
9

Catching Numeric Inconsistencies in Graphs

WENFEI FAN, University of Edinburgh & BDBC, Beihang University & SICS, Shenzhen University

XUELI LIU, College of Intelligence and Computing, Tianjin University

PING LU, BDBC, Beihang University

CHAO TIAN, Alibaba Group

Numeric inconsistencies are common in real-life knowledge bases and social networks. To catch such errors,

we extend graph functional dependencies with linear arithmetic expressions and built-in comparison pred-

icates, referred to as numeric graph dependencies (NGDs). We study fundamental problems for NGDs. We

show that their satisfiability, implication, and validation problems are Σ
p
2 -complete, Π

p
2 -complete, and coNP-

complete, respectively. However, if we allow non-linear arithmetic expressions, even of degree at most 2, the

satisfiability and implication problems become undecidable. In other words, NGDs strike a balance between

expressivity and complexity. To make practical use of NGDs, we develop an incremental algorithm IncDect

to detect errors in a graphG using NGDs in response to updates ΔG toG. We show that the incremental val-

idation problem is coNP-complete. Nonetheless, algorithm IncDect is localizable, i.e., its cost is determined

by small neighbors of nodes in ΔG instead of the entireG. Moreover, we parallelize IncDect such that it guar-

antees to reduce running time with the increase of processors. In addition, to strike a balance between the

efficiency and accuracy, we also develop polynomial-time parallel algorithms for detection and incremental

detection of top-ranked inconsistencies. Using real-life and synthetic graphs, we experimentally verify the

scalability and efficiency of the algorithms.

CCS Concepts: • Information systems → Inconsistent data; Data cleaning;

Additional Key Words and Phrases: Numeric errors, graph dependencies, incremental validation

ACM Reference format:

Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2020. Catching Numeric Inconsistencies in Graphs. ACM

Trans. Database Syst. 45, 2, Article 9 (June 2020), 47 pages.

https://doi.org/10.1145/3385031

Fan is supported in part by ERC 652976, Royal Society Wolfson Research Merit Award WRM/R1/180014, EPSRC

EP/M025268/1, Shenzhen Institute of Computing Sciences, and Beijing Advanced Innovation Center for Big Data and Brain

Computing. Lu is supported in part by NSFC 61602023. Liu is supported in part by NSFC 61902274.

Authors’ addresses: W. Fan, University of Edinburgh & BDBC, Beihang University & SICS, Shenzhen University, 10 Crich-

ton Street, Edinburgh, UK, EH8 9AB; email: wenfei@inf.ed.ac.uk; X. Liu (corresponding author), College of Intelligence

and Computing, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, China, 300350; email: xueli@tju.edu.cn;

P. Lu, BDBC, Beihang University, 37 Xue Yuan Road, Haidian District, Beijing, China, 100191; email: luping@buaa.edu.cn;

C. Tian, Alibaba Group, 969 West Wen Yi Road, Yu Hang District, Hangzhou, China, 311121; email: tianchao.tc

@alibaba-inc.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0362-5915/2020/06-ART9 $15.00

https://doi.org/10.1145/3385031

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

https://doi.org/10.1145/3385031
mailto:permissions@acm.org
https://doi.org/10.1145/3385031

9:2 W. Fan et al.

1 INTRODUCTION

A variety of dependencies have recently been studied for graphs [9, 21, 31, 33, 43, 73]. These de-
pendencies are often defined in terms of graph patterns and aim to capture inconsistencies among
entities in a graph. They are useful in, e.g., knowledge acquisition, knowledge base enrichment,
and spam detection in social networks. However, semantic inconsistencies in real-life graphs often
involve numeric values. To catch such errors, arithmetic calculation and comparison predicates are
often a must. These expressions are, unfortunately, not supported by existing graph dependencies.

Example 1.1. Consider inconsistencies taken from real-life knowledge bases and social graphs.

(1) Yago. It is recorded that an institute BBC Trust was created in 2007 but destroyed in 1946, as
shown in graphG1 of Figure 1. To detect the error, we need to check whether wasDestroyedOnDate

- wasCreatedOnDate ≥ c for a non-negative constant c . However, neither arithmetic operator −
nor comparison predicate ≥ is supported by existing proposals for graph dependencies.

(2) Yago. A village Bhonpur in India is claimed to have 600 females and 722 males, but its total
population is 1,572 (see graph G2 of Figure 1). To catch this inconsistency, we need an arithmetic
equation femalePopulation +malePopulation = populationTotal.

(3) DBpedia. There are two cities, Corona and Downey, in California. Based on the 2014 popu-
lation census, it is known that Corona has a larger population than that of Downey. However,
Downey is ranked ahead of Corona in population (11th vs. 33rd; see graph G3 of Figure 1). The
inconsistency should be checked by using a condition that x .population < y.population implies
x .populationRank > y.populationRank, where x and y denote two different places.

(4) Twitter. Suppose that two accounts refer to the same company. If the two substantially differ
in the numbers of their followers and followings, then the one with less followers and follow-
ings is likely to be a fake account [57]. To specify this rule, we need a condition a×(x .follower −
y.follower) + b×(x .following − y.following) > c , for accounts x and y, and constants a,b, and c .
The condition is specified by both arithmetic expressions and comparison predicate. It helps us
find, e.g., fake account NatWest_Help depicted in graph G4 of Figure 1.

The example raises several questions. How should we extend graph dependencies to catch nu-
meric errors? Does the extension make it harder to reason about the dependencies? If so, how can
we strike a balance between the expressive power and complexity? Can we make practical use of
such an expansion to uniformly catch inconsistencies in real-life graphs, numeric or not?

Contributions & organization. This article tackles these questions.

(1) NGDs. We propose a class of numeric graph dependencies, referred to as NGDs (Section 3).
NGDs are a combination of (a) a patternQ to identify entities by graph homomorphism and (b) an
attribute dependency X→Y on the entities identified. They extend graph functional dependencies
(GFDs [31, 33]) by supporting linear arithmetic expressions and built-in comparison predicates
=,�, <, ≤, >, ≥. We show that NGDs are able to catch numeric inconsistencies commonly found
in real-life graphs. Moreover, they subsume GFDs [31, 33] and relational conditional functional
dependencies (CFDs [26]) as special cases. Thus, they capture inconsistencies that can be detected
by GFDs and CFDs, besides numeric errors that are beyond the capacity of GFDs and CFDs.

(2) Fundamental results. We study two classical problems for NGDs (Section 4), stated as follows:

◦ The satisfiability problem is to decide whether a given set Σ of NGDs has a model, i.e., a
graph satisfying all NGDs of Σ.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:3

Fig. 1. Numeric inconsistencies in real-life graphs.

◦ The implication problem is to decide whether a set Σ of NGDs entails another NGD φ, i.e.,
for all graphs G that satisfy Σ, G also satisfies φ.

These problems are not only of theoretical interest, but also find practical applications. The satis-
fiability analysis enables us to check whether a set of NGDs is consistent themselves before the
NGDs are used as, e.g., data quality rules. The implication analysis helps us remove redundant
rules φ that are logical consequences of a set of Σ of rules and optimize the data-cleaning process.

(a) We show that the increased expressive power of NGDs comes with a price. Their satisfiability

and implication problems become Σ
p
2 -complete and Π

p
2 -complete, as opposed to coNP-complete

and NP-complete for GFDs, respectively [31, 33]. The complexity bounds are robust to a great

extent: They remain Σ
p
2 -hard and Π

p
2 -hard, respectively, even when only equality = is used, in the

absence of �, <, ≤, >, ≥, or when no arithmetic operations are used at all. These tell us that unless
P = NP, it is harder to reason about NGDs than about GFDs.

(b) We show that if we expand NGDs by allowing non-linear arithmetic expressions, then both the
satisfiability and implication problems become undecidable, even when the degree of the arith-
metic expressions is at most 2 and even in the absence of comparison predicates �, <, ≤, >, ≥.

The undecidability results justify the choice of linear arithmetic expressions. That is, NGDs

strike a balance between expressivity and complexity when arithmetic and comparison are a must.

(3) Practical applications. We develop techniques for detecting inconsistencies in real-life graphs,
numeric or not, by employing NGDs as data quality rules (Sections 5 to 7).

(a) We show that the validation problem, i.e., deciding whether a given graph satisfies a set of
NGDs, is coNP-complete. The complexity is the same as for GFDs [31, 33]. That is, NGDs do
not complicate the process of error detection. Better still, the parallel algorithms developed in
Reference [33] for detecting errors with GFDs can be readily extended to NGDs, retaining the
same complexity.

(b) In light of this, we focus on incremental inconsistency detection in graphs, a problem that has
not been studied before, to the best of our knowledge (Section 5). Given a graph G and a set Σ of
NGDs, suppose that we have already identified a set Vio(Σ,G) of violations of Σ in G, i.e., entities
in G that violate at least one NGD in Σ. We want to find changes ΔVio to Vio(Σ,G), such that

Vio(Σ,G ⊕ ΔG) = Vio(Σ,G) ⊕ ΔVio,

where ΔG is a set of updates to the graph G, and X ⊕ ΔX denotes X updated by ΔX .
The need for incremental detection is evident. Real-life graphs G are often big, e.g., the social

graph of Facebook has billions of nodes and trillions of edges [41]. Error detection is expensive
(coNP-complete). Moreover, real-life graphs are constantly changed. It is often too costly to re-
compute Vio(Σ,G ⊕ ΔG) starting from scratch in response to frequent updates ΔG. These reasons
highlight the need for incremental algorithms. We use (a mild extension of) the batch algorithms

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:4 W. Fan et al.

of Reference [33] to compute Vio(Σ,G) once and then incrementally compute changes ΔVio in
response to ΔG. The rationale behind this is that in the real world, changes are typically small,
e.g., less than 5% on the entire Web in a week [58]. When ΔG is small, ΔVio is often small as well
and is much less costly to compute than Vio(Σ,G ⊕ ΔG) by making use of previous computation
for Vio(Σ,G).

(c) While desirable, the incremental detection problem is nontrivial. We show that the problem is
also coNP-complete, even when both graphs G and updates ΔG have constant sizes (Section 5).

(d) We also establish the parameterized complexity of the validation and incremental validation
problems. We show that both problems are co-W[2]-hard [5], and they become fixed-parameter
tractable (FPT [35]) for NGDs defined with connected graph patterns (Section 5).

(e) In response to the practical need, we develop two algorithms for incremental error detection
with NGDs (Section 6), which make incremental error detection feasible in large-scale graphs.

One is a sequential localizable algorithm IncDect. It incrementalizes subgraph search by update-

driven evaluation. Its cost is determined by the dΣ-neighbors of nodes in ΔG, where dΣ is the max-
imum diameter of the patterns in Σ [28]. In practice, Σ is much smaller than G and so is dΣ. It
reduces the computations on (possibly big) graphs G to smaller dΣ-neighbors of those nodes in
ΔG.

The other one is a parallel algorithm PIncDect. We show that it is parallel scalable rela-
tive to IncDect: Its cost is O (t (|G |, |Σ|, |ΔG |)/p), where p is the number of processors used, and
t (|G |, |Σ|, |ΔG |) is the cost of IncDect. That is, PIncDect guarantees to reduce running time when
more processors are used. We propose a hybrid strategy to split skewed work units and dynamically
balance workload, based on cost estimation, to balance computation and communication.

(f) To strike a balance between the efficiency and the number of errors detected, we also develop
parallel polynomial-time (PTIME) algorithms for detection and incremental detection of top-ranked

inconsistencies with NGDs of a special form when the ranking function is adopted to measure the
importance of the errors (Section 7). We show that both algorithms are also parallel scalable.

(4) Experimental study. Using real-life and synthetic graphs, we empirically evaluate the scalability
and efficiency of our algorithms (Section 8). We find the following: (a) Incremental error detection
with NGDs is effective: Sequential algorithm IncDect is on average 6.7× faster than its batch coun-
terpart when |ΔG | accounts for 10% of |G |, and still does better even when |ΔG | is up to 33% of |G |.
(b) The incremental algorithms scale well with |G |. (c) Algorithm PIncDect is parallel scalable and
efficient: It is on average 3.7× faster when the number p of processors increases from 4 to 20. It
takes 225 s on graphs of 28M nodes and 33.4M edges when p = 20. (d) Hybrid workload balancing
improves the performance by 1.73× on average. (e) The parallel PTIME algorithm for detection
(respectively, incremental detection) of top-ranked errors is efficient, which takes at most 103 s
(respectively, 35 s) on graphs of size (30M, 60M) using eight processors (when |ΔG | = 15%|G |).

The novelty of the work consists of (1) NGDs, a class of graph dependencies to capture semantic
inconsistencies in real-life graphs, numeric or not, balancing the expressive power and complexity;
(2) fundamental results for reasoning about NGDs, demonstrating the complications introduced
by arithmetic expressions and comparison predicates; and (3) the first incremental (numeric) error
detection algorithms for graphs, parallel and sequential, with performance guarantees.

Related work. This article extends its conference version [30] by including (1) detailed proofs for
all the results (Theorems 4.2, 4.4, 5.3, and 6.3, Corollaries 4.3 and 5.1); these proofs are highly
nontrivial; they are interesting in their own right and illustrate the subtleties involved in the
interactions among arithmetic expressions, comparison predicates, and GFDs; (2) parameterized

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:5

complexity of the validation and incremental validation problems for NGDs to reveal where the
complexity arises; we show that both problems are co-W[2]-hard but become fixed-parameter
tractable for NGDs with connected patterns (Theorems 5.2 and 5.4); (3) parallel PTIME (incre-
mental) detection algorithms for top-ranked inconsistencies with a form of NGDs (Section 7); and
(4) new experimental results to show the performance of our algorithms for detecting top-ranked
inconsistencies (Section 8).

We categorize the other related work as follows:

Dependencies for graphs. Dependencies have been studied for RDF [9, 21, 24, 43, 52, 73] and for
generic graphs [31, 33]. This line of work started from Reference [52]. It extends RDF vocabulary to
define keys, foreign keys, and functional dependencies (FDs). Using triple patterns with variables,
References [9, 21] interpret FDs with triple embedding and homomorphism. A class of FDs was
formulated in Reference [73] with path patterns; these FDs were extended in Reference [43] to
support CFDs. References [17, 38] study a class of first-order Horn clause with binary predicates
as soft constraints to facilitate knowledge base reasoning.

Closer to this work are GFDs on general graphs [33], defined in terms of (a) a pattern Q inter-
preted via subgraph isomorphism and (b) an extension of an FD carrying constant and variable
literals. GFDs are extended to graph entity dependencies (GEDs) in Reference [31] by supporting
literals with node identities to express (recursively defined) keys of Reference [24], interpreted via
graph homomorphism.

This work defines NGDs by extending GFDs and interprets pattern matching by graph homo-
morphism following Reference [31]. It differs from References [31, 33]: (1) NGDs support both
arithmetic operations and comparison predicates, extending GFDs and GEDs. (2) As shown by the
fundamental results (Sections 4 and 5), the presence of either arithmetic operations or built-in pred-

icates makes satisfiability and implication problems Σ
p
2 -complete and Π

p
2 -complete, respectively,

as opposed to coNP-complete and NP-complete for GFDs and GEDs. (3) We establish the parame-
terized complexity of the detection and incremental detection problems for NGDs and identify FPT

practical special cases. (3) We develop the first (parallel) incremental error detection algorithms for
graphs with performance guarantees, which complement the batch detection algorithms for GFDs

[33]. We also provide the first PTIME parallel algorithms for (incremental) detection of top-ranked
errors.

Dependencies on numeric data. Several dependency classes have been studied for detecting nu-
meric errors in relations [23, 34, 37, 40, 49, 63]. Metric functional dependencies [49] and sequential
dependencies [40] extend FDs by supporting (numeric) metrics and intervals on ordered data, re-
spectively. Differential dependencies [63] constrain distances of numeric attribute values among
different tuples. However, none of these supports arithmetic operations. There has also been work
on repairing numeric data using constraints defined in terms of aggregate functions [34] and dis-
junctive logic programming [37]. Their satisfiability and implication problems are open, and the
complexity is suspected high. Numeric functional dependencies (NFDs) [23] extend CFDs and
support linear arithmetic expressions and built-in predicates like NGDs.

This work differs from the prior work as follows: (1) NGDs are defined on schemaless graphs
with a graph pattern and an attribute dependency. They cannot be expressed as dependencies of
References [23, 40, 49, 63]. As shown in Reference [31], GFDs, a special case of NGDs, are not
expressible even as equality-generating dependencies with constants, which subsume CFDs. As
an evidence, the validation problem is coNP-complete for NGDs and GFDs, but is in polynomial
time (PTIME) for CFDs [26] and NFDs [23]. (2) The techniques for handling graph dependen-
cies are quite different from those for relational counterparts. For instance, we make use of the
data locality of graph homomorphism to check NGDs (Section 6), a departure from relational

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:6 W. Fan et al.

dependencies. (3) To strike a balance between the complexity and expressivity, we do not consider
aggregations; in fact, most numeric errors we encounter in real-life graphs can be caught without
using aggregations.

Comparison predicates have been included in dependencies for detecting inconsistencies [23],
data exchange [8], and views for query rewriting [6, 7]. However, (1) the comparisons in Ref-
erences [6–8] are posed over dense orders, whereas we study linear arithmetic constraints over
integers, whose satisfiability problem is NP-complete [59], as opposed to PTIME for densely or-
dered domains. (2) Chasing with NGDs, e.g., testing satisfiability, always terminates [31], but the
chase in Reference [8] may not. (3) References [6–8] do not consider any arithmetic operators
supported by NGDs.

Algorithms for error detection. Error detection has been studied for relations [29, 60, 68] and
RDF [48, 66, 69]. Reference [29] studies (incremental) CFD validation in horizontally or vertically
partitioned relations. A continuous framework is developed in Reference [68] to clean relations
that may change, using FDs that may also evolve. Reference [60] combines logical and quantitative
data cleaning by using metric FDs. Consistency checking in RDF is conducted by logical reason-
ing [66] or by unsupervised detection of numerical outliers [69]. Reference [48] detects errors in
RDF with SPARQL queries. On general graphs, Reference [64] studies repairing of vertex labels
with a form of neighborhood constraints. Batch algorithms are developed for catching violations
of GFDs [33] or recursively defined keys [24] in graphs, in parallel.

Our algorithms differ from previous ones in the following: (1) We provide the first incremental
error detection algorithms that are localizable [28] and relatively parallel scalable. As far as we
know, none of the previous error detection algorithms is shown parallel scalable except the batch
ones of References [24, 33]. However, the parallel algorithms in References [24, 33] cannot be di-
rectly incrementalized. Localizable algorithms have only been developed for graph queries [28],
e.g., keyword search. (2) We propose update-driven search and a hybrid dynamic strategy to
achieve relative parallel scalability. The strategy balances the workload at runtime at two lev-
els: (a) it makes use of cost estimation to split and distribute stragglers and (b) it monitors the
status of processors and reassigns work units from a busy processor to those with a light load.
While (b) is along the same lines as work stealing and shedding [14, 42], we find that it does not
work well alone unless in combination with (a). (3) We study incremental detection of top-ranked
semantic errors, which has not been considered in the previous work, in particular prior work on
top-k graph search, e.g., References [18, 71, 72].

Incremental detection of the violations of NGDs over fragmented and distributed graphs is more
intriguing than conventional graph pattern matching: We have to compute violations that are
either newly introduced or removed by updates only. As a consequence, previous algorithms for
parallel pattern matching, e.g., References [44, 51, 67], cannot be applied directly in this context.

2 PRELIMINARIES

We first review basic notations. Assume alphabets Γ, Θ, and U denoting labels, attributes, and
constant values, respectively.

Graphs. We consider directed graphsG = (V ,E,L, FA) with labeled nodes and edges, and attributes
on its nodes. Here (1) V is a finite set of nodes; (2) E ⊆ V ×V is a set of edges, in which (v,v ′)
denotes an edge from node v to v ′; (3) each node v in V (respectively, edge e in E) carries label
L(v) (respectively, L(e)) in Γ; and (4) for each node v , FA (v) is a tuple (A1 = a1, . . . ,An = an) such
that Ai � Aj if i � j, where ai is a constant inU and Ai is an attribute of v drawn from Θ, written
as v .Ai = ai , carrying the content of v such as keywords and blogs as found in social networks.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:7

Fig. 2. Graph patterns.

We use two notions of subgraphs given as follows:

◦ A graph G ′ = (V ′,E ′,L′, F ′A) is called a subgraph of G = (V ,E,L, FA), denoted by G ′ ⊆ G,
if V ′ ⊆ V , E ′ ⊆ E, and for each node v ∈ V ′, L′(v) = L(v) and F ′A (v) = FA (v); similarly for
each edge e ∈ E ′, L′(e) = L(e).

◦ A subgraphG ′ is induced by a setV ′ of nodes ifV ′ ⊆ V and E ′ consists of all the edges in E
whose endpoints are both in V ′.

Graph patterns. A graph pattern is a directed graphQ[x̄] = (VQ , EQ , LQ , μ), where (1)VQ (respec-
tively, EQ) is a set of pattern nodes (respectively, edges); (2) LQ is a function that assigns a label
LQ (u) (respectively, LQ (e)) in Γ to each pattern node u ∈ VQ (respectively, edge e ∈ EQ); (3) x̄ is
a list of distinct variables; and (4) μ is a bijective mapping from x̄ to VQ , i.e., it assigns a distinct
variable to each node v in VQ .

For a variable x ∈ x̄ , we use μ (x) and x interchangeably when it is clear in the context. We allow
wildcard “_” as a special label in pattern Q[x̄], where _ is not a label in Γ.

Remark. (1) We consider directed graphs and patterns in this article. Nonetheless, the techniques
can be readily adapted to undirected graphs and patterns. In fact, an undirected pattern can be
easily represented as a directed pattern by encoding each undirected edge with two directed edges.
(2) We allow generic graph patterns, which can be either cyclic or acyclic.

Graph pattern matching. We adopt the homomorphism semantics of pattern matching following
References [9, 21, 31]. A match of patternQ[x̄] in graphG is a mapping h fromQ toG such that (a)
for each nodeu ∈ VQ , LQ (u) = L(h(u)); and (b) for each e = (u,u ′) inQ , e ′ = (h(u),h(u ′)) is an edge
in G and LQ (e) = L(e ′). In particular, LQ (u) = L(h(u)) always holds if LQ (u) is “_”, i.e., wildcard
matches any label from Γ to indicate generic entities; similarly for wildcard and edge labels.

We denote the match as a vector h(x̄), consisting of h(x) for all x ∈ x̄ , in the same order as x̄ .
Intuitively, x̄ is a list of entities to be identified by Q , and h(x̄) is such an instantiation in G.

Example 2.1. Four graph patterns are shown in Figure 2. HereQ1 depicts an entity x connected to
datey and z with edges labeled wasCreatedOnDate and wasDestroyedOnDate, respectively. Node
x is labeled “_”, denoting arbitrary entities regardless of their labels. InG1 of Figure 1, x is mapped
to BBC_Trust. Similarly, Q2–Q4 can be interpreted by referencing their counterparts in Figure 1.

3 NUMERIC GRAPH DEPENDENCIES

We extend GFDs [31, 33] to support arithmetic and built-in predicates. We start with basic
notations.

Literals. Consider a graph pattern Q[x̄]. A term of Q[x̄] is either an integer c in U or an integer
“variable” x .A, where x ∈ x̄ and A is an attribute in Θ (note that attributes are not specified in Q).

A linear arithmetic expression e of Q[x̄] is defined as follows:

e ::= t | |e | | e + e | e − e | c × e | e ÷ c,

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:8 W. Fan et al.

where t is a term, c is an integer, and |e | is the absolute value of e . The degree of expression e is at
most 1, representing the maximum sum of the exponents of variables in its monomials (e.g., x .A).

For instance, all the arithmetic expressions given in Example 1.1 are linear. As will be seen in
Section 4, we adopt linear e to strike a balance between the expressive power and complexity.

A literal l of Q[x̄] is of the form e1 ⊗ e2, where e1 and e2 are linear arithmetic expressions of
Q[x̄], and ⊗ is one of the built-in comparison operators =,�, <, ≤, >, and ≥.

NGDs. A numeric graph dependency, denoted by NGD, is of the form Q[x̄](X → Y), where

◦ Q[x̄] is a graph pattern called the pattern of φ; and
◦ X and Y are (possibly empty) sets of literals of Q[x̄].

Intuitively, an NGD φ is a combination of two constraints: (a) a topological constraint imposed
by graph pattern Q , to identify entities in a graph, and (b) an attribute dependency X → Y , defined
with linear arithmetic expressions connected with built-in predicates, to be enforced on the entities
identified by Q . To simplify the discussion, we also write X and Y as conjunctions of literals.

Numeric graph dependencies extend GFDs of References [31, 33] by supporting

(a) linear arithmetic expressions with +,−,×,÷, and | · |, and
(b) comparisons with built-in predicates =,�, <, ≤, >, ≥.

In other words, GFDs of References [31, 33] are a special case of NGDs when literals are restricted
to terms connected with equality “=” only, i.e., literals of the form x .A = c or x .A = y.B.

Here variable x .A can carry any values of an atomic type τ , where τ is either numeric (integer)
or non-numeric (e.g., string, timestamp, enumerated types). Arithmetic operations are defined on
numeric values as usual. Built-in predicates =,�, <, ≤, >, and ≥ are defined on A-attribute values
as long as these predicates are defined in the domain of its type τ , e.g., integer and string.

Example 3.1. To catch those errors spotted in Example 1.1, we define the following NGDs, in
terms of the patterns depicted in Figure 2, with arithmetic expressions and built-in predicates.

(1) Yago. NGD φ1 = Q1[x ,y, z](∅ → z.val − y.val ≥ c). Here X is empty set ∅ and Y includes a
single literal. From Q1 of Figure 2, we can see that x ,y, and z denote an entity, the date when it
was created, and the date when it was destroyed, respectively; val is an attribute for the integer
values of y and z in days (not shown in Q1); and c is a non-negative constant integer. It states
that an entity cannot be destroyed within c days of its creation. It catches the error in graphG1 of
Figure 1.

(2) Yago. NGD φ2 = Q2[w,x ,y, z](∅ → y.val + z.val = w .val). The NGD says that, in any area x , its
total populationw .val should equal the sum of its female population y.val and its male population
z.val. It catches the inconsistency in graph G2 of Figure 1.

(3) DBPedia. NGD φ3 = Q3[x̄](m1.val < m2.val→ n1.val > n2.val), where x̄ includes two places x
andy in the same area z. It states that if the populationm1.val of x is less than the populationm2.val

ofy in the same censusw , then the populationRankn1.val of x is behind the populationRankn2.val

of y. It captures the inconsistency in graph G3 of Figure 1.

(4) Twitter. NGD φ4 = Q4[x̄]((s1.val = 1) ∧ (a × (m1.val −m2.val) + b × (n1.val − n2.val) > c) →
s2.val = 0). Here x̄ includes two accountsx andy about the same companyw , wherex (respectively,
y) has n1.val (respectively, n2.val) followers and is followingm1.val (respectively,m2.val) accounts,
and has status s1.val (respectively, s2.val) indicating whether x (respectively, y) is real. Integers a
and b specify the weights of following and followers, respectively; and c is the threshold for their
difference (see Example 1.1). It states that if the gap between the followers and following of a real

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:9

account x and account y exceeds c , then the chances are that y is fake. It catches NatWest_Help in
G4 of Figure 1 as a fake account.

Remark. NGDs and GFDs depart from their relational counterparts as follows:

(1) Consider a functional dependency (FD) R (X → Y) defined on a relation schema R with at-
tributes X and Y . Here R specifies the “scope” of the FD, i.e., X → Y is to be applied to an instance
D of R such that for any tuples t1 and t2 in D, if t1[X] = t2[X], then t1[Y] = t2[Y]. In contrast,
graphs are semistructured and are often schemaless. To define a GFD (i.e., an FD on graphsG), we
can no longer find a set of tuples as its scope. Instead, we define a GFD Q[x̄](X → Y) with (a) a
pattern Q to identify associated entities in G as the “scope,” i.e., it identifies entities to which the
“FD” is applied; and (b) a dependency X → Y on the attributes of the entities identified by Q .

(2) As shown in Reference [31], GFDs can express (a) conditional functional dependencies (CFDs

[26]), (b) equality generating dependencies (EGDs [4]), and (c) a form of tuple generating depen-
dencies (TGDs [4]) for the existence of attributes, when relational tuples are represented as vertices
in a graph. For example, let R (CC,ZIP, STR) be a relation schema; then (CC = 44,ZIP) → STR is a
CFD over R, which states that in the UK, zip code (ZIP) uniquely determines one street (STR). This
CFD can be expressed as a GFD: Q[x ,y](x .CC = y.CC ∧ x .CC = 44 ∧ x .ZIP = y.ZIP→ x .STR =

y.STR), where Q consists of two nodes x and y labeled with R, each denoting a tuple of R.
NGDs subsume GFDs as a special case, and hence can also express CFDs, EGDs, and limited

TGDs. In particular, NGDs support constant bindings of CFDs [26], which have proven useful in
detecting errors in relations [25]. Hence, NGDs can catch non-numeric inconsistencies that GFDs

and CFDs can detect, in addition to numeric errors. Moreover, NGDs support conditions defined
in terms of arithmetic operations and built-in predicates, which are beyond CFDs, EGDs, and
TGDs. Note that NGD φ4 of Example 3.1 cannot be expressed by numeric functional dependencies
(NFDs) [23], since NFDs do not support preconditions with arithmetic expressions.

(3) Association rules have recently been studied for graphs, which often have existential semantics
to deduce the existence of certain edges, e.g., graph-pattern association rules (GPARs) proposed in
Reference [32]. In contrast, GFDs and NGDs are universal logic sentences. While they can enforce
the existence of attributes (i.e., limited TGDs), they cannot deduce the existence of edges. Hence,
GFDs and NGDs are not able to express graph association rules such as GPARs.

Semantics. Consider a match h(x̄) of Q in a graph G.
We say that match h(x̄) satisfies a literal l = e1 ⊗ e2 of Q[x̄] if (a) for each variable x .A in l , node

v = h(x) carries attribute A, and (b) h(e1) ⊗ h(e2), where h(ei) denotes the arithmetic expression
obtained from ei by substituting h(x) for each x in ei for i ∈ [1, 2]; here h(e1) ⊗ h(e2) is interpreted
following the standard semantics of arithmetic operations and build-in predicates.

For instance, for e1 > e2, where e1 is x .A + x .B and e2 is 3, h(x) satisfies e1 > e2 if (a) node v =
h(x) carries attributes A and B, and (b) the value of v .A +v .B is greater than 3.

For a set Z of literals, we write h(x̄) |= Z if h(x̄) satisfies all literals in Z , i.e., their conjunction.
We write h(x̄) |= X → Y if h(x̄) |= X implies h(x̄) |= Y , i.e., if h(x̄) |= X , then h(x̄) |= Y .

A graph G satisfies NGDφ = Q[x̄](X → Y), denoted by G |= φ, if for all matches h(x̄) of Q in G,
h(x̄) |= X → Y . GraphG satisfies a set Σ of NGDs, denoted byG |= Σ, if for all NGDs φ ∈ Σ,G |= φ.

Intuitively, to check whether G |= φ, we need to examine all matches h(x̄) of Q in G. We check
whether h(x̄) |= Y only if h(x̄) is a match of Q and it satisfies the precondition X .

Example 3.2. Consider graph G1 depicted in Figure 1 and NGD φ1 given in Example 3.1. Then
G1 |= φ1, since there exists a match h(x ,y, z): x �→ BBC_Trust, y �→ 2007-#-# and z �→ 1946-08-28,

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:10 W. Fan et al.

Fig. 3. GFD generation.

such that h(y).val > h(z).val, i.e., h(x ,y, z) |= Y . That is, h(x ,y, z) denotes the list of entities that
make a violation of φ1 in G1. Similarly, G2 |= φ2, G3 |= φ3 and G4 |= φ4.

NGDs generation. How can we find NGDs? Below, we address this question.

NGD design. Traditionally, data quality rules are typically designed by domain experts. To de-
sign an NGD Q[x̄](X → Y), one needs to specify the following: (1) pattern Q , which identifies
the “scope” of X → Y ; (2) linear arithmetic expressions on the attributes of the nodes in Q ; and
(3) literals defined with the arithmetic expressions and built-in predicates. Using domain knowl-
edge, experts can figure out (2) and (3) on attributes of their interest. However, it is nontrivial to
design a suitable pattern Q by inspecting all nodes carrying attributes of their interest in a large
real-life graph.

To this end, one can adopt query reverse engineering [46] to generate Q . More specifically, one
may (a) first select some nodes of interest and (b) then by treating these nodes as output, use the
query reverse engineering techniques to compute “input queries,” which are patterns Q that can
be mapped to the selected nodes. Domain experts may then inspect the patterns generated.

NGD discovery. To help non-expert users find useful NGDs, we extend the GFD discovery algo-
rithm of Reference [27] to discover NGDs from graphs. Intuitively, the algorithm of Reference [27]
interleaves “vertical levelwise expansion” for mining frequent patterns Q and “horizontal level-
wise expansion” for mining literals in X → Y in a single process. As depicted in Figure 3, the
algorithm “cold starts” with single-node patterns Q1. It then iterates the following steps: (1) ver-
tically expand a pattern Qi by adding one edge to generate a new pattern Qi+1; and (2) horizon-
tally expand literals l1, . . . , lk for each literal l of Qi+1 by adding one literal each time, such that
Qi+1[x̄](l1 ∧ . . . ∧ lk → l) makes a candidate GFD. The process proceeds until the GFDs gener-
ated exceed a predefined size. Optimization techniques are developed in Reference [27] to prune
unnecessary search.

Compared with GFD discovery, NGD discovery is more challenging, since the literals of NGDs

carry linear arithmetic expressions and cannot be retrieved directly from graphs. Nonetheless,
such literals can be identified by adopting feature clustering [19] and linear regression [56]. More
specifically, for a pattern Q , we (1) extract attributes A1, . . . ,An pertaining to Q , (2) use feature
clustering to group these attributes into, e.g., {A1,1, . . . ,A1,n1 }, . . . , {Ak,1, . . . ,Ak,nk

}, and (3) for
each group {Aj,1, . . . ,Aj,nj

} (j ∈ [1,k]), train a linear regression model using the data correspond-
ing to these attributes in the matches of Q and treat this linear regression model as a literal.

4 FUNDAMENTAL PROBLEMS FOR NGDS

We next study two fundamental problems associated with NGDs, namely, the satisfiability and
implication problems. The main result of this section is that the presence of either linear arithmetic
expressions or built-in predicates makes these problems harder unless P = NP. This said, we show
that NGDs strike a balance between the complexity and expressive power.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:11

4.1 The Analysis of NGDs

We first state the two fundamental problems and establish their complexity bounds for NGDs.

(1) Satisfiability. We consider two notions of satisfiability.
A set Σ of NGDs is satisfiable if there exists a graph G such that (a) G |= Σ and (b) there exists

a NGD Q[x̄](X → Y) in Σ such that pattern Q has a match in G. Intuitively, condition (b) is to
ensure that the NGDs can be applied to nonempty graphs.

We say that Σ is strongly satisfiable if there exists a graphG such that (a)G |= Σ and (b) for each
NGD Q[x̄](X → Y) in Σ, there exists a match of Q in G. Intuitively, condition (b) requires that all
patterns in Σ find a match in G to ensure that the NGDs in Σ do not conflict with each other.

The satisfiability problem for NGDs is to decide, given a set Σ of NGDs, whether Σ is satisfiable.
The strong satisfiability problem is to decide whether Σ is strongly satisfiable.

Example 4.1. Consider a set Σ0 consisting of two NGDs: φ5 = Q[x](∅ → x .A = 7 ∧ x .B = 7) and
φ6 = Q[x](∅ → x .A + x .B = 11), where pattern Q has a single node x labeled “_”. One can verify
that there exist nonempty graphs that satisfy φ5 and φ6 when taken separately. However, φ5 and
φ6 are not satisfiable when put together. Indeed, the values of attributes A and B on each node
must be 7 as required by φ5, while their sum is required to be 11 by φ6, which is impossible.

Suppose that pattern Q in φ6 is replaced by Q ′ that has a single node labeled “a.” Then Σ0

becomes satisfiable. Indeed, consider graphG having a single nodev labeled “b” withv .A = v .B =
7. Then G |= Σ0. But Σ0 is not strongly satisfiable, since for any graph G ′, if all patterns in Σ0 find
a match in G ′, then there must exist nodes labeled ‘‘a,” and the conflicts above arise again.

Similarly, one can verify that the NGDs below are not (strongly) satisfiable: φ7 = Q[x](x .A ≤
3→ x .B > 6), φ8 = Q[x](x .A > 3→ x .B > 6), and φ9 = Q[x](∅ → x .B < 6 ∧ x .A � 0).

These show that the presence of either linear arithmetic expressions or built-in comparison
predicates beyond equality makes the satisfiability analysis more intriguing than that of GFDs

[31, 33].

(2) Implication. A set Σ of NGDs implies another NGD φ, denoted by Σ |= φ, if for all graphs G, if
G |= Σ, then G |= φ. That is, the NGD φ is a logical consequence of the set Σ of NGDs.

The implication problem for NGDs is to determine whether Σ |= φ for given NGDs Σ and φ.
As remarked in Section 1, the practical need for studying these problems is evident, besides

theoretical interest, for determining whether data quality rules discovered from possibly dirty
data are sensible, and for optimizing data quality rules, among other things.

Complexity. We next settle the complexity of these problems.
Recall that the satisfiability problem for relational functional dependencies (FDs) is trivial, i.e.,

for any set Σ of FDs over a relation schema R, there always exists a nonempty instance of R that
satisfies Σ [25]. Moreover, the implication problem for FDs is in linear-time (cf. Reference [4]).
It is known that the satisfiability and implication problems for GFDs are coNP-complete and NP-
complete [33], respectively. These are comparable to their counterparts for relational CFDs, which
are NP-complete and coNP-complete, respectively [26]. In contrast, NGDs make our lives harder.

Theorem 4.2. For NGDs, (a) the satisfiability problem and strong satisfiability problems are both

Σ
p
2 -complete and (b) the implication problem is Π

p
2 -complete.

Here Σ
p
2 is the class of decision problems that are solvable in NP by calling an NP oracle, i.e.,

Σ
p
2 = NPNP. It is considered more intriguing than NP unless P=NP. Similarly, Π

p
2 = coNPNP, which

is also above NP in the polynomial hierarchy (see Reference [59] for details).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:12 W. Fan et al.

Proof. We analyze the fundamental problems for NGDs one-by-one.

The satisfiability problem for NGDs. We show that the satisfiability problem for NGDs is Σ
p
2 -

complete. The proof is a little involved. We first show that the satisfiability problem for NGDs has

a small model property, based on which, we give an Σ
p
2 algorithm to check whether a given set Σ

of NGDs is satisfiable. We then prove that the problem is Σ
p
2 -hard.

The small model property. We show that if a set Σ of NGDs is satisfiable, then Σ has a model GΣ

such that GΣ |= Σ, |GΣ | ≤ 3(|Σ| + 1)5 and Q has a match in GΣ for some φ = Q[x̄](X → Y) in Σ.
By the definition of satisfiability, for any satisfiable set Σ, there exists a graphG such thatG |= Σ

and Q has a match hφ in G for some NGD φ = Q[x̄](X→Y) in Σ. Based on the match hφ , we
construct graph GΣ in two steps. (a) We first deduce a subgraph Gφ of G by using the topological
structure derived fromhφ . (b) We then revise the attribute values inGφ to get a small modelGΣ of Σ.

(a) We deduce Gφ as the subgraph of G “induced” by match hφ , which includes those

nodes and edges that are mapped from Q . That is, Gφ = (Vφ ,Eφ ,Lφ , F
φ

A
), where (1) Vφ =

{hφ (x) | x ∈ x̄ }, where x̄ refers to the list of distinct variables in NGD φ = Q[x̄](X → Y);
(2) Eφ = {(hφ (x1),hφ (x2)) | (x1,x2) ∈ EQ }, where EQ is the set of edges in pattern Q[x̄]; (3) Lφ

is such defined that Lφ (v) = L(v) for v ∈ Vφ , and Lφ (e) = L(e) for e ∈ Eφ ; and (4) we define F
φ

A
by

taking attributes that only appear in Σ; more specifically, for each NGD φ ′ = Q ′[x̄ ′](X ′ → Y ′) in
Σ, match hφ′ ofQ ′ inGφ , and integer variable x ′.A that appears in X ′, F

φ

A
(v ′).A = FA (v ′).A, where

v ′ = hφ′ (x
′); moreover, if hφ′ (x̄ ′) |= X ′, then F

φ

A
(hφ′ (y

′)).A = FA (hφ′ (y
′)).A for each integer vari-

able y ′.A that appears in Y ′.
This is well-defined, since G |= Σ. From the construction, we have that Gφ |= Σ, |Vφ | ≤ |Σ|, and

each node in Gφ has at most |Σ| attributes. Note that the labels and attribute values in Gφ may be
of size exponential in |Σ| since they are copied directly from G.

(b) We revise Gφ to obtain GΣ, in which we revise the labels and values of attributes in Gφ to
eliminate those “unbounded” ones. We first replace all labels in Gφ that are not in Σ with a single
label lΣ that does not occur in Σ such that |lΣ | ≤ |Σ|. One can verify that for any pattern Q in Σ,
h is a match of Q in Gφ if and only if h is a match of Q in GΣ, since the substituted label only
matches the wildcard “_” in h. That is, all the matches of patterns from Σ inGφ remain unchanged
after the label replacement by the definition of graph pattern matching. Hence, the graph still
satisfies Σ.

It remains to revise the attribute values. The main challenge is to ensure that GΣ |= Σ after
the values are changed. We “normalize” the attributes by solving an integer linear programming
problem LΣ : Dȳ ≤ b̄ constructed from graph Gφ , where D is an integral m × n coefficient matrix

and b̄ an integral m-component vector. Denote by A1, . . . , An the attributes that appear in Gφ .
We show that the size of graph GΣ derived from Gφ by replacing the value of each Ai with a

corresponding ci for i ∈ [1,n] is at most 3(|Σ| + 1)5 and GΣ |= Σ, where (c1, . . . , cn) is a feasible
solution to LΣ of length polynomial in |Σ|. The linear programming instance LΣ is constructed in
three steps: (i) identify the set S of instantiated literals “enforced” on Gφ by Σ; (ii) eliminate the
absolute value operator; and (iii) transform the instantiated literals in S into linear inequations of
the form ei ≤ bi .

First, a set S of instantiated literals enforced by Σ on Gφ is identified, which includes all instan-
tiated literals that are needed to inspect when checking whether Gφ |= Σ. More specifically, for
each NGD φ ′ = Q ′[x̄ ′](X ′ → Y ′) in Σ, match hφ′ of Q ′ in Gφ , and literal l in X ′, we add hφ′ (l) to
S , where hφ′ (l) refers to the instantiated literal of l by substituting hφ′ (x) for each variable x in l .
The instantiated literal hφ′ (l) is also included in S for each l in Y ′ when hφ′ (x̄

′) |= X .

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:13

Second, to comply with linear programming, we remove absolute value operator from instan-
tiated literals. For each |e | in S , if e is evaluated to be non-negative, then we replace |e | by e;
otherwise, |e | is substituted by −e . Note that e’s value can be readily evaluated after identifying S .

Finally, we transform the instantiated literals in S into the form ei ≤ bi of inequality constraints.
To this end, we aim to eliminate built-in operators except ≤, while ensuring all the inequalities
hold onGφ . That is, the corresponding inequation of each instantiated literal h(l) in S depends on
whetherh(l) is a logical truth inGφ , denoted byGφ |= h(l). For instance, considerh(l) = (v .A ≤ 3).
Then it is converted to −v .A + 1 ≤ −3 if Gφ |= h(l), i.e., v .A > 3 in Gφ , and remains unchanged
otherwise. This is consistent with the truth value of the original instantiated literals on it.

Depending on the satisfiability of each instantiated literal h(l) on Gφ , i.e., whether Gφ |= h(l),
we first transform h(l) into the form of e ′1 ≤ e ′2 as follows:

h(l) Gφ |= h(l) Gφ |= h(l)

e1 = e2 e1 ≤ e2 and e2 ≤ e1
e1 + 1 ≤ e2 if e1 < e2,
otherwise e2 + 1 ≤ e1

e1 � e2
e1 + 1 ≤ e2 if e1 < e2,
otherwise e2 + 1 ≤ e1

e1 ≤ e2 and e2 ≤ e1

e1 < e2 e1 + 1 ≤ e2 e2 ≤ e1

e1 ≤ e2 e1 ≤ e2 e2 + 1 ≤ e1

e1 > e2 e2 + 1 ≤ e1 e1 ≤ e2

e1 ≥ e2 e2 ≤ e1 e1 + 1 ≤ e2

We then transform them into the required form of ei ≤ bi by using arithmetic transformations
to move constant to the right side and remove operator ÷. This completes the construction of S .
The instantiated literals in S are satisfied by Gφ and can be regarded as a linear integer program-

ming problem instance LΣ : Dȳ ≤ b̄ after the transformation above. Here variables y1, . . . ,yn in ȳ
correspond to the attributes in Gφ , i.e., Ai , for each i ∈ [1,n].

We construct graph GΣ from Gφ by using some feasible solution (c1, . . . , cn) to LΣ of bounded
length polynomial in |Σ|. More specifically, the value of each Ai in Gφ is normalized to ci in GΣ,
the answer to the corresponding variable yi of Ai in LΣ for i ∈ [1,n].

We now prove the existence of such solutions. It is known that if Dȳ ≤ b̄ has a n-component
integer solution, then it has one solution (c1, . . . , cn) with ci ≤ (n + 1)M for each i ∈ [1,n], where
M refers to the maximal absolute value for the determinants of the square submatrices of [D, b̄],
and [D, b̄] denotes the augmentation matrix of Dȳ ≤ b̄ [20]. One can verify that M ≤ (2 |Σ | (|Σ|2 +
1)) |Σ |

2+1, since the number of variables in LΣ is at most |Σ|2, i.e., n ≤ |Σ|2, and each value in [D, b̄] is
no larger than 2 |Σ | . As the attribute values inGφ constitute a feasible solution to LΣ by the definition
of instance LΣ, such a solution (c1, . . . , cn) of bounded size always exists, in which each ||ci || ≤
log2 (2 |Σ |

3+ |Σ | (|Σ|2 + 1) |Σ |
2+2) ≤ 3(|Σ| + 1)3 for i ∈ [1,n], and ||ci || denotes the size of integer ci .

We next show that GΣ is a model of bounded size. Suppose by contradiction that GΣ |= Σ. Then
there exists a NGD φ ′ = Q ′[x̄ ′](X ′ → Y ′) in Σ and a match hφ′ of Q ′ inGΣ such that hφ′ (x̄

′) |= X ′

andhφ′ (x̄
′) |= Y ′. By the definition ofGΣ,hφ′ is also a match ofQ ′ inGφ . Suppose thathφ′ (x̄

′) |= X ′

inGφ . Then hφ′ (x̄
′) |= Y ′ and the instantiated hφ′ (l) also exists in set S for any literal l in Y ′, since

Gφ |= Σ. As (c1, . . . , cn) is a feasible solution to LΣ and the satisfiability of original literals from S
on Gφ is preserved in the answer to LΣ, it also satisfies all the literals in Y ′. Hence, hφ′ (x̄

′) |= Y ′
in GΣ, a contradiction. One might think that it is possible that hφ′ (x̄

′) |= X ′ in Gφ , since GΣ and
Gφ carry different attribute values. However, a contradiction to that of hφ′ (x̄

′) |= X ′ in GΣ can
be derived analogously, using the argument that the transformation preserves the satisfiability as
above.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:14 W. Fan et al.

Finally, to see |GΣ | ≤ 3(|Σ| + 1)5, observe the following: (i) Graph GΣ has at most |Σ| nodes and
edges, since they are inherited from their counterparts in Gφ . (ii) There are at most |Σ| labels in
GΣ, and unboundedly large ones are replaced by lΣ with |lΣ | ≤ |Σ|. (iii) The total size of attribute
values is at most 3|Σ|2 (|Σ| + 1)3. Putting these together, the size |GΣ | of GΣ is at most 3(|Σ| + 1)5.

Upper bound. We give an Σ
p
2 algorithm to check whether a given set Σ of NGDs is satisfiable.

(1) Guess a graph G such that |G | ≤ 3(|Σ| + 1)5, an NGD φ in Σ, and a mapping hφ from VQ

to V , where VQ is the set of nodes in the pattern Q of φ.
(2) Check whether hφ is a match ofQ inG; if so, continue; otherwise, reject the current guess.
(3) Check whether G |= Σ; if so, return true; otherwise, reject the current guess.

The correctness of the algorithm follows from the small model property. For its complexity, step
(2) is in PTIME, which follows from the definition of matches; step (3) is in coNP by Theorem 5.1

(to be proved shortly). Therefore, the algorithm is in Σ
p
2 and so is the satisfiability problem for

NGDs.

Lower bound. We show that the satisfiability problem for NGDs is Σ
p
2 -hard by reduction from the

generalized subset sum problem, denoted by GSSP, which is Σ
p
2 -complete [62]. GSSP is to decide,

given an m-component vector ū1 and a n-component vector ū2 of integers, an integer w , whether
∃v̄1∀v̄2 (ūT

1 ·v̄1 + ū
T
2 ·v̄2 � w). Here v̄1 (respectively, v̄2) is an m (respectively, n)-component vector

of Boolean values, i.e., 0 or 1, ūT
i is the transpose of ūi , and ūT

i ·v̄j is the inner product of ūi and v̄j

(i, j ∈ [1, 2]).
Given ū1 = (u1, . . . ,um), ū2 = (u ′1, . . . ,u

′
n) andw , we construct a set Σ of three NGDs such that Σ

is satisfiable if and only if ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). To encode the existential semantic of vector

v̄1, we use an NGD to ensure that there are m nodes carrying A-attributes with Boolean values.
The universal semantic of vector v̄2 is encoded by using wildcards in the pattern to arbitrarily
match two nodes with values 0 and 1 of another attribute B. More specifically, Σ is constructed as
follows:

(1) The patternQ[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z] = (VQ ,EQ ,LQ , μ) is shared by all NGDs in Σ; it is
given as follows: (a) VQ = {vi | i ∈ [1,m]} ∪ {v ′0,v ′1,v ′2} ∪ {v ′′i | i ∈ [1,n]}; (b) EQ = ∅; (c) LQ (vi) =
τi (i ∈ [1,m]), LQ (v ′0) = γ0, LQ (v ′1) = γ1, LQ (v ′2) = χ , LQ (v ′′i) = “_” (i ∈ [1,n]); and (d) μ (xi) = vi

(i ∈ [1,m]), μ (y0) = v ′0, μ (y1) = v ′1, μ (z) = v ′2, and μ (zi) = v ′′i (i ∈ [1,n]).
That is,Q hasm + n + 3 isolated nodes, in whichn nodes are labeled wildcard “_” that can match

any label in the data graph, and the otherm + 3 nodes carry distinct labels.

(2) The first NGD of Σ encodes the Boolean values of v̄1 and is defined as φ1 =

Q[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z](∅ → (|2 × x1.A − 1| = 1) ∧ · · · ∧ (|2 × xm .A − 1| = 1)).
Intuitively, it assures that there arem nodes having A-attributes with Boolean values.

(3) The second NGD of Σ is defined as φ2 = Q[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z](∅ → (y0.B = 0) ∧
(y1.B = 1) ∧ (z.C = 1)), which assures two distinct nodes carrying distinct Boolean values 0 and 1
for their B-attributes, respectively. It also enforces the value of C-attribute to be 1.

(4) The third NGD φ3 encodes vectors ū1 and ū2; it is defined as φ3 =

Q[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z]((|2 × z1.B − 1| = 1) ∧ · · · ∧ (|2 × zn .B − 1| = 1) ∧ (A′ + B′ = w)
→ (z.C = 2)), where A′ = x1.A × u1 + · · · + xm .A × um , and B′ = z1.B × u ′1 + · · · + zn .B × u ′n .

Intuitively, φ3 is also used for checking the condition of GSSP. To see this, observe that (a) the
instantiated x1.A, . . . ,xm .A can be assigned to v̄1 when Σ has a model G, since Q must have a
match in G; (b) variables z1, . . . , zn can be mapped to nodes labeled γ1 or γ2 in an arbitrary way
by the semantic of wildcard “_”; moreover, there exist two such nodes having B-attributes with

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:15

values 0 and 1, respectively; therefore, the instantiated z1.B, . . . , zn .B for all the matches of Q
can be regarded as the set of all n-component vectors of Boolean values that encode the universal
semantic of v̄2; and (c) the instantiated z.C is enforced to be 1 byφ2 and contradicts to z.C = 2 when
the condition A′ + B′ = w in φ3 holds, which encodes the negation of ∃v̄1∀v̄2 (ūT

1 ·v̄1 + ū
T
2 ·v̄2 � w).

We next prove that Σ is satisfiable if and only if ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w) holds for ū1 and ū2.

(⇒) First assume that Σ is satisfiable. Then there exists a graph G such that G |= Σ, and Q has
a match hQ in G. Based on hQ , we define Boolean vector v̄1 = (hQ (x1).A, . . . ,hQ (xm).A). This
is well-defined, since G |= φ1, which ensures that each hQ (xi) has A-attribute of Boolean value. It

remains to prove that∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w) for this v̄1. Suppose by contradiction that there exists

a Boolean vector v̄2 = (t ′1, . . . , t
′
n) such that ūT

1 ·v̄1 + ū
T
2 ·v̄2 = w . We show that there exists another

match h′Q of Q in G such that h′Q (x̄ , ȳ, z̄) |= Σ, a contradiction to G |= Σ above. More specifically,

h′Q is such defined that (a) h′Q (xi) = hQ (xi) for i ∈ [1,m], (b) h′Q (y0) = hQ (y0), h′Q (y1) = hQ (y1),

h′Q (z) = hQ (z), and (c) h′Q (zi) = hQ (y0) if t ′i of v̄2 is 0, and otherwise h′Q (zi) = hQ (y1). One can

verify that h′Q is a match of Q in G, since variable zi (i ∈ [1,n]) can be mapped to any node by its

label of wildcard “_”.
We now show that h′Q (x̄ , ȳ, z̄) |= Σ by contradiction. Assume that h′Q (x̄ , ȳ, z̄) |= Σ. One can see

that h′Q (z).C = 1 by G |= φ2. Moreover, we can verify that h′Q (z).C = 2, a contradiction, because

(a) h′Q (zi).B (for i ∈ [1,n]), i.e., hQ (y0).B or hQ (y1).B, is a Boolean value that equals t ′i of v̄2, which

is guaranteed by φ2 and the construction of h′Q , (b) h′Q (A′ + B′) = w by the assumption of v̄2, and

(c) G |= φ3.

(⇐) Conversely, assume that ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). Based on such a vector v̄1 = (s ′1, . . . , s

′
m),

we construct a model G = (V ,E,L, FA) of Σ, and hence show that Σ is satisfiable, where (a) V =
{vM

1 , . . . ,v
M
m ,v

N
0 ,v

N
1 ,v

T }; (b) E = ∅; (c) L(vM
i) = τi for i ∈ [1,m], L(vN

0) = γ0, L(vN
1) = γ1, L(vT) =

χ ; and (d) FA (vM
i).A = s ′i for i ∈ [1,m], FA (vN

0).B = 0, FA (vN
1).B = 1, and FA (vT).C = 1.

We next show that G is a model of Σ. Observe the following: (a) By the definition of G, it is
easy to see that Q has a match h in G and h(xi).A = s ′i for i ∈ [1,m]. (b) Since for each node

vM
i (i ∈ [1,m]) labeled τi in G, FA (vM

i).A is a Boolean value, FA (vN
0).B = 0, FA (vN

1).B = 1, and

FA (vT).C = 1 for the nodes labeled γ0, γ1, and τ , respectively, we have that G |= φ1 and G |= φ2. It
remains to show thatG |= φ3. Suppose by contradiction thatG |= φ3. Then there exists a match hQ

of Q in G such that hQ (x̄ , ȳ, z̄) |= (|2 × z1.B − 1| = 1) ∧ . . . ∧ (|2 × zn .B − 1| = 1) ∧ (A′ + B′ = w).
Since hQ (x̄ , ȳ, z̄) |= (A′ + B′ = w), one can verify that there exists an n-component Boolean vector

v̄2 = (t ′1, . . . , t
′
n), where t ′i = hQ (zi).B for i ∈ [1,n], such that ūT

1 ·v̄1 + ū
T
2 ·v̄2 = w , which contradicts

to the assumption that ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w) above. Indeed, since hQ (x̄ , ȳ, z̄) |= |2 × zi .B −

1| = 1, we know that hQ (zi).B is a Boolean value and thus can be assigned to t ′i for i ∈ [1,n], hence
a contradiction.

The strong satisfiability problem for NGDs. We show that this problem is also Σ
p
2 -complete.

Similar to the proof for the satisfiability problem above, we start with a small model property.

The small model property. We show that if a set Σ of NGDs is strongly satisfiable, then there exists
a model GΣ such that GΣ |= Σ, |GΣ | ≤ 6(|Σ| + 1)5 and every pattern in Σ has a match in GΣ.

By the definition of strong satisfiability, if Σ is strongly satisfiable, then there exists a graph
G = (V ,E,L, FA) such that G |= Σ and for each pattern Q in Σ, there exists a match hQ of Q in G.
Based on these matches, we construct GΣ as follows: (a) We first deduce a subgraph G ′ of G such
thatG ′ has at most |Σ| nodes. (b) We then revise the attribute values and the labels inG ′ to obtain
the modelGΣ of Σ such that |GΣ | ≤ 6(|Σ| + 1)5, in which each attribute value is of bounded length.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:16 W. Fan et al.

(a) Subgraph G ′ is “induced” by matches of patterns from Σ, i.e., G ′ = (V ′,E ′,L′, F ′A), where

• V ′ = {hQ (x̄) | Q[x̄](X → Y) ∈ Σ}, where hQ is the match of Q in G;
• E ′ = {(hQ (v1),hQ (v2)) | (v1,v2) ∈ EQ ,Q[x̄](X → Y) ∈ Σ};
• L′ is such defined: for v ∈ V ′ (respectively, e = (v1,v2) ∈ E ′), L′(v) = L(v) (respectively,

L′(e) = L(e)); and
• we define F ′A by taking attributes that only appear in Σ along the same lines as generating

attributes for subgraph Gφ in the proof of the satisfiability problem.

This is well-defined, and we have that G ′ |= Σ, |V ′ | ≤ |Σ|, and each node has at most |Σ|
attributes.

(b) Similar to the counterpart in the proof for the satisfiability problem above, we can normalize
G ′ to get GΣ such that GΣ |= Σ and |GΣ | ≤ 6(|Σ| + 1)5. We omit the details here.

Upper bound. Based on the small model property, we give an Σ
p
2 algorithm to check whether a

given set Σ of NGDs is strongly satisfiable, which works as follows:

(1) Guess a graph G = (V ,E,L, FA) such that |G | ≤ 6(|Σ| + 1)5, and for each NGD φ =
Q[x̄](X → Y) in Σ, guess a mapping hφ from VQ to V , where VQ is the set of nodes in
the pattern Q .

(2) Check whether each mapping hφ is a match of Q in G for NGD φ = Q[x̄](X → Y) in Σ; if
so, continue; otherwise, reject the current guess.

(3) Check whether G |= Σ; if so, return true; otherwise, reject the current guess.

The correctness of the algorithm is assured by the small model property. For its complexity,
step (2) is in PTIME for the definition of matches. Step (3) is in coNP by Theorem 5.1, to be given

shortly. Therefore, the algorithm is in Σ
p
2 and so is the strong satisfiability problem for NGDs.

Lower bound. We prove that the strong satisfiability problem for NGDs is Σ
p
2 -hard also by reduction

from GSSP. Given ū1 = (u1, . . . ,um), ū2 = (u ′1, . . . ,u
′
n) and w , we construct a set Σ of NGDs such

that Σ is strongly satisfiable if and only if ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w) holds. The set Σ is the same

as that in the proof of the satisfiability problem. Since all the NGDs in Σ have the same pattern
Q , one can verify that Σ is satisfiable if and only if it is strongly satisfiable. Therefore, the lower
bound proof for the satisfiability problem of NGDs coincides with the one for strong satisfiability.

The implication problem for NGDs. We now study the implication problem. Similar to the
(strong) satisfiability problem, we first establish a small model property and then use it to prove

the upper bound. After these, we show that the implication problem is Π
p
2 -hard for NGDs.

The small model property. We prove that given a set Σ of NGDs and an NGD φ = Q[x̄](X→Y),
if Σ |= φ, then there exists a graph G (Σ,φ) such that |G (Σ,φ) | ≤ 6(|Σ| + |φ | + 1)5, G (Σ,φ) |= Σ and
G (Σ,φ) |= φ.

Suppose that Σ |= φ. Then there is a graph G = (V ,E,L, FA) such that G |= Σ, but G |= φ. By
G |= φ, there exists a match h of Q in G such that h(x̄) |= X , but h(x̄) |= Y . Based on h, we build
G (Σ,φ) as follows: (1) We first deduce a subgraphGφ ofG fromh, such thatGφ has at most |φ | nodes.
(2) We then normalize the labels and attribute values in Gφ to derive G (Σ,φ) such that |G (Σ,φ) | ≤
6(|Σ| + |φ | + 1)5, i.e.,G (Σ,φ) has a bounded size. Moreover, we show thatG (Σ,φ) |= Σ andG (Σ,φ) |= φ.
The construction of G (Σ,φ) is similar to that given above for the satisfiability problem.

(1) We define Gφ as the subgraph of G “induced” by match h. Let Q[x̄] = (VQ ,EQ ,LQ , μ) be the

graph pattern of φ. The graph Gφ = (Vφ ,Eφ ,Lφ , F
φ

A
) is defined as follows:

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:17

• Vφ = {h(v) | v ∈ VQ }, i.e., it includes those nodes mapped from Q via h;
• Eφ = {(h(v),h(v ′)) | (v,v ′) ∈ EQ }, i.e., it also includes those edges mapped from Q ;
• the function Lφ is defined as Lφ (v) = L(v) for eachv ∈ Vφ , and Lφ (e) = L(e) for each e ∈ Eφ ;

• F
φ

A
is defined in the same way as its counterpart for the satisfiability problem by including

attributes that appear in NGDs Σ and φ.

The graphGφ is well-defined, since F
φ

A
(·) inherits values from FA (·). One can verify that |Vφ | ≤ |φ |,

each node in Gφ has at most |Σ| + |φ | attributes, Gφ |= Σ, but Gφ |= φ by the definition of Gφ .

(2) We normalize the unboundedly large labels and attribute values in Gφ to construct G (Σ,φ) in
the same manner as that in the satisfiability proof, in which large labels are substituted by a single
label of small length and each attribute value inGφ is replaced by a bounded-length solution to its
corresponding variable in the linear programming problem L(Σ,φ) constructed from Gφ . The only
difference is that instantiated literals enforced by φ on Gφ is also processed in creating L(Σ,φ) .

We next show that G (Σ,φ) witnesses Σ |= φ, i.e., G (Σ,φ) |= Σ but G (Σ,φ) |= φ, and it is of bounded
size.

Indeed, G (Σ,φ) |= Σ can be verified analogously to its counterpart in the proof for satisfiability.
Thus, we just prove thatG (Σ,φ) |= φ by contradiction. Assume thatG (Σ,φ) |= φ. Then h(x̄) |= X and
h(x̄) |= Y in G (Σ,φ) for the match h that was used in the creation of Gφ . Since h(x̄) |= X while
h(x̄) |= Y in Gφ , there exists some literal l = e1 ⊗ e2 in Y such that h(x̄) |= l in Gφ . Moreover, the
instantiated l is involved in building the linear programming L(Σ,φ) . We assume w.l.o.g. that l is in
the form of e1 > e2; the other cases can be proved similarly. By the definition of L(Σ,φ) , there exists
a corresponding expression e1 ≤ e2 in L(Σ,φ) , which is satisfied by any feasible solution to L(Σ,φ) . It
follows that h(x̄) |= e1 > e2 in G (Σ,φ) , since the solutions to L(Σ,φ) preserve the truth value of any
original instantiated literal on Gφ . It contradicts to the assumption that h(x̄) |= Y in G (Σ,φ) .

We now show that |G (Σ,φ) | ≤ 6(|Σ| + |φ | + 1)5. Observe the following: (i) Graph G (Σ,φ) has at
most |φ | nodes and edges, since G (Σ,φ) uses the same sets of nodes and edges as Gφ . (ii) There are
at most |φ | many labels in G (Σ,φ) , in which large ones are normalized with small length; and each
node carries at most |Σ| + |φ | attributes. (iii) The size of each attribute value in G (Σ,φ) is at most

6(|Σ| + |φ | + 1)3; this can be verified along the same lines as that in the proof of the satisfiability
problem, leveraging the property of the bounded-length solution to linear programming. Putting
these together, we have that the size |G (Σ,φ) | of G (Σ,φ) is at most 6(|Σ| + |φ | + 1)5.

Upper bound. Based on the small model property, we develop an Σ
p
2 algorithm that given a set Σ

of NGDs and an NGD φ = Q[x̄](X → Y) checks whether Σ |= φ, as follows:

(1) Guess a graph G = (V ,E,L, FA) such that |G | ≤ 6(|Σ| + |φ | + 1)5, and a mapping hφ from
VQ to V , where VQ denotes the set of nodes in the pattern Q .

(2) Check whether hφ is a match ofQ inG; if so, continue; otherwise, reject the current guess.
(3) Check whether hφ (x̄) |= X and hφ (x̄) |= Y ; if so, continue; otherwise, reject the current

guess.
(4) Check whether G |= Σ; if so, return true; otherwise, reject the current guess.

The correctness of the algorithm is assured by the small model property. For its complexity, step
(2) is in PTIME by the definition of matches. Step (3) is in PTIME, since |X | + |Y | ≤ |φ |. Step (4) is

in coNP (Theorem 5.1). Thus, the algorithm is in Σ
p
2 , and the implication problem for NGDs is in

Π
p
2 .

Lower bound. We show that the implication problem is Π
p
2 -hard by reduction from the comple-

ment of the GSSP (see GSSP in the proof of the satisfiability problem). Given two integral vectors
ū1 = (u1, . . . ,um) and ū2 = (u ′1, . . . ,u

′
n), and another integer w , we construct a set Σ of NGDs and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:18 W. Fan et al.

another NGD φ such that Σ |= φ if and only if ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). That is, we find a graph

G “witnessing” Σ |= φ when the condition in GSSP holds.
We borrow some constructions from the lower bound proof for the satisfiability problem. Recall

the graph pattern Q[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z] and the third NGD φ3 given there. We define
Σ = {φ3}, which encodes the two given vectors ū1 and ū2 and checks whether ∀v̄2 (ūT

1 ·v̄1 + ū
T
2 ·v̄2 �

w) for some fixed v̄1. The other NGD φ is defined as φ = Q[x1, . . . ,xm ,y0,y1, z1, . . . , zn , z]((|2 ×
x1.A − 1| = 1) ∧ · · · ∧ (|2 × xm .A − 1| = 1) ∧ (y0.B = 0) ∧ (y1.B = 1) → (z.C = 2)), to encode the
possible vector v̄1, where the pattern Q of φ is the same as that of φ3.

Observe that φ ensures that for any match h of Q in a graph G, if h(xi).A is a Boolean value for
i ∈ [1,m], h(y0).B = 0 and h(y1).B = 1, then h(z).C must be 2. In addition, we can deduce 2n many
matches ofQ inG for a givenh by changingh(zi) (i ∈ [1,n]) toh(y0) orh(y1) arbitrarily. Moreover,
for each such deduced match h′, if h′(A′ + B′) = w holds (i.e., h′(x1).A × u1 + · · · + h′(xm).A ×
um + h

′(z1).B × u ′1 + · · · + h′(zn).B × u ′n = w), then h′(z).C = 2 as assured by φ3 of Σ.
From these, we establish the relationship between the implication problem for the NGDs Σ and

φ constructed above and GSSP and show that Σ |= φ if and only if ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w)

holds.

(⇒) Assume that Σ |= φ. We show that there exists anm-component vector v̄1 = (s ′1, . . . , s
′
m) such

that ∀v̄2 (ūT
1 · v̄1 + ū

T
2 · v̄2 � w). By Σ |= φ, there exists a graphG such thatG |= Σ butG |= φ. Since

G |= φ, there is a match h of Q inG such that h(x̄ , ȳ, z̄) |= (|2 × x1.A − 1| = 1) ∧ · · · ∧ (|2 × xm .A −
1| = 1) ∧ (y0.B = 0) ∧ (y1.B = 1) andh(x̄ , ȳ, z̄) |= (z.C = 2). Based onh, we define the Boolean vec-
tor v̄1 such that s ′i = h(xi).A for i ∈ [1,m]. This is well-defined, since h(xi).A has value 0 or 1.

It remains to show that ∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). Assume by contradiction that there exists a

Boolean vector v̄2 = (t ′1, . . . t
′
n) such that ūT

1 ·v̄1 + ū
T
2 ·v̄2 = w . Then, we show that h(z).C must be 2,

which contradicts to h(x̄ , ȳ, z̄) |= (z.C = 2), as argued above. To see this, it suffices to apply φ3 of Σ.
That is, we construct a match h′ ofQ inG such that h′(z) = h(z) and h′(x̄ , ȳ, z̄) |= (|2 × z1.B − 1| =
1) ∧ · · · ∧ (|2 × zn .B − 1| = 1) ∧ (A′ + B′ = w). For if it holds, then h′(z).C = h(z).C = 2 byG |= Σ.
The match h′ is constructed as follows: (a) h′(xi) = h(xi) for i ∈ [1,m]; (b) h′(y0) = h(y0), h′(y1) =
h(y1), h′(z) = h(z); and (c) h′(zi) = h(y0) when t ′i = 0, or h′(zi) = h(y1) when t ′i = 1 for i ∈ [1,n].
Since zi ’s are labeled wildcards that can match any label, h′ is also a match of Q inG. One can see
that |2 × h′(zi).B − 1| = 1 for i ∈ [1,n], since h(y0).B = 0 and h(y1).B = 1, and h′(zi).B takes the
value from them. Moreover, one can verify that h′(x̄ , ȳ, z̄) |= (A′ + B′ = w) by the construction of
h′ and the assumption for v̄1 and v̄2 defined above. This leads to h(z).C = 2, a contradiction.

(⇐) Conversely, assume that ∃v̄1∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). Let v̄1 = (s ′1, . . . , s

′
m) be such an inte-

gral vector. Based on v̄1, we construct a graph G such that G |= Σ but G |= φ, i.e., G “witness”
Σ |= φ. Graph G is similar to the pattern Q = (VQ ,EQ ,LQ , μ), except that it includes a subset of
nodes and carries attributes. More specifically,G = (V ,E,L, FA) is defined as follows:V = {v | v ∈
VQ ,LQ (v) � _}, consisting of those nodes in VQ that are not labeled wildcard; E = EQ , i.e., the
empty set ∅; L(v) = LQ (v) for eachv ∈ V ; and FA is such defined that FA (v).A = s ′i if L(v) = τi for
i ∈ [1,m], FA (v).B = 0 if L(v) = γ0, FA (v).B = 1 if L(v) = γ1, and FA (v).C = 1 if L(v) = χ .

One can verify thatG |= φ, sinceQ has a match inG, each node labeled τi (i ∈ [1,m]) inG carries
Boolean attribute A, and the only node labeled χ in G carries C-attribute 1 instead of 2.

It remains to show thatG |= Σ. Assume by contradiction thatG |= Σ. Then there exists a matchh
ofQ inG such that h(x̄ , ȳ, z̄) |= (A′ + B′ = w) and h(x̄ , ȳ, z̄) |= (|2 × zi .B − 1| = 1) for i ∈ [1,n]. We
now define an n-component Boolean vector v̄2 = (h(z1).B, . . . ,h(zn).B); this is well-defined, since
h(zi).B’s are Boolean values. By the definitions of graph G and match h, we have that h(xi).A =
s ′i for i ∈ [1,m]. Hence, one can verify that h(A′ + B′) = ūT

1 ·v̄1 + ū
T
2 ·v̄2. Thus, ūT

1 ·v̄1 + ū
T
2 ·v̄2 = w ,

which contradicts to the assumption that ∀v̄2 (ūT
1 ·v̄1 + ū

T
2 ·v̄2 � w). �

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:19

One might think that the complexity comes from interactions between arithmetic operations
and comparison predicates. This is not the case: The lower bounds still hold when either arithmetic
expressions or built-in predicates are present, not necessarily both.

Corollary 4.3. For NGDs, the satisfiability, strong satisfiability, and implication problems remain

Σ
p
2 -complete, Σ

p
2 -complete, and Π

p
2 -complete, respectively, even in the absence of either (a) arithmetic

operations or (b) comparison predicates �, <, ≤, >, ≥.

Proof. (a) We first consider the case of NGDs without arithmetic operations. For the upper

bounds, observe that all algorithms given in the proof of Theorem 4.2 are still in Σ
p
2 , as it is still

in PTIME to check whether (i) a guessed mapping h is a match; (ii) G |= Σ; and (iii) h(x̄) |= X and
h(x̄) |= Y .

The lower bounds for the strong satisfiability and implication problems follow from their coun-

terparts for graph denial constraints (GDCs) without id literals, which are known to be Σ
p
2 -hard and

Π
p
2 -hard, respectively [31]. Indeed, these GDCs are the same as NGDs in the absence of arithmetic.
It remains to show the lower bound for the satisfiability problem for NGDs without arithmetic

operations. We prove the Σ
p
2 -hardness by reduction from the strong satisfiability problem of GDCs

without id literals. Given a set Σ1 of GDCs in the absence of id literals, we build a set Σ of NGDs

such that Σ1 is strongly satisfiable if and only if Σ is satisfiable. Suppose that Σ1 consists of the
following GDCs (without the id literals): φ ′1 = Q1[x̄1](X1→Y1), . . . , φ ′n = Qn[x̄n](Xn→Yn). We con-
structn NGDs in the absence of arithmetic operations such that these NGDs share the same pattern
Q , which is a combination ofQ1, . . . ,Qn . Meanwhile, for eachφ ′i = Qi [x̄i](Xi→Yi) in Σ1, where pat-
ternQi = (VQi

,EQi
,LQi
, μQi

), Σ includes one NGD such that the constraintXi→Yi is enforced only
with the pattern nodes VQi

of Qi in Q . More specifically, Σ is constructed as follows:

(1) The graph pattern Q[x̄1, . . . , x̄n] = (VQ ,EQ ,LQ , μ) is shared by all NGDs in Σ. It is defined as
the union of Q1, . . . ,Qn . That is, VQ = VQ1 ∪ . . . ∪VQn

; EQ = EQ1 ∪ . . . ∪ EQn
; LQ (v) = LQi

(v) if
v ∈ VQi

; and similarly for LQ (e) with e ∈ EQ ; and μ (xi) = μQi
(v) if xi is from Qi . To simplify the

discussion, we assume w.l.o.g. that Qi and Q j are disjoint for all i, j ∈ [1,n] and i � j. In general, Q
is built as the disjoint union of the patterns Q1, . . . , Qn without affecting the arguments below.

(2) For each φ ′i = Qi [x̄i](Xi→Yi) in Σ1, Σ includes NGD φi = Q[x̄](Xi→Yi). Since we require that
the patterns in Σ1 are disjoint, Xi→Yi is also the only constraint associated with the nodes in Qi .

We show that these make a reduction, i.e., Σ1 is strongly satisfiable if and only if Σ is satisfiable.

(⇒) Suppose that Σ1 is strongly satisfiable and that G is such a model of Σ1. Then G |= Σ1, and
there exists a match of Qi inG for all i ∈ [1,n]. We prove thatG also witnesses the satisfiability of
Σ. As Q contains disjoint patterns Q1, . . . , Qn , we can readily verify that Q also has a match in G.

We now prove thatG |= Σ by contradiction. IfG |= Σ, then there exists an NGDφi = Q[x̄](Xi →
Yi) in Σ and a match h of Q in G such that h(x̄) |= Xi , but h(x̄) |= Yi . By the definition of Σ, there
exists a corresponding GDC φ ′i = Qi [x̄i](Xi → Yi) in Σ1. We show thatG |= φ ′i , which contradicts
G |= Σ1 and hence G |= Σ follows. By the definition of Q , we can deduce a match hi of Qi in G
as follows: for each x ∈ x̄i , hi (x) = h(x). Here x̄i is the list of variables in Qi . Since Xi and Yi are
literals defined on the vertices fromVQi

, h(x̄) |= Xi , and h(x̄) |= Yi , we know that hi (x̄i) |= Xi and
hi (x̄i) |= Yi . That is, hi (x̄i) |= (Xi → Yi). Therefore, G |= φ ′i .

(⇐) Suppose that Σ is satisfiable and graph G is such a model of Σ. Then G |= Σ, and there exists
a match h of Q in G. We show that G witnesses the strong satisfiability of Σ1. As argued above,
there exists a match of Qi in G for any i ∈ [1,n]. It remains to show that G |= Σ1.

We show that G |= Σ1 by contradiction. If G |= Σ1, then there exists a GDC φ ′i = Qi [x̄i](Xi →
Yi) and a match h1 of Qi in G such that h1 (x̄i) |= Xi , but h1 (x̄i) |= Yi . By the definition of

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:20 W. Fan et al.

Σ, φi = Q[x̄](Xi → Yi) is an NGD included in Σ. It suffices to show that G |= φi . For if it holds,
then it contradicts the assumption that G |= Σ. By the definition of Q , we can deduce a match h2

of Q in G as follows: when x ∈ xi , h2 (x) = h1 (x); otherwise, h2 (x) = h(x). Here h is the match
derived by the assumption of G |= Σ. Because the satisfiability of Xi and Yi depends solely on the
attributes at h2 (x) for x ∈ x̄i , we know that h2 (x̄) |= Xi and h2 (x̄) |= Yi , i.e., h2 (x̄) |= (Xi → Yi).
Hence, G |= φi .

(b) We next show that the satisfiability, strong satisfiability, and implication problems are Σ
p
2 -

complete, Σ
p
2 -complete, and Π

p
2 -complete, respectively, for NGDs in the absence of comparison

predicates. To see the lower bound, observe that the encodings used in the lower bound proofs
of Theorem 4.2 do not use any comparison predicates for NGDs, i.e., the only built-in predicate
involved is =. The upper bounds can be verified in the same way as in (a) above. �

4.2 Impact of Non-linear Arithmetic Expressions

One might want to support arithmetic expressions that are not linear, defined as

e ::= t | |e | | e + e | e − e | e × e | e ÷ e .

That is, expression e is built up from terms c and x .A by closing them under arithmetic operators,
not necessarily of degree at most 1. A literal is defined as e1 ⊗ e2 as before, where e1 and e2 are
arithmetic expressions of Q[x̄], and ⊗ is one of =,�, <, ≤, >, ≥.

This extension, however, makes the static analyses undecidable, even for NGDs with literals of a
bounded degree. The undecidability justifies our choice of linear arithmetic expressions for NGDs.

Theorem 4.4. The satisfiability, strong satisfiability, and implication problems become undecidable

for NGDs with non-linear arithmetic expressions, even when

◦ no arithmetic expressions in the NGDs have degree above 2,

◦ and none of �, <, ≤, >, ≥ predicate is present.

Proof. We study the three problems one-by-one, starting from the satisfiability problem.

Satisfiability. We show that the satisfiability problem becomes undecidable for extended NGDs. It
is verified by reduction from Hilbert’s 10th problem, denoted by HTP, which is undecidable [45, 55].
HTP is to decide, given a polynomial Diophantine equation in the form of

∑n
i=1 aiy

n1,i

1 · · ·ynm,i
m = 0,

where a1, . . . ,an are integer coefficients and n1,i , . . . ,nm,i are non-negative integer exponents for
each i ∈ [1,n], whether there exists a feasible solution of integers for (y1, . . . ,ym).

Given a Diophantine equation, we construct a set Σ = {φ} of extended NGDs such that Σ is
satisfiable if and only if the equation has a solution of integers. We encode the semantics of poly-
nomials in a recursive manner by using literals of a single NGDφ with built-in predicate = only,
and none of the arithmetic expressions in φ has degree above 2.

We start by illustrating the idea of recursive encoding with an example. Consider a polynomial
of 3y1y

5
2. We first use a literal x ′1,0.A = 3 to encode the coefficient 3. We then encode the exponentia-

tiony1 andy5
2. The former is simply expressed by another integer variable x1

1,1.A, while the latter is

encoded recursively leveraging three literals x5
2,4.A = x2

2,2.A × x3
2,3.A, x3

2,3.A = x2
2,2.A × x1

2,1.A, and

x2
2,2.A = x1

2,1.A × x1
2,1.A. That is, we encode y5

2 by decomposing it into y3
2 and y2

2 of smaller ex-

ponents, which are also encoded as literals with integer variables x3
2,3.A and x2

2,2.A, respectively.

Indeed, the exponentiation ofy j
i has a corresponding integer variable x j

i,k
.A in the encoding (if ex-

ists). We finally encode the entire polynomial, also following a recursive strategy. We decompose
each polynomial into a sub-expression followed by a suffix of single exponentiation and encode
these two separately. For instance, we encode 3y1y

5
2 with two literals x ′1,2.A = x ′1,1.A × x5

2,4.A and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:21

x ′1,1.A = x ′1,0.A × x1
1,1.A, i.e., 3y1y

5
2 is split into 3y1 and suffix y5

2, which are expressed by x ′1,1.A and

x5
2,4.A, respectively. Taken together, 3y1y

5
2 is expressed as integer variable x ′1,2.A eventually.

Formally, for each polynomial aiy
n1,i

1 · · ·ynm,i
m (i ∈ [1,n]) in the given equation, (1) coefficient

ai is encoded by a single literal x ′i,0.A = ai ; (2) each exponentiation y
nj,i

j (j ∈ [1,m]) is encoded

in terms of the encoding of y
�nj,i /2�
j and y

�nj,i /2�
j recursively with a literal x

nj,i

j,k
.A = x

�nj,i /2�
j,l

.A ×
x
�nj,i /2�
j,p .A; and (3) the entire polynomial aiy

n1,i

1 · · ·ynm,i
m is recursively encoded through the encod-

ing of sub-expression aiy
n1,i

1 · · ·ynm−1,i

m−1 and exponentiation y
nm,i
m with a literal x ′i,m .A = x ′i,m−1.A ×

x
nm,i

m,k
.A, where x ′i,m−1.A denotes the corresponding integer variable of the sub-expression. One can

verify that each exponentiation y
nj,i

j can be encoded by using at most 2�log2 nj,i � literals, and the

encoding of the entire polynomial needs m more literals. Thus, the total size of the encoding is
polynomial in the size of the given equation, yielding a PTIME reduction.

Based on the recursive encoding, we define an extended NGD φ = Q[x̄](∅ → (Z1 ∧ Z2)), where
Z1 includes literals for encoding the polynomials as described above, andZ2 checks the existence of
integer solutions to the equation. Let Σ consist of φ only. More specifically, φ is defined as follows:

(1) The graph pattern Q[x̄] = (VQ ,EQ ,LQ , μ) is such defined that (a) VQ = {v ′i,0 | i ∈ [1,n]} ∪
{vNj,i

i, j | i ∈ [1,m], j ∈ [1,Ki]} ∪ {v ′i, j | i ∈ [1,n], j ∈ [1,m]} ∪ {v ′′}, whereKi refers to the number of

variables introduced to encode all the exponentiations of baseyi in the equation for each i ∈ [1,m],

Nj,i ’s (i ∈ [1,m], j ∈ [1,Ki]) indicate their exponents, i.e., x
Nj,i

i, j is the corresponding integer vari-

able of exponentiation y
Nj,i

i in the recursive encoding; indeed, the nodes are split into four groups
to encode the coefficients, the exponentiation, the polynomials, and the equation, respectively;
(b) EQ = ∅; (c) all nodes in VQ are associated with distinct labels excluding wildcard by LQ ; and

(d) for each i ∈ [1,n], μ (x ′i,0) = v ′i,0; for each i ∈ [1,m] and j ∈ [1,Ki], μ (x
Nj,i

i, j) = v
Nj,i

i, j ; and for each

i ∈ [1,n] and j ∈ [1,m], μ (x ′i, j) = v
′
i, j and μ (x ′′) = v ′′, which maps variables from x̄ to VQ .

(2) Z1 is the set of all literals introduced for recursively encoding the polynomials of the equation,

including x ′i,0.A = ai to encode coefficient, x
Nj,i

i, j .A = x
�Nj,i /2�
i,l

.A × x �Nj,i /2�
i,p .A to encode exponen-

tiation, and x ′i, j .A = x ′i, j−1.A × x
nj,i

j,k
.A to encode the polynomial.

(3) Z2 = (x ′′.A = x ′1,m .A + x
′
2,m .A + · · · + x ′n,m .A) ∧ (x ′′.A = 0).

Observe that the extended NGDφ ensures the instantiation of integer variables, i.e., values of
attributeA, must satisfy all the literals enforced by the recursive encoding, and it enforces a feasible
solution to the given Diophantine equation by Z2. Based on this, we next show that Σ is satisfiable
if and only if the given Diophantine equation has an integer solution.

(⇒) First assume that Σ is satisfiable. Then there exists a graph G such that G |= Σ and Q
has a match h in G. We show that (h(x1

1,1).A, . . . ,h(x1
m,1).A) is a feasible solution to the equa-

tion, in which attribute x1
i,1.A must exist by the definition of satisfiability. Assume by contra-

diction that
∑n

i=1 ai (h(x1
1,1).A)n1,i · · · (h(x1

m,1).A)nm,i � 0. Since h(x̄) |= (∅ → (Z1 ∧ Z2)), we have

that h(x ′′).A = h(x ′1,m).A + · · · + h(x ′n,m).A =
∑n

i=1 ai (h(x1
1,1).A)n1,i · · · (h(x1

m,1).A)nm,i = 0, a con-

tradiction. This can be verified by repeatedly replacing h(x ′i, j).A with h(x ′i, j−1).A × h(x
nj,i

j,k
).A,

h(x
Nj,i

i, j).Awithh(x
�Nj,i /2�
i,l

).A × h(x
�Nj,i /2�
i,p).A, andh(x ′i,0).Awith ai , until only ai ’s andh(x1

j,1).A’s

are left. This is well-defined, since h satisfies all the literals in Z1 that are introduced to encode the
computation of polynomials.

(⇐) Conversely, assume that the given equation has a solution (b1, . . . ,bm) of integers. Based on
this solution, we build a graph G such that G |= Σ and there exists a match of Q in G. We define

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:22 W. Fan et al.

G = (V ,E,L, FA) as follows: (1)V = VQ , E = EQ and L = LQ , i.e., it takes the same nodes, edges, and
labels as in the pattern Q ; (2) FA is such defined that (a) for each i ∈ [1,n], FA (v ′i,0).A = ai ; (b) for

each i ∈ [1,m] and each j ∈ [1,Ki], FA (v
Nj,i

i, j).A = b
Nj,i

i ; (c) for each i ∈ [1,n] and each j ∈ [1,m],

FA (v ′i, j).A = aib
n1,i

1 . . .b
nj,i

j ; and (d) FA (v ′′).A =
∑n

i=1 aib
n1,i

1 . . .b
nm,i
m . Intuitively, G is the same as

the graph patternQ except the associated attributes, which are assigned values of the coefficients,
exponentiation, polynomials, and sum of polynomials in the given equation when variables are
instantiated by the feasible solution (b1, . . . ,bm). Since G has the same topological structure as
that in Q , and all nodes carry distinct labels, we know that there only exists a single match h of Q
in G.

It remains to show that h(x̄) |= Z1 ∧ Z2. Suppose by contradiction that there exists a lit-
eral l in Z1 or Z2 such that h(x̄) |= l . Observe the following: (a) By the definition of FA,

we have that FA (v ′i,0).A = ai , FA (v
Nj,i

i, j).A = FA (v
�Nj,i /2�
i,l

).A × FA (v
�Nj,i /2�
i,p).A and FA (v ′i, j).A =

FA (v ′i, j−1).A × FA (v
nj,i

j,k
).A. Thus, h satisfies all the literals in Z1. (b) Since FA (v ′′).A = FA (v ′i,m).A +

· · · + FA (v ′n,m).A, we have that h(x̄) |= (x ′′.A = x ′1,m .A + x
′
2,m .A + · · · + x ′n,m .A). Hence, the only

literal that is not satisfied by h is x ′′.A = 0. As a result, FA (v ′′).A =
∑n

i=1 aib
n1,i

1 . . .b
nm,i
m � 0, con-

tradicting the assumption that (b1, . . . ,bm) is a feasible solution to the Diophantine equation.

Strong satisfiability. The proof for the satisfiability problem above suffices to verify the undecid-
ability of the strong satisfiability problem, since the set Σ used in the reduction there consists of a
single extended NGD. Hence, the satisfiability and strong satisfiability problems of Σ coincide.

Implication. We show that the implication problem for extended NGDs is undecidable by reduc-
tion from the complement of HTP. Given an equation

∑n
i=1 aiy

n1,i

1 · · ·ynm,i
m = 0, we build a set Σ of

extended NGDs and a NGD φ1 such that Σ |= φ1 if and only if the equation has a solution.
Recall the graph patternQ and the extended NGDφ = Q[x̄](∅ → (Z1 ∧ Z2)) defined in the proof

of the satisfiability problem above. Let Σ consist of one NGD φ2 = Q[x̄](∅ → (Z1 ∧ Z ′2)), where
Z ′2 is obtained from Z2 by removing literal x ′′.A = 0 to encode the computation of polynomials
as in the proof for satisfiability; and φ1 = Q[x̄](x ′′.A = 0→ x ′′.B = 1) to check the existence of
solutions. We next show that Σ |= φ1 if and only if

∑n
i=1 aiy

n1,i

1 · · ·ynm,i
m = 0 has an integer solution.

(⇒) First suppose that Σ |= φ1. We show that there exists an integer solution (b1, . . . ,bm) to the
equation. By Σ |= φ1, there exists a graph G such that G |= Σ but G |= φ1. Since G |= φ1, there is a
match h of Q inG such that h(x ′′).A = 0 and h(x ′′).B � 1. Based on h, we define (b1, . . . ,bm) such
that bi = h(x1

i,1).A for each i ∈ [1,m]. It remains to show that (b1, . . . ,bm) is a feasible solution,
which can be proved by contradiction using similar arguments to that in the proof of satisfiability,
i.e., applying the rules of encoding recursively to express h(x ′′).A by ai ’s and h(x1

j,1.A)’s.

(⇐) Conversely, suppose that the equation has an integer solution of (b1, . . . ,bm). We construct
a graph G ′ such that G ′ |= Σ, but G ′ |= φ1. Recall the graph G = (V ,E,L, F ′A) constructed in the
proof of the satisfiability problem above. Graph G ′ = (V ,E,L, F ′A) is the same as G except that an
additional B-attribute value 2 is associated with node v ′′, i.e., F ′A (v ′′).B = 2. SinceG |= φ and φ2 is
obtained fromφ by removing one literal,G ′ |= Σ. Moreover, by the construction ofG ′, we have that
there exists only one matchh ofQ inG. It remains to show thatG ′ |= φ1, i.e.,h(x̄) |= φ1. Assume by
contradiction that h(x̄) |= φ1. Then h(x ′′).A � 0, since h(x ′′).B = F ′A (v ′′).B = 2. However, h(x ′′).A
must be 0 as argued in the proof of the satisfiability problem, hence a contradiction. �

5 DETECTING ERRORS WITH NGDS

We have seen that NGDs provide uniform rules for capturing inconsistencies in graphs, numeric or
not (Section 3). We next study error detection and incremental detection in graphs by using NGDs

as data quality rules. We also establish the (parameterized) complexity of these two problems.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:23

5.1 Detecting Inconsistencies in Graphs

Given an NGD φ = Q[x̄](X → Y) and a graph G, we say that a match h(x̄) of Q in G is a violation

of φ if Gh |= φ, where Gh is the subgraph induced by h(x̄). For a set Σ of NGDs, we denote by
Vio(Σ,G) the set of all violations of NGDs in G, i.e., h(x̄) ∈ Vio(Σ,G) if there exists an NGD φ in
Σ such that h(x̄) is a violation of φ in G. That is, h(x̄) violates at least one NGD in Σ.

The error detection problem, also known as the validation problem, is stated as follows:

◦ Input: A set Σ of NGDs and a graph G.
◦ Output: The set Vio(Σ,G) of violations.

That is, when NGDs are used as data quality rules, it is to find all inconsistent entities in a graph.
Its decision version is to decide, given a set Σ of NGDs and a graph G, whether Vio(Σ,G) = ∅.
It is known that the validation problem for GFDs is coNP-complete [33]. The good news is that

the problem gets no harder for NGDs, despite their increased expressive power.

Corollary 5.1. The validation problem for NGDs remains coNP-complete.

Proof. We first show that the validation problem is in coNP, and then show that it is coNP-hard.

Upper bound. We use an NP algorithm to check, given graphG and set Σ of NGDs, whetherG |= Σ.

(1) Guess an NGD φ = Q[x̄](X → Y) in Σ, and a mapping h from Q to G.
(2) Check whether h is a match of Q inG; if so, continue; otherwise, reject the current guess.
(3) Check whether h(x̄) |= X but h(x̄) |= Y ; if so, return true; otherwise, reject the current

guess.

The correctness of the algorithm follows from the semantics of NGDs. For its complexity, step
(2) is in PTIME, which follows from the definition of matches. Step (3) is also in PTIME, since
|X | + |Y | ≤ |Σ|. Thus, the algorithm is in NP, and the validation problem is in coNP.

Lower bound. Since GFDs are a special case of NGDs, and the validation problem for GFDs is
coNP-complete [31], we have that the validation problem for NGDs is also coNP-hard. �

Parameterized complexity. We now study the fixed-parameter tractability of the validation
problem. An instance of a parameterized problem P is a pair (x ,k), where x is an input as in
the conventional complexity theory, and k is a parameter that characterizes the structure of x .
A parameterized problem P is called fixed-parameter tractable, denoted by FPT, if there exists a
computable function д, a constant c, and an algorithm A such that given an instance (x ,k) of P

with parameter k , A takes O (д(k) |x |c) time to solve x . Intuitively, if k is small, then it is feasible
to solve the problem efficiently although д(k) could be exponential (see, e.g., Reference [35], for
details).

For a set Σ of NGDs, we denote byk the size of the largest pattern node set in Σ, i.e.,k = max{|x̄ | |
Q[x̄](X → Y) ∈ Σ}. For a graph G, denote by d the maximum degree of the nodes in G.

We parameterize the validation problem as follows:

◦ Input: A set Σ of NGDs and a graph G.
◦ Parameters: k = max{|x̄ | | Q[x̄](X → Y) ∈ Σ}, and the maximum degree d of G.
◦ Question: Does G |= Σ?

We show that the parameterized validation problem is also nontrivial.

Theorem 5.2. With parameters k and d , the validation problem is (1) co-W[2]-hard for NGDs;

but (2) it is in FPT for NGDs defined with connected patterns.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:24 W. Fan et al.

Here W[2] is the set of parameterized problems that can be FPT-reducible to the parameter-
ized dominating set problem [5]. It is conjectured that FPT problems are properly contained in
W[2]. Thus, the validation problem for NGDs remains nontrivial even when the parameters k
and d are small. The problem for NGDs seems to be harder than for GFDs, which is shown to be
W[1]-hard [27], where W[1] consists of parameterized problems that can be FPT-reducible to the
parameterized independent set problem [22]. It is conjectured that W[1] is properly contained in
W[2] [5].

The good news is that the parameterized validation problem is in FPT for NGDs defined with
connected patterns. For an NGD φ = Q[x̄](X → Y), its patternQ is connected if for any two nodes
x and y in Q there exists an undirected path between x and y. We find that most NGDs in practice
are defined with connected patterns. For example, all patterns in Figure 2 are connected.

Proof. (1) We show the co-W[2]-hardness by reduction from the complement of thek-set cover
problem, which is known W[2]-complete [16]. The k-set cover problem is to decide, given a finite
family of sets S = {S1, S2, . . . , Sn } and a positive integer k , whether there exists a subset S ′ ⊆ S
such that S ′ has at most k sets and the union of sets in S ′ contains all elements in S1 ∪ · · · ∪ Sn .

Given S and k , suppose that E = S1 ∪ S2 ∪ · · · ∪ Sn = {a1, . . . ,am }. We construct two positive
integers k1 and d , a graph G, and a set Σ of NGDs such that k1 = max{|x̄ | | Q[x̄](X → Y) ∈ Σ},
d is the maximum degree of nodes in G, and G |= Σ if and only if there exists a k-set cover of S .
Intuitively, we will use (a) n isolated nodes in G to represent S1, . . . , Sn , (b) attributes A1, . . . ,Am

in G to encode elements in E, and (c) literals in Σ to check set cover. More specifically, we define
k1 = k and d = 0, i.e., all nodes in G are isolated. We construct G and Σ as follows:

Graph. The graph G = (V ,E,L, FA) is defined as follows: (a) V = {v1, . . . ,vn }, i.e., one node for
each set in S ; (b) E = ∅, i.e., all nodes are isolated; (c) for each node vi ∈ V , L(vi) = τi ; and (d) for
each vi ∈ V , assume that Si = {ai1 , . . . ,ail

}; then FA (vi).Ai1 = 1, . . . , and FA (vi).Ail
= 1; and for

all the other elements at � Si , FA (vi).At = 0. That is, each attribute represents one element in E;
moreover, if the element is in Si , the corresponding attribute value is 1; otherwise, the value is 0.
Note that, since all nodes in G are isolated, the maximum degree of the nodes in G is 0, i.e., d = 0.

NGDs. The set Σ consists of a single NGD φ = Q[x̄](X → Y) to verify the k-set cover, where (a) Q
consists of k isolated pattern nodes x1, . . . ,xk , which are labeled with wildcard “_”; (b) X consists
of the following literals: (x1.A1 + · · · + xk .A1 > 0) ∧ · · · ∧ (x1.Am + · · · + xk .Am > 0), i.e., attribute
Ai (i ∈ [1,m]) is required to have value 1 in at least one of nodes x1, . . . ,xk ; hence, when a match
ofQ satisfies these literals, we can deduce a k-set cover of S from the mappings of x1, . . . ,xk ; (c) Y
consists of literals x1.A = 1 ∧ x1.A = 2, i.e., no match of Q can satisfy Y . Observe that, (i) since Q
has k pattern nodes, |Q | ≤ k1; and (ii) although there can be less than k sets in a k-set cover S ′ and
Q has k nodes, it suffices to use only one NGD φ, since multiple pattern nodes inQ can be mapped
to the same node in G by the homomorphism semantics of pattern matching.

It remains to show that G |= Σ if and only if there exists a k-set cover of S .

(⇒) Suppose that G |= Σ. We show that there exists a k-set cover of S . Since G |= Σ, there exists a
matchh ofQ inG such thath(x̄) |= X buth(x̄) |= Y . Leth(x1) = v ′1, . . . ,h(xk) = v ′

k
. Fromh(x̄) |= X ,

we can deduce sets S ′1, . . . , S
′
k

by using the nodesv ′1, . . . ,v
′
k

, i.e., each S ′i refers tov ′i . Sinceh(x̄) |= X ,
by the definition ofX , for each attributeAi , at least one nodev ′j (j ∈ [1,k]) satisfies thatv ′j .Ai = 1,

i.e., each element ai is in at least one of S ′1, . . . , S
′
k

. Thus, S ′1, . . . , S
′
k

form a k-set cover of S .

(⇐) Conversely, assume that there exists a k-set cover S ′1, . . . , S
′
k

of S . We show that G |= Σ by
constructing the following matchh ofQ inG:h(x1) = v ′1, . . . ,h(xk) = v ′

k
. Herev ′1, . . . ,v

′
k

are nodes
denoting S ′1, . . . , S

′
k

inG. We verify that h(x̄) |= X but h(x̄) |= Y as follows: (a) For h(x̄) |= X , since

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:25

S ′1, . . . , S
′
k

is a set cover of S , each element ai ∈ E is in one of S ′1, . . . , S
′
k

; by the construction of G,
we know that h(x1).Ai + · · · + h(xk).Ai > 0. Hence, h(x̄) |= X . (b) Since Y is x1.A = 1 ∧ x1.A = 2,
no match can satisfy Y ; therefore, h(x̄) |= Y . Putting these together, we know that G |= Σ.

(2) Given a graph G = (V ,E,L, FA) and a set Σ of NGDs defined with connected patterns, we pro-
vide the following algorithm to check whether G |= Σ:

(a) for each node v ∈ V , construct its k-neighbor Gk (v) (see Section 6.1 for the definition);
(b) for each Gk (v), check whether Gk (v) |= Σ; if so, return true; otherwise, return false.

For the correctness, since all patterns in Σ are connected and the maximum degree of the nodes
in G is d , for each NGD Q[x̄](X → Y) in Σ, every match of Q only involves the nodes in the k-
neighborGk (v) of some nodev inG. So it suffices to verify whetherGk (v) |= Σ for eachv inV . For
the complexity, step (a) is in O (dk |G |) time, since it only extracts Gk (v) for each node v . For step

(b), it is in O (dk2 |Σ| |G |) time, since (i) the maximum degree of nodes in G is d , and Gk (v) consists

of at most dk nodes; (ii) for each NGD in Σ, it has at most dk2
matches; and (iii) there exist at most

|Σ| NGDs. Putting these together, the algorithm is in O (dk2 |Σ| |G |) time. Thus, the parameterized
validation problem is in FPT with k and d for NGDs defined with connected patterns. �

Detection algorithms. Using GFDs as data quality rules, algorithms have been developed for
error detection [33]. The algorithms are parallel scalable, i.e., they guarantee to reduce the runtime
of parallel algorithms relative to a yardstick sequential algorithm when using more processors (see
Section 6.1). Hence, they can scale with real-life graphs by adding resources when the graphs grow
big. The experimental study of Reference [33] has validated the scalability and efficiency of the
algorithms.

A close examination of the algorithms of Reference [33] reveals that they can be readily ex-
tended to NGDs. Indeed, for the algorithms to work with NGDs on a graph G that is fragmented
and distributed across processors, the only change involves local checking of NGDs in each frag-
ment of G by adding arithmetic and comparison calculations; the generation of matches of graph
patterns, which dominates the cost of the algorithms, remains unchanged. The workload estima-
tion and balancing strategies of Reference [33] remain intact for NGDs. These strategies make the
algorithms parallel scalable. As a result, the algorithms remain parallel scalable when they employ
NGDs instead of GFDs.

Hence, parallel scalable algorithms are in place to uniformly detect semantic inconsistencies in
real-life graphs, numeric or not, by using NGDs as data quality rules.

5.2 Incremental Error Detection

Error detection is costly in largeG, and real-life graphs are frequently updated. This highlights the
need for studying incremental error detection: We compute Vio(Σ,G) once, and then we incremen-
tally compute Vio(Σ,G ⊕ ΔG) in response to frequent updates ΔG toG. This is more efficient than
recomputing Vio(Σ,G ⊕ ΔG) starting from scratch when ΔG is small, as often found in practice.

We define a unit update as edge insertion (insert e) or deletion (delete e), which can simulate
certain modifications. An insertion possibly introduces new nodes carrying labels, attributes, and
values drawn from alphabets Γ, Θ, andU (Section 2), respectively, while deletions just remove the
links, leaving the nodes otherwise unaffected. We formalize the problem as follows: We consider
batch update ΔG consisting of a sequence of insertions and deletions of edges. Denote by

ΔVio+ (Σ,G,ΔG) = Vio(Σ,G ⊕ ΔG) \ Vio(Σ,G),

ΔVio− (Σ,G,ΔG) = Vio(Σ,G) \ Vio(Σ,G ⊕ ΔG),

ΔVio(Σ,G,ΔG) = (ΔVio+ (Σ,G,ΔG),ΔVio− (Σ,G,ΔG)),

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:26 W. Fan et al.

denoting new errors introduced by ΔG, removed by ΔG, and their combination, respectively.
The incremental error detection problem can now be stated as follows:

◦ Input: Graph G, set Σ of NGDs, and batch update ΔG to G.
◦ Output: The changes ΔVio(Σ,G,ΔG) to Vio(Σ,G).

We do not require Vio(Σ,G) as part of the input, since the set may be exponential in size and is
costly to store. Its decision problem is to decide whether ΔVio(Σ,G,ΔG) = ∅.

It is not surprising that the incremental error detection problem is nontrivial.

Theorem 5.3. It is coNP-complete to decide, given a set Σ of NGDs, a graphG, and a batch update

ΔG, whether ΔVio(Σ,G,ΔG) is empty, even when both G and ΔG have constant sizes.

Proof. We start by giving an NP algorithm to check whether ΔVio(Σ,G,ΔG) is not empty, and
then show that the problem is coNP-hard even when both G and ΔG have constant sizes.

Upper bound. We provide an NP algorithm to check, given a set Σ of NGDs, a graph G, and batch
update ΔG, whether ΔVio(Σ,G,ΔG) is not empty, as follows:

(1) Guess two NGDs φ1 = Q1[x̄1](X1 → Y1) and φ2 = Q2[x̄2](X2 → Y2) in Σ, a mapping h1 of
Q1 in G, and a mapping h2 of Q2 in G ⊕ ΔG.

(2) Check whether (a) h1 is a match of Q1 in G such that h1 (x̄1) |= X1 and h1 (x̄1) |= Y1 and
(b) h1 is not a match in G ⊕ ΔG; if so, return true; otherwise, continue.

(3) Check whether (a) h2 is a match of Q2 in G ⊕ ΔG, such that h2 (x̄2) |= X2 and h2 (x̄2) |= Y2,
and (b) h2 is not a match in G; if so, return true; otherwise, reject the guess.

The correctness of the algorithm follows from the definition of ΔVio(Σ,G,ΔG); more specifi-
cally, steps (2) and (3) take care of edge deletions and insertions, respectively.

For its complexity, steps (2) and (3) are in PTIME, since |X1 | + |Y1 | ≤ |Σ| and |X2 | + |Y2 | ≤ |Σ|.
Therefore, the algorithm is in NP, and the incremental error detection with NGDs is in coNP.

Lower bound. We show that it is coNP-hard to decide whether ΔVio(Σ,G,ΔG) is empty when
both G and ΔG are of constant sizes. It is verified by reduction from the complement of the 3-
colorability problem, which is to decide, given an undirected graphG, whether there exists a proper
3-coloring γ ofG such that for each edge (u,v) inG, γ (u) � γ (v). The problem is known to be NP-
complete [59].

Given an undirected G, we construct a graph G ′, a set Σ of NGDs, and batch update ΔG ′, such
that ΔVio(Σ,G ′,ΔG ′) is not empty if and only if G has a proper 3-coloring. Intuitively, we use
G ′ to encode the three colors, and Σ to encode the structure of G and to check the existence of
3-colorings.

(1) The graph G ′ = (V ′,E ′,L′, F ′A) is defined as follows:

• V ′ = {v ′1,v ′2,v ′3,v ′4};
• E ′ = {(v ′1,v ′2), (v ′2,v

′
1), (v ′2,v

′
3), (v ′3,v

′
2), (v ′3,v

′
1), (v ′1,v

′
3)}, which makes a 3-clique;

• L′(v ′1) = r , L′(v ′2) = д, and L′(v ′3) = b for three colors, L′(v ′4) = χ ; for each edge e ∈ E ′,
L′(e) = τ ;

• F ′A (v ′1).A = 1, F ′A (v ′2).A = 1, and F ′A (v ′3).A = 1.

Intuitively, G ′ includes a 3-clique, in which each node represents a color. The extra node v4 is an
isolated node, which will be involved in a violation only after G ′ is changed (see below).

(2) The set Σ consists of a single NGD φ = Q[x1, . . . ,xn ,xn+1](∅ → (x1.A = 3)), where n = |V |, i.e.,
the number of nodes in G, and the pattern Q[x1, . . . ,xn ,xn+1] = (VQ ,EQ ,LQ , μ) is defined as:

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:27

• VQ = V ∪ {vn+1} = {v1, . . . ,vn ,vn+1}, i.e., it takes nodes of G and an isolated node vn+1;
• EQ = {(u,v), (v,u) | (u,v) ∈ E} ∪ {(vi , vn+1) | vi ∈ V }, i.e., each undirected edge (u,v) inG

is encoded with two directed edges (u,v) and (v,u), and all nodes in V are linked to vn+1;
• LQ (vi) = “_” (i ∈ [1,n]), and LQ (vn+1) = χ ; for each edge e ∈ EQ , LQ (e) = α , if e is incident

to node vn+1; otherwise, it is labeled τ ;
• for each node vi (i ∈ [1,n + 1]) in VQ , μ (xi) = vi .

(3) The update ΔG ′ is defined as three edge insertions of (v ′1,v
′
4), (v ′2,v

′
4), and (v ′3,v

′
4) labeled α .

Intuitively, Σ is used to encode the structure ofG and verify possible 3-colorings, while the extra
nodevn+1 and edges directing to it are introduced to ensure that ΔVio(Σ,G ′,ΔG ′) is not empty for
the batch update ΔG ′ defined above. Note that both G ′ and ΔG ′ are of constant sizes.

We can show that ΔVio(Σ,G ′,ΔG ′) is not empty if and only ifG has a proper 3-coloring. Indeed,
Vio(Σ,G ′) is empty before edge insertions, since Q does not have any match in G ′. To see this,
observe that (a) all nodes inQ are connected tovn+1 except itself, which is labeled χ , and (b) there
is no edge directing to v ′4 in G ′, which is the only node labeled χ , i.e., the only possible match
of vn+1, in G ′. Thus, it suffices to show that G ′ ⊕ ΔG ′ |= Σ, i.e., Vio(Σ,G ′ ⊕ ΔG ′) is not empty if
and only if G has a proper 3-coloring, which can be easily verified by contradiction. We omit the
details. �

Parameterized complexity. Analogous to the validation problem, we next study the parame-
terized complexity of the incremental error detection problem, which was not studied in Refer-
ence [27].

Theorem 5.4. With parameters k and d , the incremental error detection problem is (1) co-W[2]-
hard for NGDs, but (2) it is in FPT for NGDs defined with connected patterns.

Proof. (1) We show that the incremental error detection problem is co-W[2]-hard by reduction
from the validation problem for NGDs, which is shown co-W[2]-hard in Theorem 5.2.

Given a set Σ of NGDs and a graph G, we construct another set Σ1 of NGDs and batch update
ΔG to G such that Vio(Σ,G) � ∅ if and only if ΔVio(Σ1,G,ΔG) � ∅. Intuitively, (a) we introduce
a specific pattern edge (xi ,x j) labeled τ to each pattern in Σ to form Σ1, where τ is a label not
appearing in G and Σ, and pattern nodes xi and x j are labeled wildcard “_”; and moreover, (b) ΔG
consists of the insertion of an edge (v,v ′) labeled τ . In this way, (i) Σ1 cannot be applied onG and
Vio(Σ1,G) = ∅, since G does not contain any edge labeled τ ; and (ii) after the insertion of (v,v ′)
to G, we can verify that Σ can be applied on G if and only if Σ1 can be applied on G ⊕ ΔG. Since
Vio(Σ1,G) = ∅, we know that Vio(Σ,G) � ∅ if and only if ΔVio(Σ1,G,ΔG) � ∅.
(2) Given a graphG, a set Σ of NGDs defined with connected patterns, and batch update ΔG, the FPT

algorithm for the validation problem in Theorem 5.2 still works for incremental error detection.
Thus, we check whether ΔVio(Σ,G,ΔG) = ∅ as follows: (1) compute Vio(Σ,G) and Vio(Σ,G ⊕
ΔG) using the FPT algorithm above; and (2) compute Vio(Σ,G ⊕ ΔG) \ Vio(Σ,G) and Vio(Σ,G) \
Vio(Σ,G ⊕ ΔG), and check whether any of these is nonempty; if so, return false; otherwise, return
true.

The correctness of the algorithm is immediate. For its complexity, observe that given a graph

G and a set Σ of NGDs, the algorithm of Theorem 5.2 runs in O (dk2 |Σ| |G |) time to compute

Vio(Σ,G). Then step (1) is inO (dk2 |Σ|(|G | + |ΔG |)) time. For step (2), the numbers of violations in
Vio(Σ,G ⊕ ΔG) and Vio(Σ,G) are bounded by the number of all possible matches, which amount

toO (dk2 |Σ|(|G | + |ΔG |)). Thus, the algorithm is inO (dk2 |Σ|(|G | + |ΔG |)) time, and the incremental
error detection problem is in FPT with k and d for NGDs defined with connected patterns. �

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:28 W. Fan et al.

In the following, we focus on (parallel) algorithms to incrementally detect inconsistencies in
graphs by using NGDs. The algorithms complement the batch algorithms of Reference [33] for
NGDs used as data quality rules. As remarked earlier, we are not aware of prior work on incre-
mental error detection in graphs, and the static workload partitioning strategy of Reference [33]
hampers the parallel scalability of the batch algorithms achieved there when being incrementalized
directly.

6 INCREMENTAL DETECTION ALGORITHMS

Despite the challenges noted in Theorem 5.3, we develop two algorithms to incrementally detect
errors in graphs with NGDs, and we show that the algorithms have certain performance guaran-
tees.

We first review the performance guarantees (Section 6.1). We then present a sequential incre-
mental error detection algorithm (Section 6.2), followed by a parallel algorithm (Section 6.3).

To simplify the discussion, we focus on NGDs defined with graph patterns Q that are con-
nected. The algorithms can be readily extended to process NGDs that are defined with possibly
disconnected patterns. More specifically, one can first compute (candidate) partial violations, by
finding matches of distinct connected components in the patterns, following the same update-
driven approach to be given shortly in this section. These partial matches are then combined to
check attribute dependencies that go across multiple connected components to identify violations.

6.1 Performance Guarantees

We first review two characterizations of (parallel) incremental error detection algorithms.

(1) Locality. We first adapt a criterion from Reference [28]. (a) In a graph G, a node v ′ is within

d hops of v if dist(v,v ′) ≤ d by taking G as an undirected graph, where dist(v,v ′) is the shortest
distance between v and v ′ in G. (b) We denote by Vd (v) the set of all nodes in G that are within d
hops of v . (c) The d-neighbor of v , denoted by Gd (v), is the subgraph of G induced by Vd (v) (see
Section 2).

The diameter dQ of a pattern Q is the maximum dist(v,v ′) for all nodes v and v ′ in Q . For a set
Σ of NGDs, the diameter dΣ of Σ is the maximum diameter dQ for all patterns Q that appear in Σ.

We say that an incremental error detection algorithmA is localizable if given a set Σ of NGDs,
a graph G, and batch update ΔG to G, its cost is determined only by the size |Σ| of NGDs and the
sizes of the dΣ-neighbors of those nodes on the edges of ΔG.

The notion of localizable was proposed in Reference [28] and has proven effective for graph
queries by reducing computation on a (large) graph to small areas surrounding ΔG. We specialize
it to incremental validation to compute ΔVio(Σ,G,ΔG) by checking only the dΣ-neighborsGdΣ (v)
for nodes v that appear in ΔG. In practice, GdΣ (v) is often small. Indeed, (a) Q is typically small,
e.g., 98% of real-life patterns have radius 1 [39], which also indicate patterns in rules [38]; and (b)G
is sparse, e.g., the average node degree is 14.3 in social graphs [15].

(2) Parallel scalability. The second criterion is adapted from [50], which has been widely used
in practice to characterize the effectiveness of parallel algorithms. Consider a yardstick sequential
algorithm A for incremental error detection, with its cost t (|G |, |Σ|, |ΔG |) measured in the sizes
of graph G, set Σ of NGDs, and batch update ΔG.

A parallel algorithmAp for incremental error detection is said to be parallel scalable relative to
yardstick A if its parallel running time by using p processors can be expressed as follows:

T (|G |, |Σ|, |ΔG |,p) = O

(
t (|G |, |Σ|, |ΔG |)

p

)
,

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:29

Fig. 4. Algorithm IncDect.

wherep � |G |, i.e., the number of processors used is much smaller than the sizes of real-life graphs
G, as commonly found in the real world.

Intuitively, parallel scalability measures speed up over sequential algorithms by parallelization.
It is a relative measure w.r.t. a yardstick algorithmA. A parallel scalableAp “linearly” reduces the
running time ofA when p increases. Hence, a parallel scalable algorithm is able to scale with large
graphsG by adding processors as needed. It makes incremental detection feasible by increasing p.

6.2 A Sequential Localizable Algorithm

Below, we develop an exact localizable sequential algorithm, denoted by IncDect. Given a set Σ of
NGDs, a graphG, and batch update ΔG, IncDect computes ΔVio(Σ,G,ΔG) with a single processor.
Algorithm IncDect incrementalizes subgraph matching by following update-driven evaluation, and
checks attribute dependencies with linear arithmetic expressions and comparison predicates.

Subgraph matching. We start by reviewing the general framework of subgraph matching. A
number of subgraph matching algorithms have been developed for graphs, mostly following a
backtracking-based procedure Matchn [53]. Given a pattern Q and a graph G, Matchn first iden-
tifies a set C (u) of candidate matches for each pattern node u in Q . Then its main subroutine
SubMatchn recursively expands partial solution M by matching one pattern node of Q with a
node of G, where M is a set of node pairs (u,v) indicating that v matches pattern node u. Sub-
graph homomorphism algorithms [36, 61] can also be characterized by the generic Matchn and
SubMatchn.

More specifically, given a partial solution M , SubMatchn selects a pattern node u that is not yet
matched and refines C (u) following certain matching order selection and pruning strategies. For
each refined candidate v in C (u), it checks whether v can make a valid match of u by inspecting
the correspondence between edges adjacent to u in Q and those edges connected to v in G. The
qualified node pair (u,v) is added to M , and SubMatchn is called recursively for further expan-
sion until all the pattern nodes are matched. The partial solution M is restored when SubMatchn

backtracks.

Algorithm. IncDect (outlined in Figure 4) incrementalizes batch Matchn to processG, Σ, and ΔG =
(ΔG+,ΔG−), where ΔG+ and ΔG− include all insert(v,v ′) and delete(v,v ′), respectively. (1) It starts
with ΔVio+ (Σ,G,ΔG) = ∅ and ΔVio− (Σ,G,ΔG) = ∅ (line 1). (2) For each NGDφ = Q[x̄](X → Y) in
Σ, it invokes a procedure IncMatch revised from Matchn to expand ΔVio+ (Σ,G,ΔG) (respectively,
ΔVio− (Σ,G,ΔG)) with matches h(x̄) of Q in G ⊕ ΔG (respectively, G) such that (a) h(u) = v and
h(u ′) = v ′ for some (u,u ′) ∈ EQ and insert(v,v ′) in ΔG+ (respectively, delete(v,v ′) in ΔG−) and
(b) h(x̄) |= X → Y , in which the sets of these matches are denoted by M+φ and M−φ , respectively

(lines 2–5).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:30 W. Fan et al.

Intuitively, edge insertions may introduce new violations and hence expand ΔVio+ (Σ,G,ΔG),
but do not remove existing ones; however, deletions expand ΔVio− (Σ,G,ΔG) only. IncMatch

computes the newly added (respectively, removed) violations; this is done by identifying those
matches that have nodes connected by edges in ΔG+ (respectively, ΔG−) and violate the attribute
dependency.

Procedure IncMatch. We next give details of IncMatch and its subroutine IncSubMatch for pro-
cessing an NGD Q[x̄](X→Y). Following update-driven evaluation, we extend procedures Matchn

and SubMatchn to conduct (1) initial partial solution selection; (2) candidates filtering; and
(3) arithmetic and comparison calculations.

(1) Given a graph pattern Q of NGD φ, procedure IncMatch first finds out whether each edge
(v,v ′) in ΔG is a candidate match of some pattern edge (u,u ′) in Q by checking the labels. This
is in contrast to its batch counterpart Matchn, which searches candidates in the entire graph G.
If (v,v ′) makes a candidate, it forms an initial partial solution hup (u,u ′) = (v,v ′), referred to as
an update pivot of Q triggered by unit update of edge (v,v ′). IncMatch then expands hup (u,u ′) by
recursively invoking IncSubMatch as in Matchn to compute update-driven violations h(x̄).

(2) In each call, IncSubMatch searches candidates from the neighbors of those nodes that are al-
ready in a partial solution, starting from the update pivot. Each time, IncSubMatch picks a pattern
node that is connected to some already matched ones. For a match h(x̄) of Q in the updated graph
G ⊕ ΔG to be included in ΔVio+ (Σ,G,ΔG), (a) it must be expanded from an update pivot of Q
triggered by unit edge insertion; and (b) there exist no v and v ′ in h(x̄) such that h(u) = v and
h(u ′) = v ′ for any (u,u ′) ∈ EQ while delete(v,v ′) is in ΔG−. Therefore, it leaves out edges in ΔG−

when retrieving candidates to expand the solutions from update pivots triggered by edge inser-
tions. Similarly, it does not consider edges insert(v,v ′) in ΔG+ when expanding ΔVio− (Σ,G,ΔG).

As an optimization strategy, IncMatch also marks the combination of multiple update pivots in
partial solutions to prevent the same match from being enumerated more than once.

(3) The validation of literals with linear arithmetic expressions is performed by applying candidate
pruning in IncSubMatch. More specifically, it evaluates a literal l in X as long as all the variables
in l are instantiated, i.e., every variable that occurs in l is already matched or is being matched by
the candidates under process, and prunes those when l is evaluated to be false. Literals in Y are
handled similarly except that candidates contributing to true evaluations are pruned. Indeed, only
matches h(x̄) that satisfy h(x̄) |= X and h(x̄) |= Y are returned as violation.

Finally, those matches expanded from update pivots triggered by edge insertions (respectively,
deletions) and violating X → Y , referred to as update-driven violations, are returned by IncMatch

and added to ΔVio+ (Σ,G,ΔG) (respectively, ΔVio− (Σ,G,ΔG)) by algorithm IncDect.

Example 6.1. Suppose that the edge (NatWest Help, 1) is deleted from graph G4 of Figure 1.
Given NGD φ4 of Example 3.1, IncDect calls IncMatch to detect update-driven violations. It first
finds that the deleted edge is a candidate match of (x , s1) inQ4. That is, an update pivot hup (x , s1) =
(NatWest Help, 1) is built. IncMatch then expands hup (x , s1) recursively by inspecting the neigh-
bors of candidate matches until all pattern nodes ofQ4 are matched. For instance, node 22,000 inG4

is the only candidate match for pattern nodem1. Finally, it returns violation hup (x̄) to be removed,
which includes all the nodes of G4 and indicates that NatWest_Help is a fake account.

Besides delete(NatWest Help, 1), suppose that four edges are inserted into graph G4 to specify
that another account NatWest_Help1 has one following and two followers and refers to company
NatWest with status 0. Given this batch update, algorithm IncDect computes the same violation to
be removed as above. Indeed, there are no newly introduced violations, since all matches expanded
from update pivots triggered by edge insertions are pruned by literal validation.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:31

Analysis. The correctness of algorithm IncDect is warranted by the following: The violations in
ΔVio+ (Σ,G,ΔG) (respectively, ΔVio− (Σ,G,ΔG)) are matches of pattern Q in graph G ⊕ ΔG (re-
spectively,G) that contain inserted (respectively, deleted) edges of ΔG and violate attribute depen-
dency X → Y for an NGD Q[x̄](X → Y) in Σ, i.e., update-driven violations found by IncMatch.

IncDect runs in O (|Σ| |GdΣ (ΔG) | |Σ |) time, where GdΣ (ΔG) denotes the union of dΣ-neighbors of
nodes involved in ΔG. Hence, it is localizable. Indeed, (a) the computation performed by each
invocation of procedure IncMatch is confined in the dΣ-neighbors of an unit update in ΔG.
(b) Checking linear arithmetic expressions incurs much less cost than candidate selection in match-
ing.

6.3 A Parallel Scalable Algorithm

Algorithm IncDect takes exponential time in the worst case. It is costly if the set Σ of NGDs or
update ΔG is large or graph G is dense. This motivates us to develop algorithm PIncDect, which
is parallel scalable relative to IncDect, to reduce response time by adding more processors when
needed.

Overview. Algorithm PIncDect works withp processors S1, . . . , Sp on graphG, which is partitioned
via edge-cut [10] or vertex-cut [47]. In a nutshell, PIncDect finds update pivots of patterns in Σ
triggered by unit updates and distributes partial solutions as work units to p processors. Then
each processor handles its workload and identifies violations in parallel, driven by updates like in
IncDect.

There are two challenges: (1) The dΣ-neighbor of a node may reside in different fragments.
(2) The workloads of some processors may be skewed, since (a) the workload assignment may
be unbalanced; and (b) some work unit may take much longer, e.g., when accessing a large dΣ-
neighbor.

Note that work stealing and shedding [14, 42] cannot solve (b) by re-assigning work units. In
a nutshell, both work stealing and work shedding are techniques to rebalance workload among
workers. More specifically, after a worker has finished its computation, work stealing tries to assign
to it some work units from busy workers; in contrast, work shedding identifies slow workers
earlier using progress-report messages and then reassigns their workload to other workers. These
techniques cannot solve stragglers of incremental error detection, since they have to move work
units as a whole; when it comes to NGDs, a work unit is decided by the dΣ-neighbor of some node
and could be costly. When a work unit is redistributed to an idle processor Si by work stealing or
shedding, the chances are that Si becomes a new straggler if it takes much longer to process the
unit compared to others. As a consequence, the parallel response time is not improved at all.

To cope with this, PIncDect does the following: It finds and distributes the candidate neigh-

borhood of each update pivot. Then all processors interact with each other asynchronously to
expand and verify partial solutions by accessing candidate neighborhoods only. To reduce skew-
ness, PIncDect (a) splits and parallelizes the work unit of filtering and verifying a candidate, based
on cost estimation, and (b) periodically redistributes partial solutions (work units) to be expanded
from busy processors to those with light loads. This makes PIncDect parallel scalable relative to
IncDect.

Candidate neighborhood. Similar to IncDect, initially PIncDect checks whether each unit up-
date of edge (v,v ′) in ΔG triggers an update pivot hup (u,u ′) = (v,v ′) for some pattern nodes u
andu ′ inQ at each processor. It then identifies the dQ -neighbor ofv inG ⊕ ΔG+, i.e., the candidate

neighborhood NC (hup (u,u ′)) for hup (u,u ′). When node v is involved in multiple update pivots,
only the union of their candidate neighborhoods is extracted. The processors coordinate to extract

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:32 W. Fan et al.

such an area when it is fragmented by notifying each other of the remaining size to be explored
via messages passed through crossing edges in edge cut or entry and exit nodes in vertex cut.

All processors broadcast the data extracted such that the union NC (ΔG, Σ) of candidate neigh-
borhoods for update pivots is replicated at each processor. We find that NC (ΔG, Σ) is often much
smaller than graph G when ΔG and Σ are small, as commonly found in practice.

Moreover, for each nodev in NC (ΔG, Σ), PIncDect evenly “partitions” its adjacency listv .adj by
annotating local partition (instead of physically breaking it up), such that each processor Si holds
a partial copy v .adji . The update pivots are also evenly partitioned into p disjoint sets such that
each processor Si maintains one set BVioi as its workload. A partial solution to be expanded is a
work unit.

Parallel validation. All processors expand partial solutions to find update-driven violations in
parallel. For each partial solution in BVioi , processor Si expands it by matching a pattern node
that is not matched yet until a complete match (violation) is found. This is done by candidate

filtering followed by verification. It adopts a hybrid processing strategy to split and parallelize
skewed work units. Algorithm PIncDect also periodically balances workloads across p processors
to reduce skewed workloads by generating and distributing a large number of work units.

We next give the insights of the two steps for expanding partial solutions, which dominate the
cost of algorithm PIncDect.

Candidate filtering. Consider hup (u0, . . . ,uk) in BVioi , a partial solution for Q to be expanded at
certain processor Si . The next pattern node to be matched is uk+1 such that it is connected to ur in
Q for r ∈ [0,k]. The candidates foruk+1 are selected from the neighbors of hup (ur), just like in pro-
cedure IncSubMatch (Section 6.2). Here PIncDect estimates the sequential cost as |hup (ur).adj|, and
the parallel cost asC (k + 1) + |hup (ur).adj|/p, for expanding the partial solution by matchinguk+1,
whereC is a constant referred to as communication latency, andC (k + 1) denotes the broadcasting
cost. It conducts expansion at processor Si directly by inspecting candidates from hup (ur).adj if
the sequential cost is less than the parallel one. Otherwise, hup (u0, . . . ,uk) is broadcast to all the
processors and is expanded in parallel by checking the partial copy hup (ur).adjj reserved at each
S j for j ∈ [1,p]. This allows us to reduce a skewed work unit with large adjacency lists.

Verification. After hup (u0, . . . ,uk) is expanded with uk+1 at processor Si , PIncDect checks the
edges between the candidate hup (uk+1) and other matches hup (u0), . . . , hup (uk) to verify the va-
lidity of the expansion. It may split the verification work. Here the sequential cost is estimated as
|hup (uk+1).adj| and the parallel cost is C (k + 2) + |hup (uk+1).adj|/p. If the parallel cost is smaller,
it broadcasts hup (u0, . . . ,uk ,uk+1) to check at each S j by using its partial copy hup (uk+1).adjj . The
results of checking are then sent back to Si for assembling to decide the qualification of the partial
solution, which are added to BVioi for further expansion if qualified, unless it makes a complete
match of Q .

Workload balancing. The workload of a processor Si is skewed if its local set BVioi of update pivots
contains far more work units than the others at the same time. This happens even if we start with
evenly distributed update pivots, since different partial solutions may trigger radically different

number of new work units. We define the skewness of Si as ||BVioi ||
avgt∈[1,p] ||BViot || .

To handle this, PIncDect checks the skewness of processors at a time interval intvl. If the skew-
ness of Si exceeds a threshold η (3 in experiments), it evenly distributes the work units in BVioi

to those S j ’s having skewness below η′ (0.7 in experiments), extending BVioj ’s. The processors
are allowed to send and receive work units at any time without being blocked by synchronization
barriers.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:33

Fig. 5. Algorithm PIncDect.

Algorithm. Putting these together, we present the main driver of algorithm PIncDect in Figure 5.
It first identifies the candidate neighborhood for each update pivot (lines 1–3) and replicates the
union of candidate neighborhoods at all processors (line 4). The update pivots are also evenly dis-
tributed (line 5). Then PIncDect invokes procedure PIncMatch at each processor Si with initial
workload BVioi in parallel for i ∈ [1,p] (line 6). It periodically balances workload (line 8) un-
til all processors complete their work (line 9). At this point, PIncDect collects local violations
Vioi ’s from all processors. The union of all Vioi ’s is ΔVio(Σ,G,ΔG) (line 10) and is hence returned
(line 11).

At each processor Si , procedure PIncMatch expands a partial solution by filtering candidate
matches (lines 3–7), followed by parallel verification (lines 8–11). Both steps split skewed work
units by applying the hybrid processing strategy based on cost estimation, as described earlier.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:34 W. Fan et al.

The local violations Vioi and workload BVioi are updated accordingly (lines 12–14). It returns
Vioi when no work units remain in BVioi , i.e., when Si finishes its workload (line 15).

Example 6.2. Consider a graphG revised fromG4 of Figure 1 by including additional 98 accounts
NatWest_Helpi for i ∈ [1, 98], where each one has one following and two followers and refers
to company NatWest with status 1. Assume that graph G is fragmented and distributed across
four processors. Recall NGD φ4 and edge deletion delete(NatWest Help, 1) from Example 6.1. Af-
ter generating update pivot hup (x , s1) as in Example 6.1, algorithm PIncDect identifies in parallel
NC (hup (x , s1)), which is the 4-neighbor of node NatWest Help. This subgraph is replicated at four
processors. Moreover, the adjacency lists are evenly “partitioned” by annotating partial copies. For
instance, each processor maintains a partial copy of 25 nodes (i.e., accounts) for the adjacency list
of the company node NatWest. Then it expands hup (x , s1) to find update-driven violations.

Suppose that a partial solution hup (x , s1,m1,n1,w) is to be expanded at processor S j , where w
is mapped to node NatWest, and the next pattern node to be matched is y. Then it is broadcast
by S j , and PIncDect expands it in parallel at each processor by mapping y to node NatWest_Helpi

for some i ∈ [1, 98] or NatWest_Help using the partial copies maintained for the adjacency list
of node NatWest. Here the estimated parallel cost 30 is less than the sequential cost 100 when
communication latency C is assumed to be 1; thus, parallel computation is favored.

Consider another partial solution of hup (x , s1,m1,n1,w,y) to be expanded at processor S j . Al-
gorithm PIncDect expands it locally at S j with the entire adjacency list of hup (y), since the size of
hup (y).adj, i.e., sequential cost of 4, is less than the estimated parallel cost.

Finally, a total of 99 violations are identified and added to ΔVio− (Σ,G,ΔG), in which
NatWest_Helpi and NatWest_Help are validated to be fake for each i ∈ [1, 98].

Theorem 6.3. Given a set Σ of NGDs, a graph G, batch update ΔG, p processors, when p <
|GdΣ (ΔG) |, PIncDect runs in O (|Σ| |GdΣ (ΔG) | |Σ |/p) time, i.e., PIncDect is parallel scalable relative

to IncDect.

Proof. Obviously, identifying the candidate neighborhoods for update pivots triggered by
update ΔG and NGDs Σ takes O (|GdΣ (ΔG) |) time. We next analyze the cost for parallel ex-
pansion. The total time for candidate filtering in processing partial solutions of size k is at
most Nk (Ck + |GdΣ (ΔG) |/p), and their corresponding verification needs at most Nk+1 (C (k +
1) + |GdΣ (ΔG) |/p)) time, where Nk denotes the number of partial matches of size k . Moreover,
it inspects partial solutions with size less than |VΣ |, where VΣ denotes the set of all pattern

nodes in Σ. Hence, parallel expansion takes at most
∑ |VΣ |−1

k=2

(
Nk (Ck+

|GdΣ
(ΔG) |
p

) + Nk+1 (C (k + 1) +

|GdΣ
(ΔG) |
p

)
)
<

4C |Σ |(1−|GdΣ
(ΔG) | |Σ|−1) |GdΣ

(ΔG) |2
(1−|GdΣ

(ΔG) |)p = O (
|Σ | |GdΣ

(ΔG) | |Σ|
p

) time when p < |GdΣ (ΔG) |, which

dominates the cost of PIncDect. This verifies the parallel scalability of algorithm PIncDect rel-
ative to the sequential IncDect. �

7 FINDING TOP-RANKED ERRORS

The intractability of incremental error detection with NGDs motivates us to identify special cases
that can be solved in polynomial time. In practice, one often wants to find errors with high impor-
tance or interestingness quickly. Hence, below, we develop an algorithm for (incremental) detec-
tion of top-ranked inconsistencies with a particular type of NGDs in edge-weighted graphs.

We consider star-like NGDs as in Reference [71]. A NGD φ = Q[x̄](X → Y) is called star-like if
its pattern Q is star-shaped, i.e., there exists a root node rQ in Q such that all the edges of Q are
incident to it. As observed in References [39, 44], many real-life graph patterns are star-shaped,

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:35

and so are the patterns in NGDs, e.g., patterns Q1 and Q2 in NGDs φ1 and φ2 of Example 3.1,
respectively.

Scoring function. The preference model for violations, i.e., matches h(x̄) in edge-weighted graph
G that violate an NGD, is specified by a scoring functionW (·) that sums the weights of those edges
connecting the nodes in h(x̄). That is,W (h) =

∑
e ∈EGh

w (e), where EGh
denotes the edge set of the

subgraph Gh of G induced by h(x̄) and each edge e in G carries a positive weight value w (e) from
range [0, 1], indicating the certainty of the relationship, i.e., the link it establishes.

Since real-life knowledge bases often contain incorrect links [11], the users are often more in-
terested in those errors having higher total confidence of the links. It is very likely that these
inconsistencies are critical and hence are given high priority for inspection or fixing.

Based on the scoring functionW (·), we next present two algorithms for detection and incremen-
tal detection of top-ranked errors, respectively. It should be remarked that our proposed algorithms
also work for the scoring functions defined with conventional similarity metrics [71].

Detection of top-ranked inconsistencies. Given a set Σ of star-like NGDs, a graph G, and a
positive integerK � |G |, the top-ranked error detection problem is to find the violations Vio(Σ,G,K)
in the union

⋃
Q M (Q,G,K) of the top-K match sets of the patternsQ from Σ inG. HereM (Q,G,K)

is a set of matches of cardinality K such that for each match h ∈ M (Q,G,K),W (h) ≥W (h′) for all
other matches h′ of Q that are not in M (Q,G,K); and Vio(Σ,G,K) denotes the set of violations of
NGDs in Σ that appear in the union

⋃
Q M (Q,G,K) of the top-K match sets.

A sequential algorithm can be readily deduced to compute Vio(Σ,G,K) in O (|Σ| |G |) time by
extending procedure StarK of Reference [71], also denoted as StarK. It works as follows: (1) It
invokes StarK [71] to find the top-K match set M (Q,G,K) for each pattern Q from Σ. (2) It checks
each matchh in

⋃
Q M (Q,G,K) and includes it in Vio(Σ,G,K) ifh violates an attribute dependency

in Σ.
We now parallelize StarK, denoted as PRDect and shown in Figure 6. Similar to the setting of

Section 6.3, PRDect is deployed on a graphG that is fragmented and distributed acrossp processors
S1, . . . , Sp , among which a designated Sc works as the coordinator. It takes as input the graph G,
a set Σ of star-like NGDs, and a positive integer K . It deduces Vio(Σ,G,K) in parallel. For each
patternQ in Σ, PRDect maintains two structures at coordinator Sc (lines 1–2): (1) a setHQ to store
the top-K match set of Q ; and (2) a priority queue RQ to keep track of potential top-K matches to
be checked. The computation of HQ is also controlled at Sc (lines 3–7), based on which PRDect

returns the violations in the union of top-K match setsHQ for different Q (line 8).
After initializing HQ and RQ , the coordinator Sc first posts pattern Q and integer K to all the

processors in procedure InitMatchK, which returns a gathered set of matches that are computed
by procedure PRMatch at different processors (see below). These matches are candidate top-K
matches of Q and are hence inserted into RQ (line 3). It next expands HQ iteratively until K
matches are included or there is no potential top-K match in RQ (line 4). Each time it adds toHQ

a match h that is popped from RQ with the best score; it sends match h and patternQ as messages
to some processor S j via procedure NextMatch and inserts the received next best matches induced
by h to queue RQ (lines 5–7). The next best matches are indeed derived by using the same match
lists as that for h at processor S j in procedure PRMatch (see details below).

Upon receiving a message M from coordinator Sc , processor Si invokes procedure PRMatch to
compute a setHi of matches and sends it back to Sc . The setHi is composed of either the potential
top-K matches of pattern Q (lines 2–6) or the next top matches induced by some particular match
h (lines 7–8). Here all the processors work in parallel synchronously guided by the coordinator Sc .

(1) When the message M contains pattern Q and an integer K , for each candidate match v of
the root rQ of Q in the local graph Gi , PRMatch builds a match list Lv [e] for every pattern edge

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:36 W. Fan et al.

Fig. 6. Algorithm PRDect.

e = (rQ ,u) or e = (u, rQ) in Qw.r.t. node v (lines 3–4). The entries in Lv [e] are in the form of
〈e ′,w (e ′)〉, where e ′ is an edge from Gi that is a candidate match of pattern edge e and is incident
tov . It adds toHi a match ofQ that is assembled by those candidates e ′ having best scoresw (e ′) in
all Lv [e], i.e., the best match w.r.t.v (line 5). Then the setHi is further refined by reserving only K
matches with the best K scores, which represents the potential top-K matches ofQ at processor Si

(line 6). Note that when graphG is partitioned via vertex-cut, procedure PRMatch only maps root
rQ to primary copies of the nodes in Si , and Si may fetch data from other processors to identify
candidates.

(2) If there exists a match h and a pattern Q in message M , PRMatch retrieves the match lists
pertaining to h, i.e., h is assembled by using the entries in these lists. Each such list LQ [e] is sorted
in advance withK entries based on the bestK scores. It computes the setHi of matches by moving
the index for one node v of h in its corresponding sorted match list to the next position while
keeping the others unchanged (line 8). To achieve this, each match is associated with its node
indices in match lists. For instance, if the edges involved in h have indices, i.e., positions of (7, 6, 3)
in the sorted match lists, then three matches are deduced with edges having the indices of (8, 6, 3),
(7, 7, 3), and (7, 6, 4) from the same lists, respectively. That is, each such match differs from h in
only one node and has a “slightly” smaller score, i.e.,Hi includes the next matches induced by h.

Example 7.1. Recall the star-like NGD φ1 from Example 3.1. Consider a graph Gf fragmented
across two processors such that pattern edge e1 = (x ,y) (respectively, e2 = (x , z)) in Q1 of φ1 is
mapped to candidates with scores, i.e., weights 0.4 and 0.6 (respectively, 0.5 and 0.8) at processor
S1 and 0.7 and 0.2 (respectively, 0.6 and 0.2) at S2. Assume that K = 2 and the root x ofQ1 has only
one match in each processor. Using procedure PRMatch, PRDect first finds potential top-3 matches

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:37

at the two processors, which are two matches h1 and h2 with scores 1.4 and 1.3, respectively. It
then adds h1 to the top-3 match set HQ1 at the coordinator and computes the next best matches
h3 and h4 at S1 induced by h1 with scores 1.2 and 1.1, respectively. Eventually the top-3 match set
includes h1, h2, and h3.

We have the following for the parallel scalability of PRDect, which is defined analogously to the
notion given in Section 6.1, removing the parameter |ΔG |:

Proposition 7.2. If G is evenly partitioned, i.e., |Gi | = O (|G |/p) for i ∈ [1,p] and Kp <
√
|G |,

algorithm PRDect takes O (|Σ| |G |/p) time and is parallel scalable relative to StarK.

Proof. Since graph G is evenly partitioned, it needs at most O (|Σ| |G |/p) time to construct
the match lists in parallel by using procedure PRMatch. Finding the potential top-K match sets
takes O (|Σ| |G |/p + K logK) time by PRMatch, since the discovery of the sorted best K values
from a set of n values can be done in O (n + K logK) time [13]. The total time for computing the
next best matches via PRMatch is bounded by O (|Σ|(|G |/p + K2 logK)), in which K iterations
are conducted for each pattern from Σ. There are at most Kp |Σ| + (K − 1) |Σ| (respectively, K |Σ|)
matches inserted to (respectively, popped from) the priority queues at the coordinator Sc , which
takes O (K |Σ|(p + logK + log |Σ|)) time in total. Putting these together, algorithm PRDect runs in

O (|Σ|(|G |/p + K2 logK + Kp + K log |Σ|)) = O (|Σ| |G |/p) time when Kp <
√
|G |, and hence is par-

allel scalable relative to StarK. �

Incremental detection of top-ranked errors. Given a set Σ of star-like NGDs, a graph G,
a positive integer K � |G |, and batch update ΔG to G, the incremental top-ranked error detec-

tion problem is to derive the difference ΔVio(Σ,G,ΔG,K) between the violations Vio(Σ,G,K) and
Vio(Σ,G ⊕ ΔG,K), which involves the newly introduced violations and deleted ones. The major
challenge introduced by this problem includes the following: (1) each unit update may both in-
troduce new top-ranked violations and remove existing top-ranked ones; and (2) it is no longer
localizable, since the updated edges can trigger changes to the violations with edges that are far
from them.

We next incrementalize algorithm PRDect, denoted by PIncRDect, to compute
ΔVio(Σ,G,ΔG,K). As shown in Figure 7, its input has graph G, star-like NGDs Σ, and in-
teger K as for PRDect, and it takes as additional input the batch update ΔG and some auxiliary
information, which consists of the top-K match sets HQ ’s, priority queues RQ ’s, and match lists
LQ [e]’s at different processors. All these are of polynomial-size and can be easily obtained when
running PRDect on graph G.

The key idea behind PIncRDect is that (a) when some matches in the original top-K match sets
involve deleted edges, they must be replaced by other new matches; and (b) while the inserted
edges help generate new matches with better scores than the ones in the top-K match sets, the
match sets should be adjusted to incorporate these new matches.

More specifically, for each pattern Q from Σ, algorithm PIncRDect first collects into set ΔGQ

candidate matches for pattern edges in Q at coordinator Sc (lines 1–3), i.e., update pivots (see Sec-
tion 6.2). It next transmits the edges in nonempty ΔGQ to the corresponding processors in which
they reside by procedure UpdateMatchK (lines 4–5), which accumulates the new potential top-K
matches ofQ computed at those processors via procedure PIncRMatch (see below). PIncRDect in-
serts the new matches into queue Ri , removes the old matches that involve deleted edges in ΔGQ

from the top-K match set HQ , and adds them to set ΔHQ as removed ones, where ΔHQ records
the changes toHQ (lines 5–6). It then updates the top-K match setHQ in a way similar to that of
PRMatch (lines 7–10) and tracks the changes in ΔHQ (line 11). The difference is that here some old
matchesh′ inHQ are replaced by the new matches popped fromRQ with better scores (line 9), and

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:38 W. Fan et al.

Fig. 7. Algorithm PIncRDect.

procedure NextMatch returns the next best matches derived by procedure PIncRMatch at different
processors (line 10). The violations in the union of ΔHQ ’s are finally returned at Sc (line 12).

Procedure PIncRMatch is invoked at each processor Si in parallel synchronously when a mes-
sage M is received. If M includes pattern Q , integer K , and updates ΔGi

Q
, it adjusts the match lists

w.r.t. the nodes involved in the received updates and computes a set Hi of new potential top-K
matches by using the updated match lists (lines 2–6). These matches must involve the inserted
edges in ΔGi

Q
and have the best K scores among such new matches. When a match h and a pattern

Q are sent to Si , procedure PIncRMatch finds the (new) next best matchesHi induced by h along
the same lines as that in procedure PRMatch of algorithm PIncRDect (lines 7–8).

Example 7.3. Continuing with Example 7.1, consider an inserted edge e ′1 at processor S1 and
assume that e ′1 is a candidate match of pattern edge e1 with score 1. Given these, procedure
PIncRMatch is invoked at S1 to derive the new potential top-3 matches, which include match h′1
with score 1.8. Since h′1 has better score than h3 in the original top-3 match setHQ1 , h3 is replaced

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:39

by h′1. Note that h′1 involves the newly inserted edge e ′1. Algorithm PIncRDect then computes the
new next match h′2 induced by h′1 at S1, whose score is 1.5. It hence replaces h2 with h′2 inHQ1 , and
the top-3 match set for Q1 finally becomes {h′1,h′2,h1} after the edge insertion.

Complexity. Observe that (1) discovering update pivots needsO (|Σ| |ΔG |) time; (2) updating match
lists and computing new potential top-K match sets at all processors takeO (|Σ|(maxi ∈[1,p] |ΔGi | +
K logK)) time, where ΔGi denotes the input updates that reside at processor Si ; (3) the next best
matches can be derived in at mostO (|Σ|maxi ∈[1,p] (|Gi | + |ΔGi |K logK)) time; and (4) maintaining
priority queues at the coordinator needs O (|ΔG | |Σ|(p + logK + log |Σ|)) time.

One can verify that when G is evenly partitioned and max(K , |ΔG |) <
√
|G |/p, the cost of

PIncRMatch is dominated by that for computing the next best matches, and PIncRMatch is par-
allel scalable relative to a sequential counterpart that conducts all the operations at a single
processor.

8 EXPERIMENTAL STUDY

Using real-life and synthetic graphs, we evaluated the impact of (1) the size |ΔG | of updates; (2) the
size |G |, the density ηG , and the degree distribution of graphs; (3) the complexity of sets Σ of NGDs;
(4) the integer K for PTIME algorithms (Section 7); and (5) the number p of processors for parallel
processing, as well as the factors of communication latencyC and time interval intvl for work unit
splitting and workload balancing, on our (parallel) algorithms for incremental (top-ranked) error
detection; and (6) the effectiveness of NGDs in catching inconsistencies in graphs.

Experimental setting. We used three real-life graphs: (a) DBpedia [3], a knowledge base with
28M entities of 200 types and 33.4M edges of 160 types; (b) YAGO2, an extended knowledge graph
of YAGO [65] with 3.5M nodes of 13 types and 7.35M edges of 36 types; and (c) Pokec [1], a so-
cial network with 1.63M nodes of 269 types and 30.6M links of 11 types. We compared DBpedia

and YAGO2 with Freebase [70], a more reliable knowledge base with 1.9B triples. If an edge (i.e.,
fact) occurs in both DBpedia (or YAGO2) and Freebase, we assigned weight 1 to it for certainty;
otherwise, 0.5 was assigned. The edge weights for Pokec were assigned randomly. The density (de-

fined as |E |
|V | ·(|V |−1)) is 6.5 × 10−7, 6 × 10−7, and 1.1 × 10−5, and the average diameter of connected

components is 4.8, 4.0, and 5.2, for DBpedia, YAGO2, and Pokec, respectively.
We also generated synthetic graphs G = (V ,E,L, FA), where (a) node set V and edge set E were

created by random graph generator and power-law graph generator of GTgraph [54], and each
edge was given a random weight from [0, 1]; (b) labeling L was drawn from an alphabet L of 500
symbols; and (c) FA assigned a set Γl of five active attributes for each node labeled l , and each
attribute A ∈ Γl drew its value from 1K values.

Three groups of synthetic graphsG were generated as follows: (a) We used random graph gener-
ator to createG with different |V | and |E |, up to 80M and 100M, respectively, such that the density
ηG ≤ 10−6. (b) Using the same generator, we varied |V | and |E | while keeping |V | + |E | in a fixed
range to construct graphs with differentηG , ranging from 10−6 to 10−2. (c) Fixing |V | as 30M and |E |
as 60M, we set different distribution parameters for power-law graph generator to create synthetic
graphs with power-law and uniform degree distribution, respectively.

NGDs. We discovered NGDs from 1/4 fraction of each graph using the method described in Sec-
tion 3. These NGDs are strongly satisfiable. We picked a set Σ of 100 meaningful and diverse NGDs

for each graph from the discovered ones, such that at least 90% of them have different patterns,
including trees, stars, DAGs (directed acyclic graphs), and cyclic graphs. They carry patterns of
diameters from 1 to 6, and 1 to 4 literals, with linear arithmetic expressions of lengths from 1 to
10.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:40 W. Fan et al.

ΔG. Updates ΔG to G were randomly generated, controlled by the size |ΔG | and a ratio γ of edge
insertions to deletions. The ratioγ is 1 unless stated otherwise, i.e., the size |G | remains unchanged.

Algorithms. In Java, we implemented (1) sequential algorithm IncDect (Section 6.2) vs. Dect, an
error detection algorithm with NGDs, which is an extension of the algorithm developed for GFDs

[33]; (2) parallel algorithm PIncDect (Section 6.3) vs. PDect, an extension of the parallel detec-
tion algorithm in Reference [33] to NGDs; (3) parallel PIncDectns, PIncDectnb, and PIncDectNO,
variants of PIncDect with no work unit splitting, no workload balancing, and neither of the two,
respectively, and (4) parallel PIncRDect vs. PRDect (Section 7), the PTIME parallel incremental
and batch algorithms to detect top-ranked errors, and their sequential counterparts IncStarK and
StarK, respectively.

We deployed the algorithms on a cluster of up to 20 machines, each with 32 GB DDR4 RAM and
two 1.90 GHz Intel(R) Xeon(R) E5-2609 CPU, running 64-bit CentOS7 with Linux kernel 3.10.0.
Each experiment was run five times and the average is reported here.

Experimental results. We next report our findings. The graphs were fragmented using
METIS [2]. We took Synthetic G created by random graph generator with 30M nodes and 60M
edges as default. When testing the efficiency of finding top-ranked errors, we applied a set of star-
like NGDs that is selected from Σ and Σc and has the same cardinality as Σ. Here Σc is a set of 100
star-like NGDs discovered from each graph, in which their patterns have similar sizes to those in
Σ. We fixed K = 600 for PTIME algorithms, the communication latencyC = 60, time interval intvl

= 45s , and the number of processors p = 8 for parallel algorithms unless stated otherwise.

Exp-1: Effectiveness of incremental error detection. We first evaluated the incremental algo-
rithms against their batch counterparts. Fixing ||Σ|| = 50 and diameter dΣ = 5, we varied the size
|ΔG | of updates from 5% up to 40% of the size |G | of graphs G in 5% increments. The results are
reported in Figures 8(a)–8(d) over DBpedia, YAGO2, Pokec, and Synthetic, respectively (y-axis in
logarithmic scale). From the experimental results, we find the following:

(a) When |ΔG | varies from 5% to 25% of |G |, IncDect is 8.8 to 1.7 (respectively, 8.5 to 2.6, 9.8 to 2.6,
and 6.6 to 1.7) times faster than Dect over the four graphs; PIncDect outperforms PDect by 5.6 to
1.6 (respectively, 9.8 to 1.8, 9.4 to 2.5, and 5.6 to 1.6) times; and PIncRDect improves PRDect by 3.5
to 1.4 (respectively, 3.2 to 1.3, 4.6 to 1.6, and 3.2 to 1.2) times. Incremental PIncDect, IncDect, and
PIncRDect beat their batch counterparts even when |ΔG | is 33% of |G |. These justify the need for
incremental error detection.

(b) On average, PIncDect outperforms PIncDectns, PIncDectnb, and PIncDectNO by 1.29, 1.33, and
1.61 times on DBpedia (respectively, 1.31, 1.43, 1.81 on YAGO2, 1.33, 1.45, 1.81 on Pokec, and 1.27,
1.36, 1.5 on Synthetic G) in the same setting. This verifies the effectiveness of our hybrid work-
load balancing strategy. It suggests that workload balancing should be combined with work unit
splitting.

(c) The larger |ΔG | is, the slower all incremental algorithms are, while the batch Dect, PDect, StarK,
and PRDect are indifferent to |ΔG |, as expected. In all cases, PIncRDect performs the best.

(d) Incremental error detection is feasible in practice: PIncDect takes 693 s on DBpedia when |ΔG |
is 25% of |G |, IncDect takes 5,840 s, PIncRDect takes 121 s, and IncStarK needs 214 s, as opposed
to 1,121 s (respectively, 9,878 s, 166 s, 736 s) by PDect (respectively, Dect, PRDect, StarK).

(e) All incremental algorithms are insensitive to the ratio γ of edge insertions to deletions, which
is verified by varying the ratio γ (results not shown).

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:41

Fig. 8. Experimental results.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:42 W. Fan et al.

(f) We find that the cost of checking linear arithmetic expressions is negligible (not shown). This
confirms Corollary 5.1, i.e., NGDs do not make the validation problem harder than GFDs.

Exp-2: Diversity of graphs. We evaluated the impact of the size, density, and degree distribution
of the graphs using SyntheticG. We fixed |ΔG | as 15% of |G | and used the same NGDs as in Exp-1.

Varying |G |. We varied |G |, i.e., (|V |, |E |), from (10M, 20M) to (80M, 100M). Figure 8(e) shows that
(a) all the algorithms take longer when graphG gets larger, as expected, (b) incremental algorithms
are less sensitive to the size |G | than their batch counterparts, and (c) PIncRDect does the best
among all, which is consistent with the results of Exp-1.

Varying ηG . Fixing |V | + |E | in the range of [90M, 110M], we varied the density ηG from 10−6 to
10−2. Figure 8(f) tells us that (a) all algorithms take longer when graphG gets denser, as expected,
and (b) incremental error detection is feasible on dense graphs, e.g., PIncDect and PIncRDect take
812 s and 146 s when ηG = 10−2, respectively.

Degree distribution. Fixing |G | as (30M, 60M), we tested all the algorithms on two synthetic graphs
having pow-law and uniform degree distribution, respectively. We find that the difference between
the response time of each algorithm on these two graphs is at most 13.5% of the slower one, and
the difference for incremental algorithms is even smaller (not shown), i.e., the degree distribution
of the graphs has little impact on the performance of incremental detection of inconsistencies.

Exp-3: Complexity of NGDs. We also evaluated the impact of the complexity of sets Σ of NGDs.
We fixed |ΔG | = 15%|G | in this set of experiments.

Varying ||Σ||. Fixing dΣ = 5, we varied the cardinality ||Σ|| from 50 to 100 (our industry collaborator
uses at most 95 rules [12]). As shown in Figures 8(g) and 8(h) on DBpedia and YAGO2, respec-
tively, (a) the more NGDs are in Σ, the longer time is taken by all the algorithms, as expected, and
(b) PIncDect, IncDect, PIncRDect, and IncStarK scale well with ||Σ||.

The results on Pokec and Synthetic are consistent (not shown).

Varying dΣ. Fixing ||Σ|| = 50, we varied dΣ from 2 to 6. Figure 8(i) shows that all algorithms take
longer over larger dΣ on DBpedia except those that find top-ranked errors. This is consistent with
our analysis that the costs of our localizable incremental algorithms increase when dΣ gets larger.
Nonetheless, PIncDect is feasible with real-life NGDs, e.g., it takes 489 s on DBpedia when dΣ = 6,
as opposed to 1,197 s by PDect and 7,532 s by Dect. PIncRDect, PRDect, StarK, and IncStarK are
almost indifferent to dΣ, since they only use the star-like NGDs, whose patterns are of diameters
1 or 2. The results on YAGO2, Pokec, and Synthetic are consistent.

Exp-4: Impact of K . This set of experiments evaluated the impact of parameter K on the algo-
rithms for finding top-ranked inconsistencies. Fixing |ΔG | = 15%|G |, Figure 8(j) reports the result
over YAGO2 using the NGDs of Exp-1. We can see that (a) all the algorithms take longer time
for larger K , since more matches are required to be identified and checked; nonetheless, they are
efficient in practice, e.g., PRDect and PIncRDect take 103 s and 35 s when K = 800, respectively.
(b) PIncRDect (respectively, IncStarK) improves the performance of PRDect (respectively, StarK)
by 3.6 (respectively, 8.6) times, on average. The results on DBpedia, Pokec, and Synthetic are con-
sistent and hence not shown.

Exp-5: Scalability of parallel algorithms. Using the same NGDs as in Exp-1 and fixing |ΔG | =
15%|G | for all the graphs, we evaluated the scalability of parallel algorithms (a) PIncDect versus
PDect, PIncDectns, PIncDectnb, and PIncDectNO, and (b) PIncRDect versus PRDect by varying the
number p of processors, the communication latency C , and the time interval intvl.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:43

Varying p. Fixing C = 60 and intvl = 45s , we varied p from 4 to 20. As shown in Figures 8(k),
8(l), 8(m), and 8(n) over DBpedia, YAGO2, Pokec, and Synthetic, respectively, whenp changes from
4 to 20, (a) parallel algorithms PIncDect, PDect, PIncRDect, and PRDect perform much better and
are on average 3.7, 3.8, 2.7, and 2.6 times faster than IncDect, Dect, IncStarK, and StarK, respec-
tively, and (b) PIncDect consistently outperforms PDect, PIncDectns, PIncDectnb, and PIncDectNO:
On average, it is 2.47 to 3.14, 1.32 to 1.37, 1.44 to 1.53, and 1.53 to 1.72 times better, respectively,
validating the effectiveness of the hybrid workload partition strategy. Moreover, work unit split-
ting or workload balancing alone does not work very well, as verified by the gap between the
performance of PIncDect and that of PIncDectnb and PIncDectns, respectively.

Varying C . Fixing p = 8 and intvl = 45s , we evaluated the impact of communication latency pa-
rameter on PIncDect and PIncDectnb by tuning C from 20 to 100 in 20 increments. As shown in
Figure 8(o) over Pokec, PIncDect performs the best when C is 80, taking 198 s. On one hand,
PIncDect favors parallel computation with smaller C to split work units; on the other hand,
PIncDect has a bias towards local computation with larger latencyC to reduce the communication
cost. The results on DBpedia, YAGO2, and Synthetic are consistent and hence are not shown.

Varying intvl. Fixing p = 8 and C = 60, we varied intvl from 15 s to 65 s in 15 s increments to
evaluate the impact of intervals for monitoring workloads on PIncDect and PIncDectns. As shown
in Figure 8(p) on YAGO2, the “optimal” intvl is 45 s for PIncDect. Similar to the latency C , while
smaller intvl helps workload balancing, it incurs more communication cost. Hence, we need to
strike a balance. The results on DBpedia, Pokec, and Synthetic G are consistent.

Exp-6: Effectiveness study. We manually examined the NGDs Σ discovered from real-life graphs
to ensure that our picked ones are correct. The NGDs captured 415, 212, and 568 errors in DBpedia,
YAGO2, and Pokec, respectively, ranging from wrong (numeric) values to structural errors. Note
that errors were found in the rest 3/4 of each graph, which was not used for NGD discovery.

Real-world NGDs. Below are the NGDs shown in Figure 8(q), along with the real errors they caught.

NGD1 is Q5[x̄](y.val < 1800→ z.val � “living people”), stating that any person with birth year
before 1800, i.e., aged over 210, can no longer be categorized as living people. It identifies an error
in DBpedia that a living person John Macpherson was born in 1713.

NGD2 is Q6[x̄](w .type = “Olympic”→ z.val ≤ y.val), which states that the number of participat-
ing nations in an Olympic event should not be larger than the number of competitors, i.e., each
athlete represents at most one nation. It detects that 24 athletes representing 34 countries partici-
pated in the Women’s Sailboard Competition at the 1992 Summer Olympics, in DBpedia.

NGD3 is Q7[x̄](∅ → x .numberOfWins ≥ w1.numberOfWins +w2.numberOfWins). This NGD

states that in the Formula One racing, the total number of competitions won by two drivers is
no larger than the number of competitions won by the team they represent during the same year.
In DBpedia, it caught that Sebastian Vettel and Max Verstappen won one competition in 2016;
however, their team Scuderia Ferrari won none of the races. In fact, Max did not race for Ferrari
in 2016. This shows that NGDs also help us detect the erroneous links.

Error detection accuracy. We next evaluated the accuracy for error detection with NGDs on YAGO2.
Besides the errors detected by our picked set Σ of NGDs, we also injected noise to YAGO2 by
sampling α% of nodes from the match candidates of the patterns from Σ in this graph and changing
β% of either the attribute values associated with v or the labels of the edges incident to v for the
sampled nodes v . We took care to ensure that our changes involve the attributes that appear in
the attribute dependencies X → Y of the NGDs in Σ.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

9:44 W. Fan et al.

Fig. 9. Error detection accuracy.

The accuracy of error detection with NGDs is defined as |V
NGD∩V e |
|V e | , where (a) V e denotes the

set of nodes that are involved in either the original errors captured or the noise introduced; and
(b) VNGD refers to all the nodes that are contained in the violations of NGDs after error injection.
The accuracy for error detection with GFDs and star-like NGDs is similarly defined. It should be
remarked that we adopted recall here to define the accuracy, since the precision is always 1 as long
as all the NGDs are correct and are enforced on the graphs.

With various α% and β%, Figure 9 reports the accuracy of the NGDs, GFDs, and star-like NGDs

in the discovered set Σ of cardinality 100. As shown there, (1) NGDs have the best accuracy in all
cases. (2) All the graph dependencies perform better with smaller α% and β%, as expected. (3) The
star-like NGDs and GFDs capture on average 60.5% and 80.5%, respectively, of the errors caught
by NGDs.

Summary. We find the following: (1) Our incremental error detection algorithms scale well with
|ΔG |, |G |, ηG , ||Σ||, dΣ, and K . Algorithms IncDect and PIncDect outperform batch Dect from 6.7
to 2.1 times and from 52 to 13 times on average, respectively, when |ΔG | varies from 5% to 25% of
|G | over real-life and synthetic graphs. They perform better even when |ΔG | is up to 33% of |G |.
(2) The incremental algorithms are less sensitive to |G | than the batch algorithms, and they are
able to deal with large-scale dense graphs. (3) Better still, parallel PIncDect scales well with the
number p of processors used: Its runtime is improved by 3.7 times on average when p increases
from 4 to 20. (4) Algorithms IncDect and PIncDect are feasible in practice: On real-life graphs, they
take 1,659 s and 130 s on average (with p = 20), respectively. (5) The hybrid workload balancing
strategy is effective: It helps improve the performance of PIncDect by 1.73 times on average and
works well with large p. (6) Incremental detection of top-ranked errors is efficient: PIncRDect

takes at most 30 s on average over real-life graphs when K = 600 and p = 8. Moreover, it catches
top-ranked errors, which account for 60.5% of total errors, striking a balance between the accuracy
and efficiency.

9 CONCLUSION

We have proposed a class of NGDs with linear arithmetic expressions and comparison predicates
to catch semantic inconsistencies in graphs, numeric or not. We have justified NGDs by establish-
ing the complexity of the satisfiability and implication analyses of NGDs and their extensions. We
have also provided the (parameterized) complexity of validation and incremental validation prob-
lems for NGDs. We have developed the first parallel incremental algorithms to detect errors in
graphs with provable performance guarantees, as well as parallel PTIME algorithms for detection
and incremental detection of top-ranked inconsistencies. We have empirically verified that NGDs

and the algorithms yield a promising tool for detecting errors in graph-structured data, numeric

or not.
There is naturally much more to be done. One topic for future work is to extend NGDs by

supporting aggregations. Another topic is to study graph repairing with NGDs.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

Catching Numeric Inconsistencies in Graphs 9:45

REFERENCES

[1] Lubos Takac and Michal Zabovsky. 2012. Pokec Social Network. Retrieved from http://snap.stanford.edu/data/soc-

pokec.html.

[2] George Karypis and Vipin Kumar. 2013. Metis. Retrieved from http://glaros.dtc.umn.edu/gkhome.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G. Ives. 2015. DBpedia.

Retrieved from http://wiki.dbpedia.org/Datasets.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

[5] Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. 1995. Fixed-parameter tractability and complete-

ness IV: On completeness for W[P] and PSPACE analogues. Ann. Pure Appl. Logic 73, 3 (1995), 235–276.

[6] Foto N. Afrati, Chen Li, and Prasenjit Mitra. 2002. Answering queries using views with arithmetic comparisons. In

Proceedings of the PODS.

[7] Foto N. Afrati, Chen Li, and Prasenjit Mitra. 2006. Rewriting queries using views in the presence of arithmetic com-

parisons. Theor. Comput. Sci. 368, 1–2 (2006), 88–123.

[8] Foto N. Afrati, Chen Li, and Vassia Pavlaki. 2008. Data exchange in the presence of arithmetic comparisons. In Pro-

ceedings of the EDBT.

[9] Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In Proceedings of the SDKB.

[10] Konstantin Andreev and Harald Racke. 2006. Balanced graph partitioning. Theor. Comput. Syst. 39, 6 (2006), 929–939.

[11] Abdallah Arioua and Angela Bonifati. 2018. User-guided repairing of inconsistent knowledge bases. In Proceedings of

the EDBT.

[12] Baidu. 2017. Personal Communication. http://www.baidu.com.

[13] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan. 1973. Time bounds for

selection. J. Comput. Syst. Sci. 7, 4 (1973), 448–461.

[14] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM

46, 5 (1999), 720–748.

[15] Paul Burkhardt and Chris Waring. 2013. An NSA Big Graph Experiment. Technical Report NSA-RD-2013-056002v1.

U.S. National Security Agency.

[16] Marco Cesati. 2006. Compendium of Parameterized Problems. Technical report. Department of Computer Science,

Systems, and Industrial Engineering, University of Rome Tor Vergata.

[17] Yang Chen, Sean Louis Goldberg, Daisy Zhe Wang, and Soumitra Siddharth Johri. 2016. Ontological pathfinding. In

Proceedings of the SIGMOD.

[18] Jiefeng Cheng, Xianggang Zeng, and Jeffrey Xu Yu. 2013. Top-k graph pattern matching over large graphs. In Pro-

ceedings of the ICDE.

[19] Yiu-ming Cheung and Hong Jia. 2012. Unsupervised feature selection with feature clustering. In Proceedings of the

WI.

[20] William Cook, Albertus M. H. Gerards, Alexander Schrijver, and Eva Tardos. 1986. Sensitivity theorems in integer

linear programming. Math. Prog. 34, 3 (1986), 251–264.

[21] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of constraints in RDFS. In Proceedings of the AMW.

[22] Rod G. Downey and Michael R. Fellows. 1995. Fixed-parameter tractability and completeness II: On completeness for

W[1]. Theor. Comput. Sci. 141, 1–2 (1995), 109–131.

[23] Grace Fan, Wenfei Fan, and Floris Geerts. 2014. Detecting errors in numeric attributes. In Proceedings of the WAIM.

[24] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for graphs. PVLDB 8, 12 (2015), 1590–1601.

[25] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management. Morgan & Claypool Publishers.

[26] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional functional dependencies for

capturing data inconsistencies. ACM Trans. Datab. Syst. 33, 2 (2008), 6:1–6:48.

[27] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2018. Discovering graph functional dependencies. In Proceedings

of the SIGMOD.

[28] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental graph computations: Doable and undoable. In Proceed-

ings of the SIGMOD.

[29] Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu. 2012. Incremental detection of inconsistencies in distributed

data. In Proceedings of the ICDE.

[30] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2018. Catching numeric inconsistencies in graphs. In Proceedings of

the SIGMOD.

[31] Wenfei Fan and Ping Lu. 2017. Dependencies for graphs. In Proceedings of the PODS.

[32] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association rules with graph patterns. Proc. VLDB Endow.

8, 12 (2015), 1502–1513.

[33] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs. In Proceedings of the SIGMOD.

[34] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. 2010. Querying and repairing inconsistent numerical databases.

ACM Trans. Datab. Syst. 35, 2 (2010), 14:1–14:50.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

http://snap.stanford.edu/data/soc-pokec.html
http://snap.stanford.edu/data/soc-pokec.html
http://glaros.dtc.umn.edu/gkhome
http://wiki.dbpedia.org/Datasets
http://www.baidu.com

9:46 W. Fan et al.

[35] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.

[36] Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. 2007. Exact algorithms for graph homomorphisms. Theor.

Comput. Sci. 41, 2 (2007), 381–393.

[37] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and Francesco Scarcello. 2001. Census data

repair: A challenging application of disjunctive logic programming. In Proceedings of the LPAR.

[38] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association rule mining

under incomplete evidence in ontological knowledge bases. In Proceedings of the WWW.

[39] Mario Arias Gallego, Javier D. Fernández, Miguel A. Martínez-Prieto, and Pablo de la Fuente. 2011. An empirical study

of real-world SPARQL queries. In Proceedings of the USEWOD Workshop.

[40] Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh Srivastava. 2009. Sequential dependencies.

Proc. VLDB Endow. 21, 1 (2009), 574–585.

[41] Ivana Grujic, Sanja Bogdanovic-Dinic, and Leonid Stoimenov. 2014. Collecting and analyzing data from E-government

Facebook pages. In Proceedings of the ICT Innovations.

[42] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and

Eric P. Xing. 2016. Addressing the straggler problem for iterative convergent parallel ML. In Proceedings of the SoCC.

[43] Binbin He, Lei Zou, and Dongyan Zhao. 2014. Using conditional functional dependency to discover abnormal data in

RDF graphs. In Proceedings of the SWIM.

[44] Jiewen Huang, Daniel J. Abadi, and Kun Ren. 2011. Scalable SPARQL querying of large RDF graphs. Proc. VLDB Endow.

4, 11 (2011), 1123–1134.

[45] James P. Jones. 1980. Undecidable Diophantine equations. Bull. Amer. Math. Soc. 3, 2 (1980).

[46] Dmitri V. Kalashnikov, Laks V. S. Lakshmanan, and Divesh Srivastava. 2018. FastQRE: Fast query reverse engineering.

In Proceedings of the SIGMOD.

[47] Mijung Kim and K. Selçuk Candan. 2012. SBV-Cut: Vertex-cut based graph partitioning using structural balance

vertices. Data Knowl. Eng. 72 (2012), 285–303.

[48] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens Lehmann, Roland Cornelissen, and

Amrapali Zaveri. 2014. Test-driven evaluation of linked data quality. In Proceedings of the WWW.

[49] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. 2009. Metric functional dependen-

cies. In Proceedings of the ICDE.

[50] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A complexity theory of efficient parallel algorithms. Theor.

Comput. Sci. 71, 1 (1990), 95–132.

[51] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable subgraph enumeration in MapReduce. Proc. VLDB

Endow. 8, 10 (2015), 974–985.

[52] Georg Lausen, Michael Meier, and Michael Schmidt. 2008. SPARQLing constraints for RDF. In Proceedings of the

EDBT.

[53] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An In-depth comparison of subgraph

isomorphism algorithms in graph databases. Proc. VLDB Endow. 6, 2 (2012), 133–144.

[54] Kamesh Madduri and David A. Bader. 2006. GTgraph. Retrieved from http://www.cse.psu.edu/ kxm85/software/

GTgraph/.

[55] Yuri Matiyasevich. 1993. Hilbert’s 10th Problem. The MIT Press.

[56] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. 2012. Introduction to Linear Regression Analysis.

John Wiley & Sons.

[57] Amelia Murray. 2016. Fake NatWest Twitter account targets customers to steal bank details. Retrieved from http://

www.telegraph.co.uk/money/consumer-affairs/fake-natwest-twitter-account-targets-customers-to-steal-bank-det.

[58] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. 2004. What’s new on the Web? The evolution of the Web

from a search engine perspective. In Proceedings of the WWW.

[59] Christos H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.

[60] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and Divesh Srivastava. 2015. Combining quanti-

tative and logical data cleaning. Proc. VLDB Endow. 9, 4 (2015), 300–311.

[61] Paweł Rzążewski. 2014. Exact algorithm for graph homomorphism and locally injective graph homomorphism. Inf.

Proc. Lett. 114, 7 (2014), 387–391.

[62] Marcus Schaefer and Christopher Umans. 2002. Completeness in the polynomial-time hierarchy: A compendium.

SIGACT News 33, 3 (2002), 32–49.

[63] Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and discovery. ACM Trans. Datab. Syst. 36, 3

(2011), 16:1–16:41.

[64] Shaoxu Song, Hong Cheng, Jeffrey Xu Yu, and Lei Chen. 2014. Repairing vertex labels under neighborhood con-

straints. Proc. VLDB Endow. 7, 11 (2014), 987–998.

[65] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A core of semantic knowledge. In Proceedings

of the WWW.

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

http://www.cse.psu.edu/ kxm85/software/GTgraph/
http://www.cse.psu.edu/ kxm85/software/GTgraph/
http://www.telegraph.co.uk/money/consumer-affairs/fake-natwest-twitter-account-targets-customers-to-steal-bank-det
http://www.telegraph.co.uk/money/consumer-affairs/fake-natwest-twitter-account-targets-customers-to-steal-bank-det

Catching Numeric Inconsistencies in Graphs 9:47

[66] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. 2009. SOFIE: A self-organizing framework for information

extraction. In Proceedings of the WWW.

[67] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012. Efficient subgraph matching on billion

node graphs. Proc. VLDB Endow. 5, 9 (2012), 788–799.

[68] Maksims Volkovs, Fei Chiang, Jaroslaw Szlichta, and Renée J. Miller. 2014. Continuous data cleaning. In Proceedings

of the ICDE.

[69] Dominik Wienand and Heiko Paulheim. 2014. Detecting incorrect numerical data in DBpedia. In Proceedings of the

ESWC.

[70] Wikipedia. 2019. Freebase. Retrieved from https://en.wikipedia.org/wiki/Freebase.

[71] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. 2016. Fast top-k search in knowledge graphs. In Proceedings

of the ICDE.

[72] Zhengwei Yang, Ada Wai-Chee Fu, and Ruifeng Liu. 2016. Diversified top-k subgraph querying in a large graph. In

Proceedings of the SIGMOD.

[73] Yang Yu and Jeff Heflin. 2011. Extending functional dependency to detect abnormal data in RDF graphs. In Proceedings

of the ISWC.

Received February 2019; revised September 2019; accepted February 2020

ACM Transactions on Database Systems, Vol. 45, No. 2, Article 9. Publication date: June 2020.

https://en.wikipedia.org/wiki/Freebase

