
Parallel Reasoning of Graph Functional Dependencies
Wenfei Fan1 Xueli Liu2 Yingjie Cao3

1University of Edinburgh 2Harbin Institue of Technology 3Beihang University
wenfei@inf.ed.ac.uk xueliliu@hit.edu.cn caoyj@act.buaa.edu.cn

Abstract—This paper develops techniques for reasoning about
graph functional dependencies (GFDs). We study the satisfiability
problem, to decide whether a given set of GFDs has a model,
and the implication problem, to decide whether a set of GFDs
entails another GFD. While these fundamental problems are
important in practice, they are coNP-complete and NP-complete,
respectively. We establish a small model property for satisfiability,
showing that if a set Σ of GFDs is satisfiable, then it has a model
of a size bounded by the size |Σ| of Σ; similarly we prove a small
model property for implication. Based on the properties, we
develop algorithms for checking the satisfiability and implication
of GFDs. Moreover, we provide parallel algorithms that guarantee
to reduce running time when more processors are used, despite
the intractability of the problems. We experimentally verify the
efficiency and scalability of the algorithms.

I. INTRODUCTION

Several classes of graph dependencies have recently been

proposed to extend functional dependencies (FDs) from rela-

tions to graphs [1]–[8], referred to as graph functional depen-
dencies (GFDs). The need for GFDs is evident in inconsistency

detection, knowledge acquisition, knowledge base enrichment,

and spam detection, among other things.

There are two fundamental problems for GFDs. One is the

satisfiability problem, to decide whether a set Σ of GFDs has a

model, i.e., a nonempty graph that satisfies all GFDs in Σ. The

other is the implication problem, to decide whether a GFD ϕ is

entailed by a set Σ of GFDs, i.e., for any graph G, if G satisfies

Σ then G satisfies ϕ. These are classical problems associated

with any dependency class, known as the static analyses.

For GFDs, these problems not only are of theoretical

interest, but also find practical applications. The satisfiability

analysis helps us check whether a set Σ of GFDs discovered

from (possibly dirty) real-life graphs is “dirty” itself before

it is used to detect errors and spam. The implication analysis

eliminates redundant GFDs that are entailed by others. That

is, the implication analysis provides us with an optimization

strategy to speed up, e.g., error detection process.

No matter how important, these problems are hard for

GFDs. For relational FDs, the satisfiability problem is trivial:

any set of FDs can find a nonempty relation that satisfies the

FDs [9]. The implication problem is in linear time (cf. [10]). In

contrast, for GFDs of [1], [2], the satisfiability and implication

problems are coNP-complete and NP-complete, respectively.

This is not very surprising. GFDs on graphs are more compli-

cated than FDs on relations. A GFD is a combination of (a)

a graph pattern Q, to identify entities in a graph, and (b) an

“attribute dependency” X → Y that is applied to the entities

identified [2]. Since graph pattern matching is NP-complete

under the semantics of homomorphism (cf. [11]), the static

analyses of GFDs are inevitably intractable.

This raises several questions. To check whether a set Σ of

GFDs is satisfiable, what graphs G should we inspect to find

a model of Σ? To decide whether Σ implies another GFD ϕ,

do we have to examine all graphs G that satisfy Σ and check

whether G satisfies ϕ? Is it feasible to reason about GFDs
in practice? That is, does there exist effective technique for

checking the satisfiability and implication of GFDs?

Contributions. This paper develops practical parallel algo-

rithms for the satisfiability and implication analyses of GFDs.
We consider the GFDs of [2] defined on generic graphs.

(1) We characterize the satisfiability of GFDs (Section IV). We

show a small model property: a set Σ of GFDs is satisfiable

if and only if (iff) there exists a graph G such that G satisfies

Σ and the size |G| of G is bounded by the size |Σ| of Σ. This

allows us to inspect graphs G of a bounded size as candidate

models of Σ. Based on this, we develop a sequential (exact)

algorithm SeqSat to check GFD satisfiability.

(2) We develop a parallel algorithm ParSat to check GFD
satisfiability (Section V). One might think that the more

processors are used, the faster a parallel algorithm would run.

Unfortunately, this is not for granted. Many parallel algorithms

do not warrant this. Worse yet, for some computation prob-

lems, parallel scalability is beyond reach [12], i.e., no parallel

algorithms would run faster given more processors.

We show that ParSat has this performance guarantee.

Adopting a notion introduced [13], we show that ParSat is

parallel scalable relative to SeqSat: its parallel running time

is in O(t(|Σ|)/p), where t(|Σ|) denotes the cost of SeqSat and

p is the number of processors used. As a result, it guarantees

to reduce the running time when more processors are used.

Hence it is feasible to scale with large Σ by increasing p,

despite the intractability of GFD satisfiability.

(3) We parallelize GFD implication checking (Section VI). We

show another small model property: to check whether a set Σ
of GFDs implies another GFD ϕ, it suffices to inspect graphs

of size bounded by the sizes of ϕ and Σ, and enforce the

GFDs of Σ on the small graphs. Based on this, we develop a

sequential exact algorithm SeqImp to check GFD implication.

We then develop an algorithm ParImp by parallelizing SeqImp.

We show that ParImp is parallel scalable relative to SeqImp,

allowing us to scale with large sets Σ of GFDs.

Algorithms ParSat and ParImp explore various techniques

for parallel reasoning, such as (a) a combination of data-

partitioned parallelism and pipelined parallelism [14], for early

termination of checking; (b) dynamic workload assignment

and work unit splitting to handle stragglers; and (c) a topo-

logical order on work units based on a dependency graph.

593

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00060

(4) Using real-life and synthetic GFDs, we empirically verify

the efficiency and scalability of our algorithms (Section VII).

We find the following. (a) On average SeqSat and SeqImp
take 1848 and 909 seconds on up to 10000 real-life GFDs
with fairly complex patterns, respectively. The performance is

substantially improved by parallel ParSat and ParImp, which

take 167 and 76 seconds, respectively, when p = 20. Hence

it is feasible to reason about GFDs in practice by using the

parallel algorithms. (b) ParSat and ParImp are parallel scal-

able: they are 3.4 and 3.6 times faster on average, respectively,

when p varies from 4 to 20. (c) Our optimization strategies are

effective, e.g., pipelining improves the performance of parallel

ParSat and ParImp by 1.5 and 1.6 times on average, and work

unit splitting improves 3.8 and 4.1 times, respectively.

These algorithms yield a promising tool for reasoning about

GFDs, to validate data quality rules and optimize rule-based

process for cleaning graph data, among other things. To the

best of our knowledge, no parallel algorithms are yet in place

for the static analyses of graph dependencies.

We discuss related work in Section VIII and future work in

Section IX. The proofs of the results of the paper are in [15].

II. PRELIMINARIES

We start with basic notations. Assume two countably infinite

alphabets Γ and Θ for labels and attributes, respectively.

Graphs. We consider directed graphs G = (V,E,L, FA),
where (1) V is a finite set of nodes; (2) E ⊆ V × V , in

which (v, v′) denotes an edge from node v to v′; (3) each

node v ∈ V is labeled L(v) ∈ Γ; similarly we define L(e)
for edge e ∈ E; and (4) for each node v, FA(v) is a tuple

(A1 = a1, . . . , An = an), where ai is a constant, Ai ∈ Θ is

an attribute of v, written as v.Ai = ai, and Ai �= Aj if i �= j;

the attributes carry content as in property graphs.

A graph (V ′, E′, L′, F ′
A) is a subgraph of (V,E,L, FA) if

V ′ ⊆ V , E′ ⊆ E, for each node v ∈ V ′, L′(v) = L(v) and

F ′
A(v) = FA(v), and for each edge e ∈ E′, L′(e) = L(e).

Graph patterns. A graph pattern is a graph Q[x̄] = (VQ, EQ,

LQ), where (1) VQ (resp. EQ) is a finite set of pattern nodes

(resp. edges); (2) LQ is a function that assigns a label LQ(u)
(resp. LQ(e)) to nodes u ∈ VQ (resp. edges e ∈ EQ); and (3)

x̄ is a list of distinct variables denoting nodes in V .

Labels LQ(u) and LQ(e) are taken from Γ and moreover,

we allow LQ(u) and LQ(e) to be wildcard ‘ ’.

Pattern matching. A match of pattern Q[x̄] in a graph G is a

homomorphism h from Q to G such that (a) for each node

u ∈ VQ, LQ(u) = L(h(u)); and (b) for each edge e = (u, u′)
in Q, e′ = (h(u), h(u′)) is an edge in G and LQ(e) = L(e′).
In particular, LQ(u) = L(h(u)) if LQ(u) is ‘ ’, i.e., wildcard

indicates generic entities and can match any label in Γ.

We also denote the match as a vector h(x̄) if it is clear

from the context, where h(x̄) consists of h(x) for each x ∈ x̄.

Intuitively, x̄ is a list of entities to be identified by Q, and

h(x̄) is such an instantiation in G, one node for each entity.

III. GRAPH FUNCTIONAL DEPENDENCIES

We next review graph functional dependencies studied

in [2], referred to as GFDs, from syntax to semantics.

Syntax. A GFD ϕ is a pair Q[x̄](X → Y) [1], where

◦ Q[x̄] is a graph pattern, called the pattern of ϕ; and

◦ X and Y are two (possibly empty) sets of literals of x̄.

A literal of x̄ is either x.A = c or x.A = y.B, where x
and y are variables in x̄ (denoting nodes in Q), A and B are

attributes in Θ (not specified in Q), and c is a constant.

Intuitively, GFD ϕ specifies two constraints: (a) a topolog-
ical constraint Q, and (b) an attribute dependency X → Y .

Pattern Q specifies the scope of the GFD: it identifies sub-

graphs of G on which X → Y is enforced. As observed

in [2], attribute dependencies X → Y subsume relational

EGDs and CFDs, in which FDs are a special case. In particular,

literals x.A = c carry constant bindings along the same lines

as CFDs [16]. Following [1], we refer to Q[x̄](X → Y) as

graph functional dependencies (GFDs).

Semantics. For a match h(x̄) of Q in a graph G and a literal

x.A = c of x̄, we say that h(x̄) satisfies the literal if there
exists attribute A at the node v = h(x) and v.A = c; similarly

for literal x.A = y.B. We denote by h(x̄) |= X if h(x̄)
satisfies all the literals in X; similarly for h(x̄) |= Y .

We write h(x̄) |= X → Y if h(x̄) |= X implies h(x̄) |= Y .

A graph G satisfies GFD ϕ, denoted by G |= ϕ, if for all
matches h(x̄) of Q in G, h(x̄) |= X → Y .

Intuitively, G |= ϕ if for each match h(x̄) identified by Q,

the attributes of the entities in h(x̄) satisfy X → Y .

Example 1: Consider GFDs defined with patterns Q1-Q4

shown in Fig. 1. These GFDs are able to catch semantic

inconsistencies in real-life knowledge bases and social graphs.

(1) GFD ϕ1 = Q1[x, y](∅ → false). It states that for any place

x, if x is located in another place y, then y should not be part

of x. Here X is ∅, and Boolean constant false is a syntactic

sugar for, e.g., x.A = c and x.A = d with distinct constants c
and d. The GFD is defined with a cyclic pattern Q1.

In DBpedia, Bamburi airport is located in city Bamburi,
but at the same time, Bamburi is put as part of Bamburi
airport. Hence DBpedia does not satisfy ϕ1, and the violation

is caught by match h : x �→ Bamburi airport and y �→
Bamburi of Q1. The inconsistency is detected by ϕ1.

(2) GFD ϕ2 = Q2[x, y, z](∅ → y.val = z.val), where val is an

attribute of y and z. It says that the topSpeed is a functional

property, i.e., an object has at most one top speed. Note that

x is labeled wildcard ‘ ’, and may denote, e.g., car, plane.

The GFD catches the following error in DBpedia: tanks are

associated with two topSpeed values, 24.076 and 33.336.

(3) GFD ϕ3 = Q3[x, y, z, w](x.c = y.c → z.val = w.val),
where c is an attribute of x and y indicating country, and val
is an attribute of z and w indicating value. The GFD states if x
and y are the president and vice president of the same country,

then x and y must have the same nationality. It catches the

594

����� �����
������	

�����

�

�������� ��������

����������

�����

���
������
���

�����

ww

��������	

����������	

�
	���
��	� �
	���
��	�

Q1Q1 Q2Q2 Q3Q3 Q4Q4

yy

xx yy

zz

xx
xx� yy

zz

�����

�����

� �����

����

���� ���� ���������� ����

��������

����
xx yy

z1z1

z2z2

w1w1 w2w2

Fig. 1: Graph patterns

�xx

Q5Q5

� � �

�

� � �

xx

yy zz ww

Q6Q6

� � �

�

� � �

xx

yy zz ww

Q7Q7

�

�

�

xx

yy

�

�

�

xx

yy

Q9Q9Q8Q8

Fig. 2: Interaction between GFDs

following inconsistency in DBpedia: the president and vice-

president of Botswana have nationality Botswana and Tswana,

respectively, while Tswana is ethnicity, not nationality.

(4) GFD ϕ4 = Q4[x, y, z1, z2, w1, w2](w1.topic = w1.topic →
w2.trust = “low”), where w1 and w2 carry attribute topic. It

states that in a social network, if blogs w1 and w2 are posted

by people x and y, respectively, w1 and w2 give inconsistent

accounts of the facts on the same topic, and if x is a domain

expert on the subject but y is not, then the account given by

y has low credibility. For instance, if a computer scientist x
and a politician y gave two accounts of facts about the future

of databases, then the comment from y can be discounted. �

We consider graphs that typically do not have a schema, as

found in the real world. Hence a node v may not necessarily

have a particular attribute. For a literal x.A = c in X , if h(x)
has no attribute A, then h(x̄) trivially satisfies X → Y by the

definition of h(x̄) |= X . In contrast, if x.A = c is in Y and

h(x̄) |= Y , then h(x) must have attribute A by the definition

of satisfaction; similarly for x.A = y.B.

In particular, if X is ∅, then h(x̄) |= X for any match h(x̄)
of Q in G, and Y has to be enforced on h(x̄). In this case, if

Y includes a literal x.A = c, then h(x) must carry attribute

A. If Y = ∅, then Y is true, and ϕ is trivially satisfied.

IV. CHARACTERIZING GFD SATISFIABILITY

We first study the satisfiability problem for GFDs. We start

with notations for formulating the problem.

A model of a set Σ of GFDs is a (finite) graph G such that

(a) G |= Σ, i.e., G satisfies all GFDs in Σ, and (b) for each

GFD Q[x̄](X → Y) in Σ, there exists a match of Q in G.

Intuitively, if Σ has a model, then the GFDs in Σ are

consistent, i.e., they do not conflict with each other, since all

of them can be applied to the same graph.

We say that Σ is satisfiable if Σ has a model.
The satisfiability problem is to decide, given a set Σ of

GFDs, whether Σ is satisfiable.

It is known that the problem is coNP-complete [2]. How-

ever, [2] does not tell us how to develop a deterministic algo-

rithm to check GFD satisfiability. In light of this, we establish

a small model property of the problem (Section IV-B). Based

on the property, we provide an exact algorithm for satisfiability

checking (Section IV-C).

A. The Challenges of Satisfiability Checking

As opposed to relational FDs, a set Σ of GFDs may not

be satisfiable. In fact, even if each GFD in Σ is satisfiable, Σ
may not have a model, because the GFDs in Σ may interact

with each other.

Example 2: Consider two GFDs defined with the same pattern

Q5 depicted in Fig. 2: ϕ5 = Q5[x](∅ → x.A = 0) and ϕ6 =
Q5[x](∅ → x.A = 1), where Q5 has a single node x labeled

‘ ’. Then no nonempty graph G satisfies both ϕ5 and ϕ6. For

if such G exists, ϕ5 and ϕ6 require h(x).A to be 0 and 1,

respectively, which is impossible; here h(x) is a match of x.

GFDs defined with distinct patterns may also interact with

each other. Consider GFDs: ϕ7 = Q6[x, y, z, w](∅ → x.A =
0 ∧ y.B = 1) and ϕ8 = Q7[x, y, z, w](y.B = 1 → x.A = 1),
with Q6 and Q7 shown in Fig. 2. One can easily see that each

of ϕ7 and ϕ8 has a model. However, there exists no model G
for both ϕ7 and ϕ8. Indeed, if such G exists, then Q6 has a

match h in G: h(x) �→ v, h(y) �→ vb, h(z) �→ vz, h(w) �→ vc.

Hence ϕ7 applies to the match and enforces vb.B = 1. A

match h′ of Q7 in G can be given as h′(x) �→ v, h′(y) �→
vb, h

′(z) �→ vc, h
′(w) �→ vc, and ϕ8 applies to the match

since h′(x, y, z, w) |= h′(y).B = 1. As a result, ϕ7 and ϕ8

require node v.A to be 1 and 0, respectively. �

As shown by Example 2, while Q7 is not homomorphic to

Q6 and vice versa, ϕ7 and ϕ8 can be enforced on the same

node. Thus GFD satisfiability is nontrivial. It is shown coNP-

hard by reduction from the complement of 3-colorability [2].

B. A Small Model Property

To find a model of a set Σ of GFDs, we cannot afford

to enumerate all (infinitely many) finite graphs G and check

whether G |= Σ. This motivates us to establish a small model

property for the problem, to reduce the search space.

Canonical graphs. We borrow a notation from [2]. The

canonical graph GΣ of Σ is defined to be (VΣ, EΣ, LΣ, F
Σ
A),

where (a) VΣ is the union of Vi’s, (b) EΣ is the union of Ei’s,

and (c) LΣ is the union of Li’s; but (d) FΣ
A is empty. We

assume w.l.o.g. that patterns in Σ are pairwise disjoint, i.e.,
their nodes are denoted by distinct variables by renaming.

Intuitively, GΣ is the union of all graph patterns in Σ, in

which patterns from different GFDs are disjoint. We keep

wildcard of Q in GQ and treat it as a “normal” label such

that only in a pattern can match in GΣ.

Example 3: Consider a set Σ consisting of ϕ7 and ϕ8 of

Example 2. Its canonical graph GΣ is the graph by putting

together Q6 and Q7 of Fig. 2, except that variables x, y, z, w
in Q7 are renamed as, e.g., x′, y′, z′, w′, respectively. �

A population of GΣ is a graph G = (VΣ, EΣ, LΣ, FA),
where FA is a function that for each node v ∈ VΣ, assigns

FA(v) = (A1 = a1, . . . , Am = am), a (finite) tuple of

attributes from Θ and their corresponding constant values.

595

Population G of GΣ is said to be Σ-bounded if all attribute

values in FA have total size bounded by O(|Σ|), i.e., the values

of all attributes in G are determined by Σ alone.

Intuitively, G and GΣ have the same topological structure

and labels, and G extends GΣ with attributes and values. It is

Σ-bounded if its size |G| is in O(|Σ|), including nodes, edges,

attributes and all constant values in G.

Small model property. We next show that to check the satis-

fiability of Σ, it suffices to inspect Σ-bounded populations of

the canonical graph GΣ of Σ. We will develop a satisfiability

checking algorithm based on this small model property.

Theorem 1: A set Σ of GFDs is satisfiable iff there exists a
model G of Σ that is an Σ-bounded population of GΣ. �

Proof: If there exists an Σ-bounded population of GΣ that is a

model of Σ, then obviously Σ is satisfiable. Conversely, if Σ
has a model G, then there exists a homomorphism h from GΣ

to G. Employing h, we construct an Σ-bounded population G′

of GΣ. We populate attributes of G′ by taking only relevant

attributes from G, and by normalizing these attributes to make

them Σ-bounded. The population preserves the constant values

that appear in Σ and the equality on the attributes. We show

that G′ |= Σ by contradiction (see [15] for details). �

As an immediate corollary, we give an alternative proof for

the upper bound of the satisfiability problem for GFDs, instead

of revising and using the chase as in [2].

Corollary 2: The GFDs satisfiability problem is in coNP. �

Proof: We give an NP algorithm to check whether a set Σ of

GFDs is not satisfiable, as follows: (a) guess an Σ-bounded

attribute population G of GΣ, and a match hi for each pattern

Qi of Σ in G; (b) check whether each hi makes a match; if

so, (c) check whether the matches violate any GFD in Σ in

G. The correctness follows from Theorem 1. The algorithm

is in NP since steps (b) and (c) are in PTIME (polynomial

time). Thus the satisfiability problem is in coNP. Note that we

cannot guess G as above and check whether G |= Σ, since

checking G |= Σ is already coNP-complete itself [2]. �

C. A Sequential Algorithm for Satisfiability

Based on the small model property, we develop an exact

algorithm, referred to as SeqSat, that takes as input a set Σ
of GFDs, and returns true if and only if Σ is satisfiable.

Algorithm. Algorithm SeqSat first builds the canonical graph

GΣ = (VΣ, EΣ, LΣ, F
Σ
A) of Σ. It then processes each GFD

ϕ = Q[x̄](X → Y) in Σ and populates FΣ
A by invoking

procedure Expand. Expand (a) finds matches h(x̄) of Q in GΣ;

and (b) checks whether h(x̄) |= X and if so, it adds attributes

x.A to FΣ and/or instantiates attributes x.A with constants for

each literal x.A = c or x.A = y.B in Y , i.e., it “enforces” ϕ
on the match h(x̄). If a conflict emerges, i.e., if there exists

x.A such that x.A is assigned two distinct constants, SeqSat
terminates with false. The process iterates until all GFDs in Σ
are processed. If no conflict occurs, SeqSat returns true.

Algorithm SeqSat supports early termination. It terminates

with false as soon as a conflict is detected. Moreover, when a

match h(x̄) is found, it expands FΣ
A by enforcing ϕ at match

h(x̄), instead of waiting until all matches of Q are in place.

The correctness of SeqSat is assured by the following: (a)

it suffices to inspect populations of GΣ by Theorem 1, and (b)

attributes are populated by enforcing GFD ϕ on each match

h(x̄) of Q, which is necessary for any population of GΣ to

satisfy Σ, by the semantics of GFD satisfaction.

We next provide more details about algorithm SeqSat.

Equivalence class. To speedup checking, we represent FΣ as

an equivalence relation Eq. For each node x ∈ VΣ and each

attribute A of x, its equivalence class, denoted by [x.A]Eq, is

a set of attributes y.B and constants c, such that x.A = y.B
and x.A = c are enforced by GFDs in Σ (see below). One can

easily verify that Eq is reflexive, symmetric and transitive.

Given a GFD ϕ = Q[x̄](X → Y) in Σ, Expand generates

matches h(x̄) of Q in GΣ along the same lines as VF2 [17]

for subgraph isomorphism, except enforcing homomorphism

rather than isomorphism. Then for each match h(x̄) found,

Expand checks whether h(x̄) |= X . If so, it expands Eq by
enforcing ϕ at h(x̄), with the following rules.

(Rule 1) If l is x.A = c, it checks whether [x.A]Eq does not

yet exist in Eq. If so, it adds [x.A]Eq to Eq and c to [x.A]Eq. If

[x.A]Eq has a constant d �= c, it stops the process and SeqSat
terminates with false immediately.

(Rule 2) If l is x.A = y.B, it checks whether [x.A]Eq and

[y.B]Eq are in Eq. If not, it adds the missing ones to Eq,

and merges [x.A]Eq and [y.B]Eq into one. If the merged class

includes distinct constants, SeqSat terminates with false.

That is, Expand generates new attributes, instantiates and

equalizes attributes as required the satisfiability of GFDs.

There is a complication when checking h(x̄) |= X . For a

literal x.A = c in X , x.A may not yet exist in FΣ
A or is not

instantiated (i.e., [x.A]Eq does not include any constant). To

cope with this, we do the following.

(a) Algorithm SeqSat processes GFDs of the form Q[x̄](∅ →
Y) first, if any in Σ. These add an initial batch of attributes.

(b) Expand maintains a list of matches h(x̄) and an inverted
index with attribute h(x).A that appears in X , but either

[h(x).A]Eq does not exist or is not instantiated. When h(x).A
is instantiated in a later stage, h(x̄) is efficiently retrieved by

the inverted index using h(x).A, and is checked again.

(c) At the end of the process of SeqSat, some attribute x.A
in Eq may still not be instantiated. The missing values do not

affect the decision of SeqSat on the satisfiability of Σ, since

we can always complete FΣ
A by assigning a distinct constant

to each of such [x.A]Eq, without inflicting conflicts.

Example 4: Consider Σ = {ϕ7, ϕ9, ϕ10}, where ϕ7 is given

in Example 2, ϕ9 = Q6[x̄](y.B = 1 → w.C = 1) and ϕ10 =

Q7[x̄](w.C = 1 → x.A = 1), with Q6 and Q7 of Fig. 2. Its

canonical graph GΣ is similar to the one given in Example 3,

596

with Q7 and two distinct copies of Q6 (from ϕ7 and ϕ9).

Assume that SeqSat checks ϕ7, ϕ10, ϕ9 in this order.

(1) For ϕ7, Expand finds a match of Q6 in GΣ: h(x) �→
x, h(y) �→ y, h(z) �→ z, h(w) �→ w. Since h(x̄) |= ∅, it adds

[x.A]Eq ([y.B]Eq) to Eq and “0” (“1”) to [x.A]Eq ([y.B]Eq).

(2) When processing ϕ10, Expand finds a match of Q7 in GΣ:

h′(x) �→ x, h′(y) �→ y, h′(z) �→ w, h′(w) �→ w. As [w.C]Eq is

not in Eq, it adds (h′(x̄), ϕ10) to an inverted index with w.C.

(3) When processing ϕ9, Expand finds a match of Q6:

h1(x) �→ x, h1(y) �→ y, h1(z) �→ y, h(w) �→ w. It adds w.C
to [y.B]Eq. This triggers re-checking of (h′(x̄), ϕ10) with the

inverted index. Now h′(x̄) |= w.C = 1. Expand adds “1” to

[x.A]Eq, to enforce ϕ10. However, “0” is already in [x.A]Eq,

a conflict. Hence SeqSat stops and returns false. �

Analysis. Algorithm SeqSat enforces GFDs of Σ by the

semantics of GFDs. By Theorem 1, it returns true iff Σ has

a model. One can verify that SeqSat guarantees to converge

at the same result no matter in what order the GFDs of Σ
are applied, i.e., Church-Rosser, along the same lines as the

characterization of GFD satisfiability in [2]. We will see how

to order GFDs applied in Section V. SeqSat terminates early

as soon as a conflict is spotted, and does not enumerate all

matches by pruning to eliminate irrelevant matches early.

V. CHECKING SATISFIABILITY IN PARALLEL

Algorithm SeqSat is an exact algorithm. When Σ is large,

it is costly due to the intractable nature of the satisfiability

problem. This motivates us to parallelize SeqSat.
Below we first review a characterization of parallel algo-

rithms (Section V-A). We then develop a parallel algorithm

ParSat with performance guarantees (Section V-B).

A. Parallel Scalability
As remarked in Section I, a parallel algorithm for a problem

may not necessarily reduce its sequential running time. This

suggests that we characterize the effectiveness of parallel al-

gorithms. To this end, we revise a notion of parallel scalability

introduced by [13] and widely used in practice.

We say that an algorithm Ap for GFD satisfiability checking

is parallel scalable relative to sequential algorithm SeqSat if

its running time can be expressed as:

T (|Σ|, p) = O
(t(|Σ|)

p

)
,

where t(|Σ|) denotes the cost of SeqSat, and p is the number

of processors employed by Ap for parallel computation.

Intuitively, a parallel scalable Ap linearly reduces the se-

quential cost of SeqSat when p increases. The main conclusion

we can draw from the parallel scalability is that by taking

SeqSat as a yardstick, Ap guarantees to run faster when adding

more processors, and hence scale with large Σ.

B. A Parallel Scalable Algorithm for Satisfiability
We develop an algorithm for checking the satisfiability of

a set Σ of GFDs, denoted as ParSat, by parallelizing SeqSat.
We show that ParSat is parallel scalable relative to SeqSat.

The novelty of algorithm ParSat includes the following. (1)

It makes use of both data partitioned parallelism and pipelined
parallelism to speed up the process and facilitate interactions

between GFDs. (2) It proposes dynamic workload balancing
and work unit splitting, to handle stragglers, i.e., work units

that take substantially longer than the others (see below). (3)

It deduces a topological order on work units to reduce the

impact of their interaction, based on a dependency graph. (4)

It retains the early termination property of SeqSat.

Below we present the details of algorithm ParSat.

Setting. ParSat works with a coordinator Sc and p workers

(P1, · · · , Pp). Following [1], [18], we replicate canonical

graph GΣ at each worker, to reduce graph partition compli-

cation and communication costs. This is feasible since GΣ

is much smaller than real-life data graphs such as social net-

works, which have billions of nodes and trillions of edges [19].

We adopt the notion of work units of [1]. Consider a GFD
ϕ = Q[x̄](X → Y). To simplify the discussion, assume

w.l.o.g. that Q is connected. A node x ∈ x̄ is designated as

a pivot of Q. A work unit w of Σ is a pair (Q[z], ϕ), where

z is a node in GΣ that matches the label of x. Intuitively, w
indicates a set of candidate matches of Q to be checked.

Intuitively, we use pivot x to explore the data locality of

graph homomorphism: for any v in GΣ, if there exists a match

h of Q in GΣ such that h(x) = v, then h(x̄) consists of only

nodes in the dQ-neighbor of v. Here dQ is the radius of Q
at v, i.e., the longest shortest path from v to any node in Q.

The dQ neighbor of v includes all nodes and edges within dQ
hops of v. Thus each candidate match v of x determines a

work unit, namely, the dQ-neighbor of v, and we can check

these work units in parallel. Ideally, we pick a pivot x that

is selective, i.e., it carries a label that does not occur often in

GΣ; nonetheless, any node x in x̄ can serve as a pivot.

When Q is disconnected, a work unit is (Q[z̄], ϕ), where z̄
includes a pivot for each connected component of Q [1].

Algorithm. As shown in Fig. 3, ParSat works as follows.

(1) Coordinator. Given Σ, coordinator Sc first (a) builds its

canonical graph GΣ and replicates GΣ at each worker (line 1),

and (b) constructs a priority queue W of all work units of Σ
(line 2), following a topological order based on a dependency

graph of Σ (see details below). It then activates each worker

Pi with one work unit w from the front of W (line 3). In fact,

work units can be assigned to worker in a small batch rather

than a single w, to reduce the communication cost.

The coordinator then interacts with workers and dynam-

ically assigns workload, starting from the units of W with

the highest priority (line 4-10). A worker Pi may send two

flags to Sc: (a) f c
i if Pi detects a conflict when expanding

equivalence relation Eq (Section IV-C); and (b) fd
i if Pi is

done with its work unit. If Sc receives f c
i for any i ∈ [1, p],

ParSat terminates immediately with false (lines 5-6). If Sc

receives fd
i , it assigns the next unit w′ in W to Pi and removes

w′ from W (lines 7-8). The process iterates until either a

conflict is detected, or W becomes empty, i.e., all work units

597

have been processed. At this point algorithm ParSat concludes

that Σ is satisfiable and returns true (line 11).

As will be seen shortly, a worker may split its unit w into

a list Li of sub-units if w is a straggler. Upon receiving Li,

Sc adds Li to the front of the priority queue W (lines 9-10).

Putting these together, ParSat implements data partitioned

parallelism (by distributing work units of W), dynamic work-

load assignment and early termination.

(2) Workers. Each worker Pi maintains the following: (a) local

canonical graph GΣ in which an equivalence relation Eqi
represents its local FΣ

A , and (b) a buffer ΔEqi that receives

and stores updates to Eqi from other workers. It processes

its work unit w locally, and interacts with coordinator Sc and

other workers asynchronously as follows.

(a) Local checking. Upon receiving a work unit (Q[z], ϕ), Pi

conducts local checking in the dQ-neighbor of z. This suffices

to find matches h(x̄) of Q in GΣ when the pivot x of Q is

mapped to z, by the data locality of graph homomorphism.

Algorithm ParSat implements Expand (Section IV-C) with

two procedures: (i) HomMatch finds matches h(x̄) of Q in GΣ

pivoted at z, and (ii) CheckAttr expands Eqi by enforcing ϕ at

match h(x̄) based on the two expansion rules of Section IV-C.

It differs from Expand in the following.

◦ The two procedures work in pipeline: as soon as a match

h(x̄) is generated by HomMatch, CheckAttr is triggered

to check h(x̄) in a different thread, instead of waiting for

all matches of Q to be found (lines 2-3 of HomMatch).

◦ When enforcing ϕ at h(x̄), CheckAttr computes Eq
(1)
i =

Eqi ∪ ΔEqi, incorporating changes ΔEqi from other

workers, and CheckAttr expands Eq
(1)
i to Eq

(2)
i with ϕ.

If a conflict emerges, i.e., if some class [y.B]
Eq

(2)
i

includes

distinct constants, worker Pi sends flag f c
i to coordinator Sc

and terminates the process (line 4). After all matches of Q
pivoted at z are processed, Pi sends flag fd

i to Sc (line 9).

Like procedure Expand, CheckAttr also maintains an in-

verted index on matches h(x̄) that need to be re-checked upon

the availability of (instantiated) attributes needed.

(b) Interaction. Worker Pi broadcasts its local changes ΔEqi
to other workers (line 5). It keeps receiving changes ΔEqi

from other processors, and updates its local Eqi by CheckAttr.
The communication is asynchronous, i.e., there is no need

to coordinate the exchange through Sc. This does not affect

the correctness of ParSat since equivalence relation Eq is

monotonically expanding, and a conflict f c
i terminates the

process no matter at which worker f c
i emerges.

Example 5: Recall Σ = {ϕ7, ϕ9, ϕ10} from Example 4.

Its canonical graph GΣ includes two copies of Q6[x, y, z, w]
and a copy of Q7[x, y, z, w], in which variable x (designated

as a pivot) in the three patterns is renamed as x1, x2, x3,

respectively; similarly for variables y, z, w.

We show how ParSat works with coordinator Sc and two

workers P1 and P2. It first creates a priority queue W , where

W has 9 work units wi = (Q6[xi], ϕ7), w3+i = (Q6[xi], ϕ9)

Algorithm ParSat
Input: A set Σ of GFDs.
Output: true if Σ is satisfiable, and false otherwise.

/* executed at coordinator Sc */
1. construct canonical graph GΣ and replicate it at each worker;
2. create priority queue W for work units, via dependency graph;
3. invoke HomMatch with initial work unit w at each worker Pi

in parallel; remove w from W ;
4. repeat until W = ∅;
5. if Sc receives a flag fc

i then
6. terminate with false immediately;

7. if Sc receives a flag fd
i then

8. send the first unit of W to Pi; remove the unit from W ;
9. if Sc receives a list Li of work units from a worker then
10. add Li to the front of W ;
11. return true;

/* executed at each worker Pi in parallel*/
Procedure HomMatch
Input: A work unit w = (Q[z], ϕ); maintains GΣ, Eqi and ΔEqi.
Output: ΔEqi, and Boolean flags.

1. repeat until all matches of Q pivoted at z are processed
2. finds the next match h(x̄) of Q at z;

3. (ΔEqi, f
c
i) := CheckAttr(h(x̄), ϕ,ΔEqi);

4. if fc
i then send fc

i to coordinator Sc and terminate;
5. broadcast ΔEqi to all workers;
6. if time spent exceeds TTL then
7. construct a list Li of work units and send Li to Sc;
8. complete the remaining work of w excluding those in Li;

9. send fd
i to Sc and terminate;

Procedure CheckAttr
Input: A match h(x̄), GFD ϕ, buffer ΔEqi.
Output: Changes ΔEqi, and Boolean flag fc

i .

1. Eq
(1)
i := Eqi ∪ΔEqi; /* expand Eqi with ΔEqi */

2. expand Eq
(1)
i to get Eq

(2)
i by enforcing ϕ at ϕ;

3. compute ΔEqi; /* the difference between Eq
(2)
i and Eq */;

4. Eqi := Eq
(2)
i ;

5. if there exists a conflict in Eqi then return (∅, fc
o = true);

6. else return (ΔEqi, f
c
o = false);

Fig. 3: Algorithm ParSat

and w6+i = (Q7[xi], ϕ10) in this order, for i ∈ [1, 3] (see

Example 7). Then Sc sends w1 to P1 and w2 to P2. It then

dynamically assigns the remaining units to P1 and P2 one by

one following the order of W , upon receiving fd
j for j ∈ [1, 2].

Suppose that at a stage, worker P1 has processed w1, w3 and

w5, and P2 has handled w2, w4 and w6. After P1 is done with

w5, it sends fd
1 to Sc and gets a new work unit w7. At this

point, Eq1 at P1 includes [x1.A]Eq1 = {0, x2.A, x3.A} and

[y1.B]Eq1 = {1, y2.B, y3.B, z1.C, z3.C, w1.C, w2.C, w3.C},

after incorporating changes made at P2. Now Expand finds

a match h(x̄): h(x) �→ x1, h(y) �→ y2, h(z) �→ w1 and

h(w) �→ w1 at P1. Assume w.l.o.g. that ΔEq1 = ∅, i.e., no

new changes are passed from P2. By enforcing ϕ10 at match

h(x̄), CheckAttr obtains ΔEq1, which requires to add 1 to

[x.A]Eq1 . At this point, it finds a conflict: both 0 and 1 are in

[x.A]Eq1 . Hence CheckAttr sends f c
1 to Sc. When Sc receives

f c
1 , ParSat returns false and terminates. �

Optimization. We speed up parallel checking as follows.

Unit splitting. A work unit w = (Q[z], ϕ) assigned to a worker

598

u11u11

u21u21 u22u22 u2mu2m

u31u31 u32u32 u33u33

�
	�yy�

�
	�zz�

�
	�xx�

(a) Work unit split

w1w1

w2w2 w3w3

w4w4

w5w5 w6w6

w7w7

w8w8 w9w9

(b) Dependency graph

Fig. 4: Work unit split and dependency graph

Pi may become a straggler and is “skewed”. ParSat handles

stragglers as follows. Recall that matching dominates the cost

of w, and HomMatch computes matches via backtracking like

in VF2 (Section IV-C). When it is triggered, it starts keeping

track of the time τ spent on w. If τ exceeds a threshold TTL,

it picks a set Li of partial match h(ȳ) of Q, i.e., ȳ is a proper

sub-list x̄. It treats (Q[ȳ], ϕ) as a work unit, and sends Li to

Sc (lines 6-7). Worker Pi resets τ = 0 and continues with the

remaining work of w excluding those in Li (line 8).

Coordinator Sc adds Li to the front of W , and distributes

the units to workers as usual. Upon receiving such (Q[w̄], ϕ),
worker Pj resumes the checking from Q[w̄].

Example 6: Consider a work unit w = (Q[u11], ϕ), where

ϕ = Q[x, y, z](X → Y), in which x is pivoted at u11. Suppose

that at one point, HomMatch finds a match h(x, y, z): x �→
u11, y �→ u21 and z �→ u32 as shown in Fig. 4(a), and the

time spent on w has exceeded TTL. Hence it decides to split

w. It creates a list Li consisting of wj = (Q[u11, u2j], ϕ) for

j ∈ [2,m], where wj corresponds to a partial match hi[x, y]:
x �→ u11 and y �→ u2i, and it does not include match for z;

here partial matches hj are found by backtracking one step.

HomMatch sends Li to Sc, restarts counter τ and continues

to complete the processing of the current match h(x, y, z), to

process, e.g., matches in which z ranges over u32 and u33.

Upon receiving Li, coordinator Sc adds its units to the front

of the priority queue, and assigns them to available workers

as usual. When, e.g., wj is sent to a worker Pk, Pk resumes

the processing of wj starting from partial match hi[x, y]. �

Dependency graph. We now show how to build priority queue

W of work units (line 2 of ParSat). We construct a de-
pendency graph Gd = (V,E), where V is the set of work

units, and (w1, w2) is a directed edge if (a) there exists an

attribute x.A that appears in both Y1 and X2, where w1 =
(Q1[z1], φ1), w2 = (Q2[z2], φ2), φ1 = Q1[x̄1](X1 → Y1),
φ2 = Q2[x̄2](X2 → Y2), i.e., the antecedent X2 of φ2 may

depend on the consequence Y1 of φ1; and (b) z2 is within dQ1

hops of z1, i.e., the two pivots are close enough to interact.

ParSat deduces a topological order from Gd and sorts W
accordingly. Note that work units for GFDs Q[x̄](∅ → Y) are

at the front of queue W , with the highest priority.

Example 7: For the 9 work units of Example 5, the depen-

dency graph Gd is depicted in Fig. 4. There exists an edge

(w1, w4) since w1 and w4 are both pivoted at x1, w1 carries

ϕ7 = Q6[x, y, z, w](∅ → x.A = 0 ∧ y.B = 1), w4 carries

ϕ9 = Q6[x̄](y.B = 1 → w.C = 1), and y.B is in both the

consequence of ϕ7 and the antecedent of ϕ9; similarly for

other edges in Fig. 4. In contrast, there is no edge between

w2 and w4 since their pivots are not close, although they also

carry ϕ7 and ϕ9, respectively. From Gd a topological order is

deduced, to sort the work units of Example 5. �

As another optimization strategy, ParSat also extracts com-

mon sub-patterns that appear in multiple GFDs of Σ, finds

matches of the sub-patterns at common pivots early, and re-

uses the matches when processing relevant GFDs. This is

a common practice of multi-query optimization (e.g., [20]).

To avoid the complexity of finding common sub-patterns,

following [21], we use graph simulation [22] to check whether

a pattern Q1 is homomorphic to a sub-pattern Q′
2 of Q2.

In a nutshell, if Q1 does not match Q′
2 by simulation, then

Q1 is not homomorphic to Q′
2. Since graph simulation is

in O(|Q1| · |Q′
2|) time, this method reduces the (possibly

exponential) cost of checking homomorphism.

Analysis. The correctness of ParSat is warranted by Theorem 1

and the fact that equivalence relation Eq is monotonically

increasing, similar to the inflational semantics of fixpoint

computation (see, e.g., [10]). ParSat parallelizes SeqSat, and

is parallel scalable relative to SeqSat by dynamic work unit

assignment to balance workload, and work unit splitting to

handle stragglers. One can verify by induction on the num-

ber of work units that the parallel runtime of ParSat is in

O(t(|Σ|)
p), where t(|Σ|) denotes the cost of SeqSat.

VI. PARALLEL IMPLICATION CHECKING

A set Σ of GFDs implies another GFD ϕ, denoted by Σ |=
ϕ, if for all graphs G, if G |= Σ then G |= ϕ.

The implication problem for GFDs is to decide, given a

finite set Σ of GFDs and another GFD ϕ, whether Σ |= ϕ.

We first prove a small model property of the implication

problem (Section VI-A). Capitalizing on the property, we

develop a sequential exact algorithm SeqImp for implication

checking (Section VI-B). We then parallelize SeqImp and

develop a parallel scalable algorithm ParImp (Section VI-C).

A. A Small Model Property of GFD Implication
Recall that for traditional FDs over relations, the implication

analysis is simple and takes linear time (cf. [10]). When it

comes to GFDs, however, the story is more complicated.

Example 8: Consider a set Σ = {ϕ11, ϕ12} of GFDs, where

ϕ11 = Q8[x̄](∅ → x.A = 1), ϕ12 = Q9[x̄](x.A = 1 ∧ y.B =
2 → y.C = 2), and pattern Q8 and Q9 are shown in Fig. 2.

Consider ϕ13 = Q7[x̄](z.B = 2 → z.C = 2), with Q7 in

Fig. 2. Then Σ |= ϕ13. Indeed, for any graph G such that

G |= Σ, and for any match h(x̄) of Q7 in G, h(x̄) can be

written as h(x) �→ u1, h(y) �→ u2, h(z) �→ u3, h(w) �→ u4,

where ui is in G for 1 ≤ i ≤ 4. If h(x̄) |= z.B = 2, then

by enforcing ϕ11 and ϕ12 on h(x̄), we have that u1.A = 1,

u3.B = 2 and u3.C = 2. Then h(x̄) |= z.C = 2. Hence

G |= ϕ13. Note that ϕ13 is not implied by each of ϕ11 and

ϕ12 alone. However, when ϕ11 and ϕ12 are put together, they

can deduce the consequence z.C = 2 of ϕ13.

599

Now consider ϕ14 = Q7[x̄](x.A = 0 → z.C = 2). Again

one can verify that Σ |= ϕ14. This is because for any graph

G and any match h(x̄) of Q7 in G, if G |= Σ then h(x̄) �|=
h(x).A = 0, since ϕ11 enforces h(x).A = 0. That is, Q7,

x.A = 0 and Σ are “inconsistent” when put together. �

We tackle the implication problem also by proving a small

model property. This is more involved than its counterpart for

satisfiability. We first review a few notations of [2].

Canonical graphs. Consider ϕ = Q[x̄](X → Y), where

Q = (VQ, EQ, LQ). The canonical graph of ϕ is GX
Q =

(VQ, EQ, LQ, F
X
A), where FX

A is defined as follows. For each

node x ∈ VQ (i.e., each x ∈ x̄), (a) if x.A = c is in X , then

FX
A (x) has attribute A with x.A = c; (b) if x.A = y.B is in X ,

then FX
A (x) has attributes A and B such that x.A = y.B; and

moreover, (c) FX
A is closed under the transitivity of equality,

i.e., if x.A = y.B and y.B = z.C, then x.A = z.C; similarly

if x.A = c and z.C = c, then x.A = z.C.

We keep wildcard of Q in GQ just like in GΣ.

Along the same lines as Section IV-B, we define a (Σ, ϕ)-
bounded population of GX

Q for canonical graph GX
Q of ϕ as a

population of GX
Q such that its size is in O(|Σ|+ |ϕ|).

A small model property. We show that to check whether

Σ |= ϕ, it suffices to populate the canonical graph GX
Q .

Theorem 3: For any set Σ of GFDs and GFD ϕ = Q[x̄](X →
Y), Σ |= ϕ iff for all (Σ, ϕ)-bounded populations G of GX

Q ,
either (a) G �|= Σ, or (b) G |= Σ and G |= ϕ. �

Proof: If Σ |= ϕ, then for all graphs G, if G |= Σ then

G |= ϕ. These graphs include (Σ, ϕ)-bounded populations of

GX
Q . From this it follows that conditions (a) and (b) hold.

Conversely, assume that Σ �|= ϕ, i.e., there exists a graph

G such that G |= Σ but G �|= ϕ. We construct a (Σ, ϕ)-
bounded population G′ of GX

Q such that G′ |= Σ but G′ �|= ϕ,

violating conditions (a) and (b). The construction makes use

of the “witness” of G �|= ϕ (the match of the pattern of ϕ in G
that violates ϕ), and requires attribute value normalization as

in the proof of Theorem 1, such that the total size of attributes

in G are in O(|Σ|+ |ϕ|) (see [15] for details). �

Checking implication. To check whether Σ |= ϕ, Theorem 3

allows us to inspect (Σ, ϕ)-bounded populations G of GX
Q

only. However, it requires us to check all such small graphs,

exponentially many in total. To further reduce the search space,

we next prove a corollary of Theorem 3.

We first present some notations. Recall equivalence class

Eq representing FΣ
A . Given a GFD φ = Q′[x̄′](X ′ → Y ′)

in Σ and a match h′ of Q′ in GX
Q , Eq can be expanded by

enforcing φ at h′ with the two rules given in Section IV-C.

We refer to a list H of such pairs (h′, φ) as a partial
enforcement of Σ on GX

Q . We use EqH to denote the expansion
of Eq by H , by enforcing φ at h′ one by one.

We say that EqH is conflicting if there exists [x.A]EqH that

includes distinct constants c and d. Intuitively, this means that

the GFDs in H and Q,X are inconsistent.

Recall that ϕ = Q[x̄](X → Y). We write Y ⊆ EqH if for

any literal u = v, v ∈ [u]EqH , where u = v is either x.A = c
or x.A = y.B. That is, the literal can be deduced from the

equivalence relation EqH via the transitivity of equality.

Corollary 4: For any set Σ of GFDs and ϕ = Q[x̄](X → Y),
Σ |= ϕ iff there exists a partial enforcement H of Σ on GX

Q

such that either EqH is conflicting, or Y ⊆ EqH . �

The two cases of Corollary 4 are illustrated in Example 8.

Proof: If Σ |= ϕ, then such an H exists by Theorem 3, since

each EqH is a (Σ, ϕ)-bounded population of GX
Q .

Conversely, we show the following by induction on the

length of H . (1) If EqH is conflicting, then for all (Σ, ϕ)-
bounded populations G of GX

Q , G �|= Σ. (2) If Y ⊆ EqH , then

for all (Σ, ϕ)-bounded populations G of GX
Q , if G |= Σ, then

G |= ϕ. From this and Theorem 3 it follows that Σ |= ϕ. �

Corollary 4 allows us to check Σ |= ϕ by selectively

inspecting H , instead of enumerating all (Σ, ϕ)-bounded

populations. Leveraging Corollary 4, we verify the following

along the same lines as the proof of Corollary 2.

Corollary 5: The GFD implication problem is in NP. �

B. A Sequential Algorithm for Implication
Capitalizing on Corollary 4, we develop an exact sequential

algorithm for checking GFD implication.

Algorithm. The algorithm, denoted by SeqImp, takes as input

a set Σ of GFDs and another GFD ϕ. It returns true if Σ |=
ϕ, and false otherwise. Let ϕ = Q[x̄](X → Y). Similar to

SeqSat for satisfiability checking (Section IV-C), algorithm

SeqImp enforces GFDs of Σ on matches of Q in the canonical

graph GX
Q one by one, and terminates as soon as Σ |= ϕ can be

decided. It has the following subtle differences from SeqImp.

(a) In contrast to SeqImp that starts with Eq initially empty,

SeqImp uses EqH to represent partial enforcement, initialized

as EqX , the (nonempty) equivalence relation encoding FX
A .

(b) SeqImp terminates with true when either (i) EqH is

conflicting, or (ii) Y ⊆ EqH . It terminates with false when

all GFDs are processed, if neither conflict is detected nor

Y �⊆ EqH in the entire process, concluding that Σ �|= ϕ.

Example 9: Recall Σ and ϕ13 from Example 8. The canonical

graph of ϕ13 is Q7 of Fig. 2 with FX
A = {z.B = 2}. Given

these, SeqImp initializes EqH with [z.B]Eq = {2}. It expands

EqH at (a) a match h(x̄) of Q8: x8 �→ x and y8 �→ y, and

(b) a match h′(x̄) of Q9: x9 �→ x, y9 �→ z, where xi and yi
denote variables x and y, respectively, in Qi for i ∈ [8, 9].
After enforcing ϕ11 and ϕ12 at h(x̄) and h′(x̄), respectively,

it finds that (z.C = 2) ⊆ EqH , and terminates with true.

Now for ϕ14. SeqImp starts with FX′
A = {x.A = 0}. After

enforcing ϕ11 at h(x̄), it adds “1” to [x.A]Eq, a conflict with

[x.A]Eq = {0}. Hence SeqImp returns true and terminates. �

Analysis. The correctness of SeqImp follows from Corollary 4.

Its complexity is dominated by generating matches of graph

patterns in Σ, while Y ⊆ EqH and conflicts in EqH can be

checked efficiently. In particular, the equivalence relation EqH

600

can be computed in linear time with index. Moreover, one can

verify that the length of EqH is bounded by |Q|·|Σ| (see [15]).

C. Checking Implication in Parallel

We next develop algorithm ParImp that is parallel scalable

relative to SeqImp. Hence ParImp is capable of dealing with

large Σ by adding processors as needed.

Algorithm. ParImp works with a coordinator Sc and p workers

(P1, . . . , Pp), like ParSat. It first constructs the canonical

graph GX
Q of ϕ, initializes EqH as EqX (Section VI-B), and

replicates GX
Q and EqH at each worker.

The idea is to expand EqH in parallel, by distributing work

units across p workers. A work unit (Qφ[z], φ) is defined in

the same way as in Section V, for GFDs φ = Qφ[x̄φ](Xφ →
Yφ) in Σ at pivots z in GX

Q . The work units are organized in

a priority queue W as before, based on a revised notion of

dependency graph (see below). Algorithm ParImp dynamically

assigns work units of W to workers, starting with the ones

with the highest priority, in small batches. Workers process

their assigned work units in parallel, broadcast their local EqH
expansions to other workers, and send flags to Sc. The process

proceeds until (a) either at a partial enforcement H of G at

some worker, EqH has conflict or Y ⊆ EqH , or (b) all work

units in W have been examined. It returns true in case (a),

and false in case (b), by Corollary 4.

ParImp employs the same dynamic workload assignment

and unit splitting strategies of ParSat to handle stragglers. It

also supports a combination of data partitioned parallelism and

pipelined parallelism. It differs from ParSat in the following.

(a) Dependency graph. ParImp deduces a topological order

on W also based on the dependency graph of work units. The

only difference is that a unit (Qφ[z], φ) is associated with the

highest priority if φ = Qφ[x̄φ](Xφ → Yφ) and X subsumes

Xφ, i.e., each literal in Xφ can be deduced from EqX .

(b) Early termination. Each worker Pi sends flag f c
i to coor-

dinator if either (i) a conflict is detected in its local copy of

EqH , or (ii) Y ⊆ EqH . Upon receiving f c
i , algorithm ParImp

terminates immediately with true, regardless of what Pi is.

Example 10: Assume a coordinator Sc and two workers P1

and P2. Given Σ and ϕ13 of Example 9, ParImp creates the

canonical graph of ϕ13 and replicates it at P1 and P2, where

Eq(H,i) at Pi is initialized as EqH for i ∈ [1, 2]. It creates a

priority queue W = [w1 = (Q8[x], ϕ11), w2 = (Q9[x], ϕ12)].
Then Sc sends w1 to P1 and w2 to P2. After P1 enforces

ϕ11 on match h(x̄) given in Example 9, it sends changes

ΔEq(H,1) = {[x.A]Eq(H,1)
= {1}, [z.B]Eq(H,1)

= {2}} to P2.

Worker P2 enforces ϕ12 on match h′(x̄) (Example 9). By

incorporating changes from P1, P2 adds z.C to [z.B]Eq(H,2)
,

which contains value 2. As a result, (z.C = 2) ⊆ Eq(H,2).

Hence it sends f c
2 to Sc and ParImp terminates with true.

Now consider ϕ14 instead of ϕ13. ParImp creates priority

queue W = [w1 = (Q9[x], ϕ12), w2 = (Q8[x], ϕ11)]. Note

that W is different from the queue for ϕ13, since the initial

EqH includes [x.A]EqH = {0}. Coordinator Sc sends w1 to P1

algorithms DBpedia YAGO2 Pokec
SeqSat 1728 1341 2475

SeqImp 728 644 1355

ChaseImpRDF 1026 987 1907

Fig. 5: Sequential running time on real-life GFDs

and w2 to P2. When P2 enforces ϕ11 on match h′(x̄), it adds

“1” to [x.A]Eq(H,2)
, but “0” is already in [x.A]Eq(H,2)

. Thus P2

sends f c
2 to Sc and ParImp stops with true. �

Analysis. The correctness of ParImp is assured by Corol-

lary 4 and monotonic expansion of EqH . ParImp is parallel

scalable relative to SeqImp by dynamic workload balancing

and unit splitting. Formally, one can show that ParSat takes

O(t(|Σ|,|ϕ|)
p) time with p workers, where t(|Σ|, |ϕ|) is the cost

of SeqImp, by induction on the number of work units.

VII. EXPERIMENTAL STUDY

Using GFDs on real-life and synthetic graphs, we conducted

four sets of experiments to evaluate the efficiency and scala-

bility of our algorithms. We evaluated the impact of (1) the

number of processors used in the parallel algorithms, (2) the

number of GFDs, (3) the complexity (patterns and literals) of

GFDs, and (4) TTL for work unit splitting (see [15] for more).

Experimental setting. We used three sets of GFDs discovered

by the algorithm of [23] from real-life graphs. (a) DBpedia, a

knowledge graph [24] with 1.72 million entities of 200 types,

and 31 million links of 160 types; (b) YAGO2, an extension

of knowledge base YAGO [25] with 1.99 million nodes of 13
types, and 5.65 million links of 36 types; and (c) Pokec [26],

a social graph with 1.63 million nodes of 269 types and 30.6

million edges of 11 types. We mined more than 8000, 6000

and 10000 frequent GFDs from DBpedia, YAGO2 and Pokec,

respectively, e.g., ϕ1–ϕ3 of Example 1 from DBpedia.

Each set Σ of GFDs discovered from graph G has a model,

i.e., G itself. Hence to test satisfiability, we expanded Σ by

adding up to 10 GFDs randomly generated using attributes and

edges from G (see GFD generator below), also denoted as Σ.

GFD generator. As no existing benchmarks are able to gen-

erate GFDs (see Section VIII), we also developed a generator

to produce sets Σ of GFDs Q[x̄](X → Y), controlled by (a)

|Σ| (up to 10000); (b) the maximum number k of nodes in

pattern Q, up to 6; and (c) the maximum number l of literals

in X and Y , up to 5. We controlled k and l to evaluate the

impact of the complexity of GFDs (see Exp-3).

Algorithms. We implemented the following, all in Java.

(1) Satisfiability: (a) sequential SeqSat (Section IV-C), (b)

parallel ParSat (Section V). To test the effectiveness of the

optimization strategies, we also implemented (c) ParSatnp,

a variant of ParSat without pipelining, i.e., for each work

unit w = (Q[z̄], ϕ), it first enumerates the matches of Q[z̄],
and then for each match h(x̄), it enforces ϕ at h(x̄); and (d)

ParSatnb, a variant of ParSat without work unit splitting.

(2) Implication: (a) sequential SeqImp (Section VI-B), (b)

parallel ParImp (Section VI-C), (c) a chase-based sequential

algorithm ChaseImpRDF for FD implication following [5], by

601

 0

 300

 600

 900

 1200

4 8 12 16 20

Ti
m

e
(s

ec
on

ds
)

ParSat
ParSatnp
ParSatnb

(a) Varying p (DBPedia)

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

Ti
m

e
(s

ec
on

ds
)

ParSat
ParSatnp
ParSatnb

(b) Varying p (YAGO2)

 0

 100

 200

 300

 400

 500

4 8 12 16 20

Ti
m

e
(s

ec
on

ds
)

ParImp
ParImpnp
ParImpnb

(c) Varying p (DBPedia)

 0

 100

 200

 300

 400

 500

4 8 12 16 20

Ti
m

e
(s

ec
on

ds
)

ParImp
ParImpnp
ParImpnb

(d) Varying p (YAGO2)

 0

 300

 600

 900

 1200

 1500

2000 4000 6000 8000 10000

Ti
m

e
(s

ec
on

ds
)

ParSat
SeqSat

ParSatnp
ParSatnb

(e) Varying |Σ| (Synthetic)

 0

 300

 600

 900

 1200

 1500

2000 4000 6000 8000 10000

Ti
m

e
(s

ec
on

ds
)

ParImp
SeqImp

ParImpnp
ParImpnb

ParImpRDF

(f) Varying |Σ| (Synthetic)

 0

 300

 600

 900

 1200

2 4 6 8 10

Ti
m

e
(s

ec
on

ds
)

ParSat
SeqSat

ParSatnp
SeqSatnb

(g) Varying k (DBpedia)

 0

 100

 200

 300

 400

 500

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

ParSat
SeqSat

ParSatnp
ParSatnb

(h) Varying l (DBpedia)

 0

 150

 300

 450

 600

2 4 6 8 10

Ti
m

e
(s

ec
on

ds
)

ParImp
SeqImp

ParImpnp
ParImpnb

(i) Varying k (DBpedia)

 0

 100

 200

 300

 400

 500

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

ParImp
SeqImp

ParImpnp
ParImpnb

(j) Varying l (DBpedia)

 0

 100

 200

 300

 400

 500

0.1 0.5 1 2 4 8

Ti
m

e
(s

ec
on

ds
)

ParSat
ParSatnp

(k) Varying TTL (DBpedia)

 20

 40

 60

 80

 100

 120

0.1 0.5 1 2 4 8

Ti
m

e
(s

ec
on

ds
)

ParImp
ParImpnp

(l) Varying TTL (DBpedia)

Fig. 6: Performance evaluation of GFD reasoning

representing the triple patterns in the FDs of [5] as graphs,

(d) ParImpnp, a variant of ParImp without pipelining, and (e)

ParImpnb, a variant of ParImp without work unit splitting.

All the algorithms sort GFDs with dependency graphs, in-

cluding sequential SeqSat and SeqImp, except ChaseImpRDF.

We deployed the algorithms on a cluster of 20 machines,

each with 32GB RAM and two 1.90GHz Intel(R) CPU running

64-bit CentOS7 with Linux kernel 3.10.0. Each experiment

was run 5 times and the average is reported here.

Experimental results. We next report our findings. We

first evaluated sequential algorithms SeqSat, SeqImp and

ChaseImpRDF using real-life GFDs. As shown in Fig. 5, (a)

SeqSat and SeqImp perform reasonably well, e.g., they take

1728 and 728 seconds on GFDs from DBpedia, respectively;

and (b) SeqImp outperforms ChaseImpRDF by 1.4, 1.5 and

1.4 times on GFDs from DBpedia, YAGO2 and Pokec, respec-

tively. We find that implementations of the chase [2] are much

slower than SeqSat and SeqImp (hence not shown). These

justify the effectiveness of our algorithms.

Exp-1: Parallel scalability. We then evaluated the parallel

scalability of algorithms ParSat, ParImp and their correspond-

ing variants. Fixing TTL = 2 seconds and varying the number

p of processors from 4 to 20, we report the results on real-

life GFDs on DBpedia and YAGO2 in Figures 6(a)–6(d),

respectively. The results on Pokec are consistent (not shown).

(1) Satisfiability. As shown in Figures 6(a) and 6(b), (a) ParSat
is 3.7 times and 3.2 faster on average when p increases from 4

to 20 on DBpedia and YAGO2, respectively. (b) Parallelization

substantially speeds up satisfiability checking: ParSat is 15

and 10.2 times faster than SeqSat, respectively, when p = 20 .

(c) ParSat is feasible in practice. It takes 163 and 131 seconds,

respectively, when p = 20. (d) ParSat outperforms ParSatnb

(resp. ParSatnp) by 3.8 and 3.7 (resp. 1.4 and 1.6) times on

average, and in particular, 5.3 and 4.8 (resp. 1.5 and 1.6) times

when p = 20, on DBpedia and YAGO2, respectively. These

verify the effectiveness of our optimization strategies.

(2) Implication. As shown in Figures 6(c) and 6(d) using GFDs
from DBpedia and YAGO2, respectively, ParImp is (a) 3 and

3.1 times faster when p varies from 4 to 20. (b) It does

substantially better than SeqImp, by 10.3 and 11.3 times when

p = 20, and (c) it outperforms ParImpnb (resp. ParImpnp) by

4.1 and 4.1 (resp. 1.7 and 1.8) times on average, respectively.

Note that SeqImp and ParImp are faster than SeqSat and

ParSat, respectively, as the canonical graph GX
Q for implica-

tion is smaller than GΣ for satisfiability (Sections IV and VI).

Exp-2: Scalability with |Σ|. Fixing k = 6 and l = 5,

we evaluated the scalability of the algorithms by varying the

number |Σ| of synthetic GFDs in Σ from 2000 to 10000. For

parallel algorithms, we used p = 4 processors.

(1) Satisfiability. As shown in Fig. 6(e), (a) the larger |Σ| is,

the longer all algorithms take, as expected; (b) nonetheless,

ParSat outperforms SeqSat by 3.14 times on average; (c)

ParSat is on average 1.24 and 1.26 times faster than ParSatnb
and ParSatnp, respectively; the improvement over ParSatnb is

not as significant as in Exp-1 since k is fixed to be 6, and work

unit splitting is more effective on GFDs with larger k; (d)

SeqSat and ParSat are insensitive to the growth of |Σ| when

Σ is not satisfiable (not shown), justifying the effectiveness

of our early termination strategy; and (d) SeqSat and ParSat
take 1321 and 430 seconds when |Σ| = 10000, respectively;

i.e., the parallel cost is reasonable when p = 4.

(2) Implication. As shown in Fig. 6(f), the implication al-

gorithms behave consistently with their satisfiability counter-

602

parts. All algorithms take longer on larger Σ, while SeqImp
and ParImp are less sensitive to |Σ| when Σ |= ϕ, due to early

termination. Moreover, (a) ParImp is 3.1 and 4.8 times faster

than SeqImp and ChaseImpRDF on average, respectively, (b)

ParImp outperforms ParImpnb and ParImpnp by 1.3 and 1.2

times on average, respectively, and (c) SeqImp and ParImp
take 982 and 342 seconds when |Σ| = 10000.

Exp-3: Impact of complexity of GFDs. We next evaluated

the impact of k and l on reasoning about GFDs. We used

synthetic GFDs generated with seed patterns, frequent edges

and active attributes from DBpedia (the results on YAGO2 and

Pokec are consistent and are not shown). We fixed |Σ| = 5000
and p = 4 when testing the parallel algorithms.

(1) Varying k. Fixing l = 3, we varied k from 4 to 10. The

results are reported in Fig. 6(g) for satisfiability, and Fig. 6(i)

for implication. We can see the following. (a) The larger k is,

the longer all algorithms take, as expected. (b) The larger k is,

the more effective our optimization strategies are. (c) When

k = 10, on average ParSat and ParImp take 398 and 201

seconds, and SeqSat and SeqImp take 1253 and 538 seconds,

respectively. Thus the algorithms are able to deal with GFDs
with fairly large patterns, especially the parallel algorithms.

(2) Varying l. Fixing k = 5, we varied l from 1 to 5. As shown

in Figures 6(h) and 6(j) for satisfiability and implication,

respectively, (a) all algorithms are not very sensitive to l. While

more literals take longer to process, they may also make the

process terminate earlier. (b) ParSat and ParImp perform the

best in all cases. (c) Our algorithms work well: when l = 5,

ParSat and ParImp take 108 and 77 seconds on average, and

SeqSat and SeqImp take 351 and 262 seconds, respectively.

Exp-4: Impact of straggler parameter TTL. Fixing p = 4,

we evaluated the impact of work unit splitting by varying TTL
from 0.1s to 8s. The results are reported in Fig. 6(k) for satisfi-

ability and Fig. 6(l) for implication, using GFDs from DBpedia
(the results on YAGO2 and Pokec are consistent; hence not

shown). Observe the following. (a) When TTL gets larger, on

one hand, the workload is less balanced due to a higher bar

on stragglers; on the other hand, less communication cost is

incurred since less work units are split. (b) The cost is no

longer reduced when TTL reaches a point. The optimal value

of TTL is 2 in both Figures 6(k) and and 6(l).

Summary. From the experiments we find the following. (a)

Our sequential algorithms work reasonably well on real-life

GFDs: SeqSat and SeqImp take 1848 and 909 seconds on

average, respectively. (b) Parallelization substantially improves

the performance. When p = 20, ParSat and ParImp take 167

and 76 seconds on average on real-life GFDs, respectively,

and are hence feasible in practice. (c) Better still, ParSat and

ParImp are parallel scalable. On real-life GFDs, they are 3.4

and 3.6 times faster on average, respectively, when p varies

from 4 to 20. (d) Our optimization strategies are effective.

The combination of data-partitioned and pipelined parallelism

improves the performance of ParSat and ParImp by 1.5 and

1.6 times, and work unit splitting speeds up 3.8 and 4.1

times, respectively. (e) Our algorithms are able to reason about

large sets Σ of GFDs with complex patterns and literals. For

instance, when |Σ| = 10000, k = 6 and l = 5, ParSat and

ParImp take 430 and 342 seconds, respectively, when p = 4.

VIII. RELATED WORK

Graph functional dependencies. While a “standard form” of

FDs for graphs is not yet in place, several proposals have been

published for RDF. Based on triple patterns and homomor-

phism, a class of FDs was proposed in [3], [4]. By composing

properties in RDF, [6] defines FDs with path patterns, which

were extended in [8] to support constants. The FDs of [7]

support tree patterns. A form of keys was defined in [27].

These proposals are for RDF, and do not support either cyclic

graph patterns [6]–[8] or constants [3], [4].

We adopt GFDs of [2] since the GFDs are defined on

general graphs beyond RDF, and support (possibly cyclic)

graph patterns and constant literals as in CFDs [16]. This form

of GFDs was introduced in [1], via subgraph isomorphism for

pattern matching. As noted in [2], it is more natural to interpret

GFDs and keys under the homomorphism semantics.

Static analyses. Over relations, the satisfiability and implica-

tion problems are in O(1) and linear time for FDs (cf. [10]),

and are NP-complete and coNP-complete for CFDs [16],

respectively. Over RDF, chase-based implication algorithms

are provided for the FDs of [4], [5]. However, the exact

complexity of the satisfiability and implication problems for

the dependencies of [3]–[8] remains open.
Over graphs, the problems are shown coNP-complete and

NP-complete for GFDs of [2], respectively. The upper bounds

are verified by characterizing GFD satisfiability and implica-

tion in terms of an extension of the chase [28] to graphs [2]. A

sound and complete axiom system was given in [2] for finite

implication of GEDs, an extension of GFDs.

This work extends [2] from the practical side. (a) We

establish small model properties for GFD satisfiability and

implication. We show that the static analyses can be conducted

by inspecting only graphs with size and structure determined

by the patterns in the given GFDs. These yield upper bound

proofs different from [2], without using the chase. (b) We de-

velop (parallel) algorithms to check GFD satisfiability and im-

plication. We propose a combination of pipelined parallelism

and data partitioned parallelism to speed up the process, and

a combination of dynamic work assignment and unit splitting

to reduce stragglers. These were not studied in [1], [2].

The chase. Related also the chase [28], a classical tool in the

relational dependency theory. The chase has been employed

in data exchange [29], [30], data repairing [31] and query

rewriting [32], with relational tuple-generating dependencies

(TGDs) and equality generating dependencies (EGD; see [33]

for a survey). As remarked earlier, the chase has also been

studied for FDs on RDF [4], [5] and for GEDs [2].

We have only empirically compared with the chase-based

method for FD implication on RDF [5] (Section VII), for the

603

following reasons. (a) No chase algorithms are in place for FD
satisfiability checking on graphs, except a theoretical method

of [2]. The method of [2] is not very practical since it non-

deterministically applies GEDs and requires graph coercion.

(b) GFDs are not expressible as relational EGDs because GFDs
support wildcard ’ ’ and “generate new attributes”. To see

this, consider ϕ = Q[x](∅ → x.A = x.A), where pattern

Q consists of a single node x labeled ’ ’. To enforce ϕ on

a graph G, each node must have attribute A, which is not

warranted since unlike relations, G may not have a schema. As

another evidence, the satisfiability problem is coNP-complete

for GFDs, but is NP-complete for EGDs [34]. (c) The chase

with TGDs is generally undecidable [32]. While some special

cases have been studied, e.g., oblivious terminating TGDs and

EGDs [35], their satisfiability problem is open. It is not clear

whether GFDs can be expressed in the special forms, and even

so, what results GFDs can inherit from them. (d) As observed

in [36], native graph techniques perform “significantly better

than relational databases” on graphs. Indeed, we make use of

the data locality of graph homomorphism to check GFDs (see

Section V), which is not offered by the relational chase. (e) We

develop parallel techniques to, e.g., reduce stragglers, which

were not studied by the prior work on the chase. These said,

the algorithms of this paper could be regarded as a parallel

implementation of the theoretical chase method of [2].

Parallel reasoning. We are not aware of any prior parallel

algorithms for reasoning about graph dependencies, not to

mention algorithms with parallel scalability. There are, how-

ever, several methods to deal with stragglers. Speculative

execution [37] prioritizes slowest tasks. Work stealing [38] and

shedding [39] adaptively re-balance work queues among work-

ers. Fine grained partition strategy [40] reduces performance

variation by restricting the interdependence among workers.

In contrast, we explore a new method, by dynamic straggler

(work unit) splitting and dynamic work unit assignment.

IX. CONCLUSION

We have shown the small model properties of the satisfia-

bility and implication problems for GFDs. We have developed

sequential and parallel algorithms for reasoning about GFDs,
and a set of new parallel reasoning techniques. Our experi-

mental study has verified the scalability and efficiency of the

algorithms. The work is among the first effort to reason about

dependencies in parallel, with parallel scalability.
We are currently extending the algorithms to reason about

GEDs [2] with recursively-defined keys, and their extensions

with built-in predicates (≤, <,≥, >, �=) and disjunction.

REFERENCES

[1] W. Fan, Y. Wu, and J. Xu, “Functional dependencies for graphs,” in
SIGMOD, 2016.

[2] W. Fan and P. Lu, “Dependencies for graphs,” in PODS, 2017.
[3] A. Cortés-Calabuig and J. Paredaens, “Semantics of constraints in

RDFS,” in AMW, 2012, pp. 75–90.
[4] W. Akhtar, A. Cortés-Calabuig, and J. Paredaens, “Constraints in RDF,”

in SDKB, 2010, pp. 23–39.
[5] J. Hellings, M. Gyssens, J. Paredaens, and Y. Wu, “Implication and

axiomatization of functional and constant constraints,” Ann. Math. Ar-
tif. Intell., pp. 1–29, 2015.

[6] Y. Yu and J. Heflin, “Extending functional dependency to detect abnor-
mal data in RDF graphs,” in ISWC, 2011.

[7] D. Calvanese, W. Fischl, R. Pichler, E. Sallinger, and M. Šimkus,
“Capturing relational schemas and functional dependencies in RDFS,”
in AAAI, 2014.

[8] B. He, L. Zou, and D. Zhao, “Using conditional functional dependency
to discover abnormal data in RDF graphs,” in SWIM, 2014, pp. 1–7.

[9] W. Fan and F. Geerts, Foundations of Data Quality Management.
Morgan & Claypool Publishers, 2012.

[10] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[11] C. H. Papadimitriou, Computational Complexity. Addison-Wesley,
1994.

[12] W. Fan, X. Wang, and Y. Wu, “Distributed graph simulation: Impossi-
bility and possibility,” PVLDB, 2014.

[13] C. P. Kruskal, L. Rudolph, and M. Snir, “A complexity theory of efficient
parallel algorithms,” TCS, vol. 71, no. 1, pp. 95–132, 1990.

[14] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems.
Prentice Hall, 1999.

[15] Full version, http://homepages.inf.ed.ac.uk/wenfei/RGFD.pdf.
[16] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional func-

tional dependencies for capturing data inconsistencies,” TODS, 2008.
[17] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph

isomorphism algorithm for matching large graphs,” TPAMI, vol. 26,
no. 10, pp. 1367–1372, 2004.

[18] M. Hammoud, D. A. Rabbou, R. Nouri, S.-M.-R. Beheshti, and S. Sakr,
“DREAM: distributed RDF engine with adaptive query planner and
minimal communication,” PVLDB, 2015.

[19] I. Grujic, S. Bogdanovic-Dinic, and L. Stoimenov, “Collecting and
analyzing data from e-government Facebook pages,” in ICT Innovations,
2014.

[20] W. Le, A. Kementsietsidis, S. Duan, and F. Li, “Scalable multi-query
optimization for SPARQL,” in ICDE, 2012.

[21] W. Fan, X. Wang, Y. Wu, and J. Xu, “Association rules with graph
patterns,” PVLDB, vol. 8, no. 12, pp. 1502–1513, 2015.

[22] M. R. Henzinger, T. Henzinger, and P. Kopke, “Computing simulations
on finite and infinite graphs,” in FOCS, 1995.

[23] W. Fan, X. Liu, P. Lu, Y. Wu, and J. Xu, “Discovering graph functional
dependencies,” Submitted for publication, 2017.

[24] DBpedia, http://wiki.dbpedia.org/Datasets.
[25] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic

knowledge,” in WWW, 2007.
[26] Pokec social network, http://snap.stanford.edu/data/soc-pokec.html.
[27] W. Fan, Z. Fan, C. Tian, and X. L. Dong, “Keys for graphs,” PVLDB,

vol. 8, no. 12, pp. 1590–1601, 2015.
[28] F. Sadri and J. D. Ullman, “The interaction between functional depen-

dencies and template dependencies,” in SIGMOD, 1980, pp. 45–51.
[29] B. Marnette, G. Mecca, and P. Papotti, “Scalable data exchange with

functional dependencies,” PVLDB, vol. 3, no. 1, pp. 105–116, 2010.
[30] A. Bonifati, I. Ileana, and M. Linardi, “Functional dependencies un-

leashed for scalable data exchange,” in PSSDBM, 2016, pp. 2:1–2:12.
[31] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The LLUNATIC data-

cleaning framework,” PVLDB, vol. 6, no. 9, pp. 625–636, 2013.
[32] A. Deutsch, A. Nash, and J. B. Remmel, “The chase revisited,” in PODS,

2008, pp. 149–158.
[33] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. San-

toro, and E. Tsamoura, “Benchmarking the chase,” in PODS, 2017.
[34] M. H. Graham, A. O. Mendelzon, and M. Y. Vardi, “Notions of

dependency satisfaction,” JACM, vol. 33, no. 1, pp. 105–129, 1986.
[35] B. Marnette, “Generalized schema-mappings: From termination to

tractability,” in PODS, 2009, pp. 13–22.
[36] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,

“A comparison of a graph database and a relational database: a data
provenance perspective,” in ACM SE, 2010, p. 42.

[37] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,” in
OSDI, 2008.

[38] U. A. Acar, A. Charguéraud, and M. Rainey, “Scheduling parallel
programs by work stealing with private deques,” in PPoPP, 2013.

[39] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C. Tseng,
“Dynamic load balancing of unbalanced computations using message
passing,” in IPDPS, 2007.

[40] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri, “Ontological
pathfinding,” in SIGMOD, 2016.

604

