1 ≤
j ≤ m, and then distributesW to n workers via load balancing
(line 5; see details below). Upon receiving the assigned work units
Wj , each worker Pj invokes a (sequential) procedure ParImp(Wj)
(line 6), in parallel at different workers. For each group ΣQi ∈Wj ,
ParImp(ΣQi) computes the set ΣNi of all non-redundant GFDs in
ΣQi such that ΣQi \ Σri |= ΣQi , where Σri = ΣQi \ ΣNi . That is,
ΣNi includes GFDs in ΣQi that are not entailed by other GFDs
in Σ (Lemma 6). ParImp(Wj) returns the union Σc j of ΣNi for all
ΣQi ∈Wj . ParCover takes the union of Σc j ’s as Σc (lines 7-8). One
can verify the following: (1) Σc is minimal; and (2) Σc ≡ Σ.

Example 9: Consider a set Σ = {φ1,φ ′1,φ3,φ4,φ5,φ6} of GFDs,
where (1) φ1, φ ′1, φ5, φ6 are verified GFDs at level 1 of genera-
tion tree T ; φ1 has pattern Q1 in Fig 1, φ ′1 has a pattern of one edge
receive(y, z) in Fig 2, and φ5 (resp. φ6) has a pattern of one edge
parent(x ,y) (resp. parent(y,x)) in Fig 1; and (2) φ3 and φ4 are at
level 2 ofT ; φ3 has patternQ3 in Fig 1, and φ4 hasQ ′1 of Fig 2. Then
φ1,φ ′1,φ4 are embedded in Q ′1, and φ3, φ5, φ6 are embedded in Q3.

To compute cover Σc of Σ, ParCover partitions Σ and constructs
units ΣQ1 = {φ1}, Σreceive(y,z) = {φ ′1}, Σparent(x,y) = {φ5,φ6},
ΣQ3 = {φ3,φ5,φ6} and ΣQ ′1 = {φ1,φ ′1,φ4}. The checking breaks
down to 5 independent tests in parallel; e.g., for φ3 and φ4, it checks
whether ΣQ3 \ {φ3} |= φ3 and ΣQ ′1 \ {φ4} |= φ4, respectively. 2

Load balancing. On a real-life graphG , there are manymore distinct
patterns Q j (i.e., work units) than the number n of workers. Hence
we can balance the workload by evenly distributing the units to n
workers, by an approximation algorithm of factor 2 by using the
techniques of [4] (details omitted for the lack of space).

Parallel scalability. Suppose that Σ = {φ1, . . . ,φM }. We show
that ParCover is parallel scalable. Recall that ParCover computes
all non-redundant GFDs in ΣQi at each worker in parallel, by “plug-
ging” in a sequential algorithm ParImp. By evenly balancing the
workload, its cost is Õ (

T (ΣQ1,φ1)+...+T (ΣQm ,φM)
n). Since ΣQi ⊆ Σ,

T (ΣQi ,φ j) ≤ T (Σ,φ j). Then ParCover is inO (
t2 (Σ,k)

n) time, where
t2 (Σ,k) = T (Σ,φ1) + . . . + T (Σ,φM) (see Section 5.2). The load
balancing itself takesO (|Σ|n logn) time, much less thanO (

t2 (Σ,k)
n)

in practice, since the latter is inherently exponential unless P = NP.
This and the analysis of ParDis (Section 6.2) show that algo-

rithm DisGFD takes in total O (
t1 (|G |,k,σ)

n) +O (
t2 (Σ,k)

n) time, and
is thus parallel scalable relative to its yardstick SeqDisGFD.

7 EXPERIMENTAL STUDY
Using real-life and synthetic data, we experimentally evaluated
algorithm DisGFD for (1) the parallel scalability with the increase
of workers, (2) the scalability with graphs, (3) the impact of bound
k , support threshold σ and active attributes Γ, (4) the parallel scala-
bility of ParCover, and (5) the effectiveness of finding usefulGFDs.

Experimental setting.We used three real-life graphs: (a)DBpedia,
a knowledge graph [1] with 1.72 million entities of 200 types and 31
million links of 160 types, (b) YAGO2, an extended knowledge base
of YAGO [38] with 1.99 million nodes of 13 types, and 5.65 million
links of 36 types; and (c) IMDB [2], a knowledge basewith 3.4million
nodes of 15 types and 5.1million edges of 5 types. For each entity, we
picked 5 active attributes from cleaned ontology (e.g.,WordNet [38]).
Each entity in YAGO2 has at most 4 attributes and 98% of nodes in
DBpedia have at most 7 attributes; thus 5 is reasonable. For each
attribute A ∈ Γ, we took 5 most frequent values.

We also developed a generator for synthetic graphs G =
(V ,E,L, FA), controlled by the numbers |V | of nodes (up to 30 mil-
lion) and edges |E | (up to 60 million), with L drawn from a set of 30
labels, and FA assigning a set Γ of 5 active attributes, where each
A ∈ Γ draws a value from 1000 values.
GFD generator. To test the scalability of GFD implication, we devel-
oped a generator to produce sets Σ of GFDs, controlled by |Σ| (up
to 10000) and k (up to 6). It generates GFDs with frequent edges
and values from real-life graphs, using the same attribute set Γ.
Algorithms. We implemented the following, all in Java: (1) sequen-
tial SeqDisGFD, including SeqDis and SeqCover; (2) DisGFD for
parallelGFDmining, including ParDis and ParCover; (3) ParGFDn ,
a version of DisGFD without GFD pruning (Lemma 4) for ParDis;
(4) ParGFDnb , DisGFD without load balancing (Section 6.2); and
(5) ParCovern , ParCover without GFD grouping (Lemma 6).

We also implemented two baselines. (1) Algorithm ParArab splits
the pattern mining and dependency discovery. (a) It first discovers
all frequent patterns Q in parallel, by using Arabasque [39], a state-
of-the-art parallel graph pattern mining system. (b) It then extends
each Q to GFDs with literals, and verifies the latter in parallel. It
uses the same procedure ParCover for implication. (2) Algorithm
ParAMIE, the parallel algorithm to discover AMIE rules [7].

In addition, we developed algorithm ParCGFD for mining
GCFDs, an extension of relationalCFDs [15] with path patterns [24],
which makes a special case of GFDs.

We set the value of the support threshold σ such that the in-
duced support of patterns is comparable to the counterparts used
in frequent pattern mining [39]. For an application, one picks σ to
balance the complexity and interpretability of GFDs.

We deployed these algorithms on Amazon EC2 m4.xlarge in-
stances; each is powered by an Intel Xeon processor with 2.3GHz.
We used up to 20 instances. Each experiment was run 5 times and
the average is reported here.
Experimental results. We next report our findings.
Infeasibility of ParGFDn and ParArab. Our first observation is that
baseline algorithms ParGFDn and ParArab do not work well on
large graphs. (1) Without effective pruning, ParGFDn fails to com-
plete on all real-life graphs even when n = 20. It quickly consumes

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

436

 0

 1000

 2000

 3000

 4000

 5000

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(a) Varying n (DBpedia)

 0

 400

 800

 1200

 1600

 2000

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(b) Varying n (YAGO2)

 0

 500

 1000

 1500

 2000

 2500

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(c) Varying n (IMDB)

 0

 10

 20

 30

 40

 50

4 8 12 16 20

T
im

e
(m

in
u
te

s)

DisGFD
DisGCFD
ParAMIE

(d) GCFD, GFD & AMIE

 0

 500

 1000

 1500

 2000

 2500

 3000

(10M, 20M) (15M, 30M) (20M, 40M) (25M, 50M) (30M, 60M)

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(e) Varying |G | (Synthetic)

 0

 1000

 2000

 3000

 4000

 5000

2 3 4 5 6

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(f) Varying k (DBpedia)

 0

 1000

 2000

 3000

 4000

500 1000 1500 2000 2500

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(g) Varying σ (DBpedia)

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50

T
im

e
(s

ec
o
n
d
s)

DisGFD
ParGFDnb

(h) Varying |Γ | (DBpedia)

 0

 100

 200

 300

 400

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

ParCover
ParCovern

(i) Varying n (DBpedia)

 0

 50

 100

 150

 200

 250

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

ParCover
ParCovern

(j) Varying n (YAGO2)

 0

 50

 100

 150

 200

 250

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

ParCover
ParCovern

(k) Varying n (IMDB)

 0

 200

 400

 600

 800

2000 4000 6000 8000 10000

T
im

e
(s

ec
o
n
d
s)

ParCover
ParCovern

(l) Varying |Σ | (Synthetic)

Figure 5: Performance evaluation of parallel GFD discovery

the available memory, due to a large number of GFD candidates.
(2) Without integrated discovery, ParArab fails at the parallel veri-
fication step on real-life graphs when n = 20. The failures justify
the need for our integrated process and pruning strategy.

We hence report only the performance of other algorithms.
Exp-1: Parallel scalability. We first evaluated the parallel scal-
ability of DisGFD by varying the number n of workers from 4 to
20, compared with ParGFDnb . We fixed k = 4 and σ = 500, and
report the results on DBpedia, YAGO2 and IMDB in Figures 5(a), 5(b)
and 5(c), respectively. As shown in Fig. 5(a), (1) DisGFD is parallel
scalable. It is 3.6 times faster on average when n changed from 4 to
20. (2)DisGFD outperforms ParGFDnb by 1.5 times on average, and
by 2.2 times when n = 20. This verifies the effectiveness of load bal-
ancing. (3) DisGFD is feasible in practice: it takes 17 minutes when
n = 20. The results in Figures 5(b) and 5(c) are consistent.DisGFD (1)
is 4 and 3.8 times faster when n varies from 4 to 20, and (2) out-
performs ParGFDnb by 1.2 and 1.3 times on YAGO2 and IMDB,
respectively. Load balancing is more effective on DBpedia since it
is denser than YAGO2 and IMDB, and yields more graph patterns.

A cost breakdown demonstrate that the parallel pattern veri-
fication and GFD validation dominate the cost. Nonetheless, the
parallel costs are reduced when more workers are used.

We also compared DisGFD with ParCGFD and ParAMIE on
YAGO2. We set k = 3 for GFDs and GCFDs, which is the default
size of variable set per AMIE rule [7]. Figure 5(d) shows the follow-
ing. (1) DisGFD is comparable to ParCGFD, although it finds more
GFDs with general patterns. (2) Although GFDs are more expres-
sive, DisGFD outperforms ParAMIE by 3.4 times on average, due to
its pruning strategies. The results on other graphs are consistent.
Sequential cost. Figure 6 reports the cost of sequential SeqDisGFD.

dataset SeqDisGFD SeqCover GFDs GCFDs AMIE
DBpedia 14322s 45s 321/1724 202/1578 481/1500
YAGO2 4963s 32.5s 145/605 104/698 69/600

Figure 6: Sequential cost and rule #/avg. support

While ParGFDn and ParArab fail to complete, algorithm
SeqDisGFD performs reasonably well: it takes 1.3 hours to discover
GFDs from YAGO2 of 7.64 million entities and edges.

We report the number and average support of mined rules on two
real-life knowledge-base datasets in Fig. 6. While GFDs discovered
have to be satisfied by the graphs, AMIE rules are soft constraints
that are not necessarily satisfied by the datasets. We set the PCA
(partial completeness assumption) confidence [22] threshold of
AMIE as 0.5. We found that the discovered GFDs can express all
the AMIE rules with PCA confidence 1. Moreover, most AMIE rules
cannot capture inconsistencies via constant bindings (see Exp-5).

Exp-2: Scalability with |G |. Fixing k = 4, σ = 500 and n = 20, we
evaluated the scalability of DisGFD by varying the size of synthetic
graph |G | = (|V |, |E |) from (10M, 20M) to (30M, 60M). As shown in
Fig. 5(e), (1) it takes longer to discover GFDs from larger graphs, as
expected; and (2) GFD discovery is feasible in large-scale graphs.
DisGFD takes less than 30 minutes in G of size (30M, 60M).

As indicated in Fig. 6, the impact of |G | on SeqDisGFD is consis-
tent: the larger G is, the longer SeqDisGFD takes.

Exp-3: Impact of parameters. We evaluated the impact of pattern
size k , support σ and active attributes Γ. We report the results on
DBpedia here; the results on the other datasets are consistent.
Varying k . Fixing n = 8, σ = 1000 and |Γ | = 150, we varied k from 2
to 6, As shown in Fig. 5(f), (1) it takes both DisGFD and ParGFDnb
longer to find GFDs with larger patterns, as expected; (2) DisGFD

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

437

(σ , k, |Γ |) (YAGO) GFDs GCFDs AMIE
(500,3,150) 74.3% 63.5% 68.7%
(1000,3,150) 67.5% 56.4% 62.8%
(1000,4,150) 71.4% 60.5% 64.2%
(1000,4,200) 73.2% 62.18% 64.2%
Figure 7: Error detection accuracy

outperforms ParGFDnb by 1.2 times; and (3)DisGFD can findGFDs
with reasonably large patterns: it takes 20minutes to find 5-bounded
GFDs. Note that we use different y-axis from Exp-1.
Varying σ . Fixing n = 8, k = 4 and |Γ |= 150, we varied σ from 500 to
2500, and evaluated DisGFD and ParGFDn . As shown in Fig. 5(g),
both algorithms take less time with larger σ , as higher σ prunes
moreGFD candidates, and reduces generation and verification time.
This again verifies the effectiveness of our pruning strategy.
Varying |Γ |. Fixing n = 8, k = 4, σ = 500, we varied |Γ | from 50 to
250. Figure 5(h) tells us that both algorithms take longer with larger
|Γ |, as more GFD candidates are generated.

The impacts of k , σ and Γ on SeqDisGFD are consistent.

Exp-4: Cover computation. In the same setting as Figures 5(a)-
5(c), we report the scalability of ParCover on DBpedia, YAGO2 and
IMDB in Figures 5(i)-5(k), respectively, compared with ParCovern .
On average, (1) the performance of ParCover is improved by 1.75
times when n is increased from 4 to 20 on real-life graphs; and (2)
it outperforms ParCovern by 10 times on average. This validates
the effectiveness of GFD grouping and load balancing.

As shown in Fig. 6, the sequential SeqCover also does well. It
takes at most 45.1 seconds over the three real-life datasets.
Varying |Σ|. Fixing n = 4, we evaluated ParCover by varying the
number ofGFDs from 2000 to 10000. As shown in Fig. 5(l), ParCover
takes longer when |Σ| is larger, as expected. It is less sensitive to
|Σ| than ParCovern , since its grouping and load balancing mitigate
the impact of |Σ| in the parallel implication. The impact of |Σ| on
sequential SeqCover is consistent, as indicated by Fig. 6.

Exp-5: Effectiveness. We validate the GFDs discovered.
Error detection accuracy. We make a direct comparison between
AMIE and GFDs in terms of the accuracy of detecting errors intro-
duced to YAGO2. We discovered a set Σ of GFDs and a set ΣA of
AMIE rules from YAGO2. We then introduced noise to YAGO2: we
randomly drew α% of nodes and for each such node v , changed β%
of either the active attribute values or the labels of edges of v (to
favor AMIE, which do not support wildcard), with values that did
not appear in YAGO2. We took care to make changes that involve
the consequence Y of X → Y in Σ and ΣA discovered. For GFDs,
we apply methods of [20] to validate the mined GFDs in the graph.

The accuracy of AMIE (resp. GFDs) is defined as |V
A∩V E |

|V E |

(resp. |V
GFD∩V E |

|V E |
), where (a) V E is the set of all the nodes with

introduced noise; (b) VA for AMIE (resp. VGFD for GFDs) refers to
the nodes that do not have the predicted relation (resp. contained in
the violations ofGFDs). The accuracy of GCFDs is similarly defined.

The accuracy of GFDs, GCFDs and AMIE and the impact of σ , k
and Γ are reported in Fig. 7. We selected σ based on the frequency
of edge labels to favor AIME, which does not support wildcard on
edges. We find the following. (1) GFDs achieve the best accuracy

x

y

_

_

hasChild

Q
6

Figure 8: Real-life GFDs (YAGO2)

among all the rules. (2) GFDs have better accuracy if discovered
with smaller σ , larger k and larger |Γ |, since more GFDs are dis-
covered to “cover” the inconsistencies. (3) The accuracy of AMIE
is close to the accuracy of GFDs since more AIME rules are mined
(their PCA confidence is not "1" and the AMIE rules may be “dirty”).
Real-world GFDs. We also manually inspected the GFDs and val-
idated their usefulness. As examples, we give 3 GFDs found in
YAGO2 by DisGFD, with patterns shown in Fig. 8.

GFD1:Q6[x ,y] (∅ → x .familyname = y.familyname) is a “variable-
only” GFD, where x and y are labeled wildcard. The rule states that
a child inherits the family name of his/her parent.

GFD2:Q7[x ,y, z,y′](y.name = “Gold Bear”∧y′.name = “Gold Lion”
→ false). It tells us that no movie receives both Gold Bear and Gold
Lion awards, because the Italian and German film festivals require
their participants to be “initial release”.

GFD3: Q8[x ,y, z](X8 → false), a negative GFD, where X8 consists
of y.name = “US” and z.name = “Norway”. It states that Norway
does not admit dual citizenship.

These GFDs carry a DAG pattern, constants, wildcard _ or false,
beyond the capacity of most graph FD proposals and AMIE rules [7,
22]. They help us detect errors and extract knowledge (especially
facts that are not familiar to some people, e.g., GFD2 and GFD3).

Summary. We find that (1) GFD discovery is feasible in practice.
It takes 591 seconds for DisGFD to find frequent 4-bounded GFDs
from real-life graphs on average. GFD discovery is parallel scalable:
DisGFD (resp. ParCover) is 3.78 (resp. 1.75) times faster on average
whenn is increased from 4 to 20. The grouping strategy in ParCover
improves its performance by 10 times. (2) Our integrated method
with pruning and load balancing is effective. While ParArab and
ParGFDn fail to complete GFD discovery, DisGFD works well on
real-life graphs, and outperforms ParGFDnb by 1.31 times on aver-
age. (3) GFDs discovered by DisGFD can catch data inconsistency
with higher accuracy when compared with AMIE rules.

8 CONCLUSION
We have formalized and studied the discovery problem for GFDs.
The novelty of the work consists of (a) the fixed-parameterized
complexity of three classical problems underlying GFD discovery,
(b) a notion of support for GFDs, (c) algorithms for discovering
GFDs and computing a cover of GFDs that guarantee the parallel
scalability, and (d) new techniques for spawning and validating
GFDs. Our experimental results have verified that our algorithms
are scalable with graphs and are able to discover interesting GFDs.

We are extending DisGFD to discover other forms of graph de-
pendencies, e.g., GFDs with built-in comparison predicates and
arithmetic expressions [17]. Another topic is to adapt the algorithm
to knowledge bases, adopting the support and confidence of [36].

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

438

REFERENCES
[1] Dbpedia. http://wiki.dbpedia.org/Datasets.
[2] IMDB. http://www.imdb.com/interfaces.
[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.
[4] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem. In SPAA,

2003.
[5] W. Akhtar, A. Cortés-Calabuig, and J. Paredaens. Constraints in RDF. In SDKB,

pages 23–39, 2010.
[6] D. Calvanese, W. Fischl, R. Pichler, E. Sallinger, and M. Simkus. Capturing

relational schemas and functional dependencies in RDFS. In AAAI, 2014.
[7] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological pathfinding. In

SIGMOD, pages 835–846, 2016.
[8] F. Chiang and R. Miller. Discovering data quality rules. In VLDB, 2008.
[9] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB,

6(13):1498–1509, 2013.
[10] A. Cortés-Calabuig and J. Paredaens. Semantics of constraints in RDFS. In AMW,

pages 75–90, 2012.
[11] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness

II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.
[12] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.

Springer, 2013.
[13] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GRAMI: frequent

subgraph and pattern mining in a single large graph. PVLDB, 7(7):517–528, 2014.
[14] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In

SODA, volume 95, pages 632–640, 1995.
[15] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-

dencies for capturing data inconsistencies. TODS, 33(1), 2008.
[16] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional depen-

dencies. TKDE, 23(5):683–698, 2011.
[17] W. Fan, X. Liu, P. Lu, and C. Tian. Catching numeric inconsistencies in graphs.

In SIGMOD, 2018.
[18] W. Fan and P. Lu. Dependencies for graphs. In PODS, 2017.
[19] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns. PVLDB,

8(12):1502–1513, 2015.
[20] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, 2016.
[21] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[22] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Amie: association rule

mining under incomplete evidence in ontological knowledge bases. InWWW,
2013.

[23] M. A. Gallego, J. D. Fernández, M. A. Martínez-Prieto, and P. de la Fuente. An
empirical study of real-world SPARQL queries. In USEWOD workshop, 2011.

[24] B. He, L. Zou, and D. Zhao. Using conditional functional dependency to discover
abnormal data in RDF graphs. In SWIM, pages 1–7, 2014.

[25] J. Hellings, M. Gyssens, J. Paredaens, and Y. Wu. Implication and axiomatization
of functional constraints on patterns with an application to the RDF data model.
In FoIKS, 2014.

[26] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent subgraphs
from graph databases. In SIGKDD, 2004.

[27] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: an efficient algo-
rithm for discovering functional and approximate dependencies. The computer
journal, 42(2):100–111, 1999.

[28] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In PKDD, 2000.

[29] C. Jiang, F. Coenen, andM. Zito. A survey of frequent subgraphmining algorithms.
Knowledge Eng. Review, 28(01):75–105, 2013.

[30] Y. Ke, J. Cheng, and J. X. Yu. Efficient discovery of frequent correlated subgraph
pairs. In ICDM, 2009.

[31] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based graph partitioning using
structural balance vertices. Data & Knowledge Engineering, 72:285–303, 2012.

[32] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen,
and A. Zaveri. Test-driven evaluation of linked data quality. InWWW, 2014.

[33] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. TCS, 71(1):95–132, 1990.

[34] G. Lausen, M. Meier, and M. Schmidt. SPARQLing constraints for RDF. In EDBT,
pages 499–509. ACM, 2008.

[35] W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent subgraph mining in MapRe-
duce. In ICDE, 2014.

[36] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge base from
multilingual wikipedias. In CIDR, 2015.

[37] P. Shelokar, A. Quirin, and Ó. Cordón. Three-objective subgraph mining using
multiobjective evolutionary programming. JCSS, 80(1):16–26, 2014.

[38] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW, pages 697–706, 2007.

[39] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboulnaga.
Arabesque: a system for distributed graph mining. In SOSP, pages 425–440, 2015.

[40] D. P. Woodruff and Q. Zhang. When distributed computation is communication
expensive. In DISC, 2013.

[41] C. Wyss, C. Giannella, and E. Robertson. FastFDs: a heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances extended
abstract. In DaWaK, 2001.

[42] Y. Yu and J. Heflin. Extending functional dependency to detect abnormal data in
RDF graphs. In ISWC, pages 794–809. 2011.

Acknowledgments. Fan, Liu and Lu are supported in part by 973
Program 2014CB340302, ERC 652976, NSFC 61602023 and 61421003,
Beijing Advanced Innovation Center for Big Data and Brain Com-
puting, EPSRC EP/M025268/1, joint-lab between Edinburgh and
Huawei, and an Innovative Research Grant from Huawei. The au-
thors thank Yingjie Cao for helping with some of the experiments.
Liu is the corresponding author of the paper.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

439

	Abstract
	1 Introduction
	2 Graph Functional Dependencies
	2.1 Preliminaries
	2.2 Functional Dependencies for Graphs

	3 Fixed Parameter Tractability
	4 The Discovery Problem
	4.1 Reduced GFDs and GFD Cover
	4.2 Frequent GFDs
	4.3 The Discovery Problem

	5 Sequential GFD Discovery
	5.1 Sequential GFD Mining
	5.2 Sequential Cover Computation
	5.3 Analysis of Sequential GFD Discovery

	6 Parallel GFD Discovery
	6.1 Parallel Scalability Revisited
	6.2 Parallel GFD Mining
	6.3 Parallel Cover Computation

	7 Experimental Study
	8 Conclusion
	References

