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Interaction-Aware Graph Neural Networks for Fault
Diagnosis of Complex Industrial Processes
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Abstract— Fault diagnosis of complex industrial processes
becomes a challenging task due to various fault patterns in
sensor signals and complex interactions between different units.
However, how to explore the interactions and integrate with
sensor signals remains an open question. Considering that the
sensor signals and their interactions in an industrial process
with the form of nodes and edges can be represented as a
graph, this article proposes a novel interaction-aware and data
fusion method for fault diagnosis of complex industrial processes,
named interaction-aware graph neural networks (IAGNNs).
First, to describe the complex interactions in an industrial
process, the sensor signals are transformed into a heterogeneous
graph with multiple edge types, and the edge weights are learned
by the attention mechanism, adaptively. Then, multiple indepen-
dent graph neural network (GNN) blocks are employed to extract
the fault feature for each subgraph with one edge type. Finally,
each subgraph feature is concatenated or fused by a weighted
summation function to generate the final graph embedding.
Therefore, the proposed method can learn multiple interactions
between sensor signals and extract the fault feature from each
subgraph by message passing operation of GNNs. The final fault
feature contains the information from raw data and implicit
interactions between sensor signals. The experimental results on
the three-phase flow facility and power system (PS) demonstrate
the reliable and superior performance of the proposed method
for fault diagnosis of complex industrial processes.

Index Terms— Complex industrial processes, fault diagno-
sis, fault feature extraction, graph neural network (GNN),
interaction-aware.

I. INTRODUCTION

W ITH the rapid development of complex industrial
processes, such as power systems (PSs) and chemical

processes, an effective and reliable health monitoring system
has been increasingly necessary to reduce maintenance costs
and guarantee the safety of industrial systems. In general,
a monitoring system includes numerous sensors and devices
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for gathering multiple sensor measurements. These multivari-
ate sensor readings are characterized by high-dimensional and
complicated interactions due to the large-scale and complex
control engineering of the process industries [1]. The moni-
toring system also provides maintenance records, which makes
it possible to employ a supervised machine learning method.
Thus, fault diagnosis of the complex industrial processes could
be defined as a recognition task based on multivariate time-
series signals, which has received more and more attention in
both research and industry [2]–[4].

Once a fault occurs, it will propagate to the subprocess
or even affect the whole process operating [5]. In principle,
the readings of multiple sensors will deviate from the normal
status owing to the interaction between different units. Mean-
while, partial variables will respond to different faults, which
means one fault category is related to multiple variables and
distributed irregularly. These complicated interactions contain
the information of nonlinear relationship, correlation, and
control rules of the process, which requires a comprehensive
modeling technique to explore the fault representation. There-
fore, mining interactions and fusing information of multiple
sensor measurements are of paramount importance toward
fault diagnosis of large-scale industrial processes [6].

The existing methodologies for process industry fault
diagnosis can be divided into model-based and data-driven
approaches [7]. Due to the complexity of the modern industry,
it is difficult to develop the models of the process, which
limited the application of the model-based methods [8]. Data-
driven methods aim to extract data features and then detect
the anomaly variables or recognized the fault categories
through statistical analysis [9] or discriminant feature learning
[10], [11]. Toward this end, many dimension reduction meth-
ods and feature extraction methods are employed such as
principal components analysis (PCA) [12], partial least square
(PLS) [13], and deep learning (DL) methods including convo-
lutional neural networks (CNNs) [4] and deep belief networks
(DBNs) [14]. Although the methods PCA and CCA [15] are
classical correlation exploring methods and the CNN methods
can extract local relation of data via a kernel function, the
interactions between multivariate variables are not explored
specifically, which also carry a lot of fault information.

Most of the existing methods take grid data as input ignoring
the topology structure of the process and the interaction
between monitoring variables, while the data in the graph
domain with topology structure are far more common than
grid data in practice [16]. As a graph can describe a real-world
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system reasonably (e.g. knowledge graph, social network),
some nonstructural scenarios are transformed into the graph
and use graph-based methods to achieve better performance,
including image [17], multiview data [18], and multiagent
systems [19]. Due to the complicated interactions between
sensor measurements, the structural attributed graph is an
appropriate data structure to describe both data characteristics
and relationships of sensor data, where each sensor measure-
ment corresponding to a node, and these nodes are linked by
an implicit edge representing the interactions. Additionally, the
fault information, such as fault root and fault propagation, can
be represented in this graph. A critical task of fault diagnosis
is to identify the fault categories [10] and thus we formulate
this task into a graph classification problem.

While extending fault recognition to the graph classification
problem, the following challenge should be settled: 1) a learn-
able graph construction approach that provides differentiated
graph topology for various fault categories and reveals the
complex interactions among sensor signals and 2) a model that
preserves the specificity of the graph for interaction diversity
representation while learns graph representation oriented by
fault information. GNNs can be an effective method to fuse
the information of multiple sensor readings through a message
passing mechanism. In general, exploring the interaction of
sensor measurements can be realized by empirical analysis,
for example, constructing the graph based on system archi-
tecture [16] or the similarity relation in sensor measurements
(e.g. K-nearest neighbor graph). Although these graph struc-
tures are explainable, they will lead to a similar graph structure
between different faults because of the fixed architecture
of the system and the fixed dynamical model. A similar
graph structure will result in performance degradation of
GNN because the features of a node are always aggregated
from several fixed neighbors. That means the node features
dominate the fault feature learning, where the topology only
guide GNN aggregation process and does not provide extra
fault information for discriminate learning. To obtain the
graph structure varies in fault categories, a supervised graph
structure learning approach is employed in this article. Concur-
rently, in the practical process industry, multiple relations exist
between sensor signals, including, but not limited to, similarity,
correlation, and functional relationship. For example, in a
PS, the feed water pump work and condensate pump work
are both calculated by the same equation related to steam
mass flow rate, inlet feed water enthalpy, and outlet feed
water enthalpy [20]. Consequently, the variables, feed water
pump work and condensate pump work, are similar to each
other, and furthermore they relate to the other three variables
by functional equation. Therefore, one kind of relationship
cannot well describe multiple interactions between sensor
measurements. In this article, we introduce a heterogeneous
graph structure to indicate the complex interactions of sensor
measurements, where two nodes are linked by multiple edges.

Based on the above analysis, an intelligent process industry
fault diagnosis method is proposed, named interaction-aware
graph neural networks (IAGNNs), which considers the mul-
tiple interactions between sensor nodes in a graph and fuses
the information of each sensor measurements using GNNs.
In particular, the attention mechanism is utilized to learn rela-

tion scores between nodes in different representation spaces,
where a heterogeneous sensor network is constructed. Since
the practical relations between nodes are hard to model, we use
a relation score to indicate the importance of the interac-
tion between nodes. These learned relation scores constitute
the edge attribute of the graph, which provide differences
for various fault graphs. The heterogeneous graph can be
divided into multiple subgraphs based on edge types. Then,
parallel GNN blocks are applied to update the node features
for different interaction edge types, respectively, and trained
jointly. The updated edge-type-based node embeddings are
read out to obtain subgraph representations. These subgraph
features are passed through an aggregate function to generate
the final graph embedding. Thus, the multivariate time series
measured in the process industry can be fused to allow for
fault recognition. The major contributions are summarized as
follows.

1) This article formulates the fault diagnosis problem of
complex industrial processes as a graph classification
problem. The key idea is to transform the multivariate
sensor signals into a heterogeneous graph with various
edge types and classify the fault type taking advance of
fused signal embeddings through the message passing
mechanism of GNN.

2) The proposed IAGNN framework provides two stages:
the graph construction stage and the discriminant fea-
ture extraction stage. In the first stage, the attention
mechanism is utilized to construct the graph with the
consideration of the diversity of edge types and provide
differentiate graph topology for various fault categories.
In the second stage, the discriminant feature is obtained
by fusing the subgraph embeddings from multiple inde-
pendent GNN blocks. The proposed framework can be
used as a generalized platform for industrial process
fault diagnosis.

3) Extensive experiments are performed on two industrial
processes: a three-phase flow facility and a PS. The
experimental results show that the proposed IAGNN
framework can provide superior diagnosis results by
comparing with the state-of-art methods.

The remaining parts of this article are organized as follows.
Section II reviews related works. Preliminaries and prob-
lem formulation are elaborated in Section III. The proposed
IAGNN method is addressed in Section IV. In Section V,
the effectiveness of the proposed method is validated on
two complex industrial process datasets. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Data-Driven Fault Diagnosis Methods

The data-driven fault diagnosis methods for the industrial
processes have been widely studied, which can be broadly
classified into two types: 1) multivariate statistical analy-
sis (MSA) methods and 2) learning the discriminate repre-
sentation of each fault type.

Typical MSA methods for process monitoring and fault
diagnosis (PMFD) train a model using data under normal
operating conditions, which can convert the high-dimensional
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monitoring variables into health indicators and obtain the
thresholds to determine the health status of the process.
Researchers develop many feature extraction methods accord-
ing to process characteristics such as linear, nonlinear, and
dynamics. Deng et al. [12] presented serial principal compo-
nent analysis for nonlinear process and applied confidence lim-
its to detect fault occurrence. Tao et al. [9] proposed dynamic
weight PCA in a hierarchical monitoring framework, which
gives principal components’ different weights according to
the separating ability of normal samples and fault sam-
ples. Chen et al. [21] explored the CCA application for non-
Gaussian processes, which derive the threshold by using a
randomized algorithm. Most of the existing methods consider
the PMFD in a global view, which is difficult to mining the
fault root cause for the large-scale process. To overcome this
issue, one of the most typical methods is the Bayesian network
(BN) [22], [23], which can find the root cause based on
stochastic probabilistic theories. Jiang et al. [15] proposed a
local-global fault monitoring framework integrating deep CCA
and distributed modeling technique, which determines the
fault occurrence in both local and global views. Li et al. [24]
proposed a distributed-ensemble model using stacked autoen-
coders to determine whether the faults affect the operating
unit or influence the entire process. Due to the complexity
of the modern industry, the fault categories increase explo-
sively. Meanwhile, different faults will lead to similar system
responses. Thus, it is hard to meet the requirement of precise
fault diagnosis by only using anomaly detection methods.

In order to obtain the discrimination information of dif-
ferent fault categories, FDA, SVM, and CNN are intro-
duced to classify the faults. Sugiyama [25] proposed local
FDA (LFDA) for dimension reduction of multimodal data
based on the idea of FDA and locality-preserving projec-
tion (LPP). Zhong et al. [10] extended the LFDA method
by exploring the local information of multivariate sensor
signals from both sample dimension and variable dimension.
Although PCA-based and FDA-based methods have taken into
account correlations between variables during the dimension
reduction process, these correlations cannot completely reveal
the complicated interactions among large-scale sensor mea-
surements. Liu et al. [4] developed a multivariate CNN for
multivariate time-series classification, in which the lag-feature
of time series is considered. Costilla-Reyes et al. [26] intro-
duced a CNN-based model to extract novel features from
the spatio-temporal tomograph data. However, the complex
interactions among sensor signals are not analyzed specifi-
cally in these CNN-based methods. Yang et al. [6] proposed
the Spearman rank correlation-based CNN (SR-CNN) model,
which introduces SR correlation to reflect the relationship
between sensor signals. In this method, the SR correlation
matrices are transformed into images and utilize CNN to
extract fault features for classification. Although the SR-image
contains the information of relations, the information of raw
data is neglected.

B. Graph Neural Networks

The model of graph neural networks (GNNs) aim to extend
deep neural networks for structured graph and the concept

is first outlined in [27], which fall into the category of
recurrent neural network. Recently, the form of GNN to update
node embedding is under the framework of message passing
neural network [28], by sharing learning across nodes and
edges. Kipf and Welling [29] propose graph convolutional
networks (GCNs) with message passing operation motivated
by a first-order approximation to the spectral graph convo-
lution. Hamilton et al. [30] introduce GraphSAGE framework
for inductive node embedding by aggregating node features
from sampled neighborhood nodes. Another prominent work
graph attention network (GAT) [31] introduces the attention
mechanisms to message passing operation by learning a shared
attention mechanism and compute the importance weights
between nodes. Furthermore, the attention mechanisms also
extend to heterogeneous graphs. Wang et al. [32] proposed
that a heterogeneous graph attention network (HAN) consists
of node-level attention and semantic-level attention, which
introduces the attention mechanism to learn the importance
of each meth-path.

Due to the effective application of graph data, GNNs have
been introduced to a wide range of scenarios. Fey et al. [33]
presented a hierarchical message passing framework for
molecular property prediction that utilizes two independent
GNNs to obtain molecular graph representation on both
coarse structure and fine structure. Ying et al. [34] proposed
a random-walk-based GCN model for the large-scale rec-
ommender system. Li et al. [35] presented heterogeneous
relation attention networks for knowledge graph missing link
prediction, which utilizes attention mechanism to learn the
importance of each relation path. Meanwhile, the applications
of GNNs have also been explored in nonstructural scenarios.
Wang et al. [36] incorporated a knowledge graph to train
a visual classifier for zero-shot recognition. Jia et al. [37]
presented an attention-based graph learning approach that
combines with spatial–temporal GCNs to classify the sleep
stage for sleep assessment. Kipf et al. [38] presented a neural
relational inference (NRI) model to infer an explicit graph
structure of an interacting system and learn the corresponding
dynamical model. Franceschi et al. [39] proposed an approach
that optimizes both the parameters of graph generator and
GCNs for node classification task. The aforementioned GNN
applications can be summarized into three categories that:
1) developed for homogeneous graphs with fixed graph struc-
ture principally for node classification task; 2) learn one type
edge; and 3) learn multiple edge types for physical system
simulation in an unsupervised manner. It can be seen that
GNN and its variant methods have been widely applied in
many areas, but they still cannot be utilized directly for fault
diagnosis of the industrial process because it is formulated as
a graph recognition task with the consideration of multiple
interactions between nodes.

Recently, GNN-based methods are introduced to mechanical
fault diagnosis. Li et al. [40] constructed an affinity graph
based on the similarity of the vibration signal and proposed a
multireceptive GNN for fault diagnosis under node classifica-
tion task, where a vibration signal segment corresponding to
a node. Different from the vibration signal, the monitoring
data of the process are multivariate time series. The inner
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Fig. 1. Graph construction from multisensor readings.

relationship is ignored when we define a segment of the mul-
tivariate signals as a node. Wu et al. [16] proposed a process
topology convolutional network (PTCN), in which the process
topology is used to define the graph structure. Chen et al. [41]
constructed the graph structure based on a model-based system
structure analysis method, where the mathematical model
is needed. Although both process topology and the system
mathematical model can define an interpretable graph with
a fixed structure, the topology changes among different fault
categories are neglected.

III. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formally define notations and introduce
the message passing operation of GNNs. In this article, the
multivariate sensor signals are transformed into graph structure
data and Fig. 1 shows an example of the graph construction
process. The multivariate sensor signals collected from the
industrial process will be cut into segments and form FC
graphs with learnable relation scores e for each edge in
the graph. After that, the FC graphs are imported into the
interaction-aware layer to learn the parameterized relation
scores which are trained with the feature extractor jointly.
At last, the edge with a zero relation score will be deleted
to obtain a sparse graph structure, which can benefit the
training efficiency of the GNNs and differential the topology
of different fault graphs. In order to better understand the
proposed method, we also give the definition of time-series
segments and graphs.

A. Problem Formulation

1) Time-Series Segments: The readings from multiple sen-
sors form n raw measured variables, and these time series of
length t can be denoted as si =

�
s1

i , . . . , st
i

� ∈ S. A time
series can be cut into segments ω j =

�
st

i , . . . , st−m+1
i

� ∈ �

through a sliding window with a size of m. The window
size m is determined according to the stationarity of the time
series. Because of the short-term stationarity of sensor signals,
the time-series segments are as input to model the graph
structure.

2) Graph: A graph is defined as G = (V , E) with vertices
vi ∈ V and edges ei, j ∈ E , where both nodes and edges
can have attributes, noted as X ∈ R

n×dn and Xe ∈ R
c×dc ,

respectively. An adjacency matrix A ∈ R
n×n is adopted

to record the structure of topology of G. The multivariate
time series are converted into graphs under the assumption
that there are multiple interaction relationships between these
variables. In this article, the sensor network is designed as a
heterogeneous graph G = (V , E, RE ), where RE represents
the set of edge types and only one type of node is considered
in this article. The attribute of each time-series segment ω j is
taken as the feature vector x j of each node in a graph. It is
worth noting that the edge attribute Xe is obtained through
learning.

The research goal is to learn the mapping relationship
between the multivariate sensor signals and fault classes based
on the proposed method. In this article, we form the fault diag-
nosis of complex industrial processes as a graph classification
problem: given a set of graphs {G1, . . . , G N } ⊂ G to identify
the fault type {y1, . . . , yN } ⊂ Y .

B. Basic Graph Neural Network Theory

The GNN extends the deep neural network to process
graph structure data. Variants of GNNs have shown powerful
performance in node classification tasks, graph classification
tasks, and link prediction tasks. In this section, we focus
on vertex-centric GNNs that aim to learn a state node rep-
resentation containing the information of the neighborhood.
A GNN takes as input a graph G, where nodes and edges
are associated with feature vector xi and xe

(i, j), respectively.
The message passing operation in an L-layered GNN has two
essential phases, message aggregation, and node embedding
update, which can be defined as follows:

hl
(i, j) =

�
j∈Ni

f l
message

�
hl

i , hl
j , xe

(i, j)

�
(1)

hl+1
i = f l

update

�
hl

i , hl
(i, j)

�
(2)

where hi is the hidden representations of nodes vi in layer l,
hl+1

i is the updated nodes representations, hl
(i, j) is the embed-

ding of edge e(i, j), and Ni is the neighborhood set with an
incoming edge to node i . The initial state of hi can be set to
nodes feature vector xi . The message function fmeassage and
update function fupdate are parametric functions and shared
among all nodes, respectively. Each node embedding contains
information from its neighboring nodes.

In the node classification task, GNNs classify the label of
node v based on the final representation hL

i . In the graph
classification task, GNNs classify the label of a graph based
on the global graph representation hG . Therefore, a readout
function freadout is defined as follows:

hG = freadout
��

hL
i | v ∈ G

��
. (3)
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Fig. 2. Framework of the proposed IAGNN.

The readout function freadout can be a simple permutation
invariant function, for example, mean function and summation.

IV. PROPOSED FAULT DIAGNOSIS METHOD

This section proposes an IAGNN model for multivariate
time-series classification with application to the industrial
process fault diagnosis and its overall framework is illustrated
in Fig. 2. The framework is an end-to-end supervised GNN
model, which consists of three essential parts and trained
jointly: 1) learning pairwise relationship between nodes to con-
struct a heterogeneous graph automatically; 2) leveraging inde-
pendent GNN for different edge types of the heterogeneous
graph to obtain unified nodes representation; and 3) obtain
graph representation by reading out the node embeddings and
classify various faults.

A. Interaction-Aware Layer

The multiple pairwise interactions between nodes construct
an implicit sensor network. According to the domain knowl-
edge, the implicit sensor network can be converted into an
explicit graph structure, such as KNN graph and correlation
graph based on different correlation metric. Meanwhile, the
graph constructed by prior knowledge may not be optimal
for model learning due to the subtle difference in node
interaction between different fault types. Therefore, in order to
differentiate the graph structure of various faults, an attention
mechanism-based interaction aware layer is used to learn
the explicit graph structure, adaptively. Furthermore, we use
multiple independent interaction-aware layers to learn node
interactions in different representation spaces, which form the
sensor network into a heterogeneous graph with one node type
and multiple edge types.

The interaction-aware layer takes sliced multivariate sensor
data X = (x1, . . . , xn) with an FC graph structure as input
and each sensor represents a node. Our goal is to calculate
the relation score ri, j to represent the interaction relationship
between nodes xi and x j . The relation score is used as the edge
attribute involved in the message passing process in GNN.

In this article, the relational function is defined as a shared
single-layer feedforward neural network, parameterized by a
weight vector −→a ∈ R

2d , which is applied to every node. Then,
we perform the attention mechanism to calculate the pth edge
relation score r p

i, j between node xi and x j with input feature
matrix x = (x1

i , . . . , xm
i ). The learned attention coefficients

ri, j is defined as

r p
i, j = σ

�−→a � CONCAT
�
xi , x j

��
(4)

where σ(·) is the active function (e.g. RelU(·)) and
CONCAT{·} operation concatenate

�
xi , x j

�
along feature

dimension. The high relation score result in a strong connec-
tion between two nodes and the edge between these nodes
should be preserved. The relation score with a relatively small
value reflects that the interaction of two nodes is weak and
the edge between these nodes should be deleted. To make
the relation score easily comparable across different nodes
and obtain a sparse graph structure, we normalize attention
coefficients across all nodes using sparsemax(·) function [42].
The sparsemax transformation returns the Euclidean projection
of input onto the probability simplex, which has similar
properties to the softmax function, but it can return sparse
probability distributions. The normalized relation score e ∈ R

n

is defined as

e = sparsemax(r)

sparsemax
	

r p
i, j



= max

�
0, r p

i, j − τ
	

r p
i, j


�
(5)

where τ (·) is the threshold function that satisfiesm
p=1 max{0, r p

i, j − τ (r p
i, j )} = 1, and all r p

i, j in relation
score set S below the threshold τ (αi, j ) will be truncated
to zero. Algorithm 1 shows the sparsemax transformation
procedure. The sparsemax transformation remains some
properties, nonnegative, and

m
p=1 sparsemax(r p

i, j ) = 1 that
are common to softmax.

The normalized relation score e ∈ R is used as edge weight
of the graph and involves in message passing operations for
fault feature extraction. The edge with zero edge weight value
is removed and thus a sparse graph structure is obtained.
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Algorithm 1: Sparsemax Transformation
Require:

Input relation score vector r ∈ R
n .

Ensure:
Normalized relation score e with sparse distribution.

1: Sort relation score r as u: u1 ≥ u2, . . . ,≥ un;
2: Find q(r) := max

�
1 ≤ k ≤ n | 1+ kuk >


i≤k ui

�
;

3: Define τ(z) = 1
q(r)

	
i≤q(r) ui − 1




4: Compute relation score e = max{0, ri, j − τ
�
ri, j

�}
5: return e.

Due to the supervised training process, differentiated graph
structures can be obtained. These graph structures guide
nodes to aggregate information from different neighbors for
different fault categories. In addition, multiple independent
interaction-aware layers are employed to reveal the interactions
in different perspectives.

B. GCN

GCN has been widely used in various challenging tasks and
shows powerful performance. Therefore, GCN is employed as
the basic building block to extract fault features. However,
it is important to note that other popular GNN architectures
can also be employed in our proposed framework, such as
GAT [31], GraphSAGE [30], and GIN [43].

The GCN is a graph-based neural network with message
passing operations and mathematically is defined as follows:

h(l+1)
i = σ

⎛
⎝ �

j∈N (i)

c ji h
(l)
j W(l) + b(l)

⎞
⎠ (6)

where σ is a nonlinearity activation function and N (i) is
the set of neighbors of node xi . W(l) ∈ R

dl×dl+1 is learnable
parameter matrices. c j,i = 1/(Di,i D j, j)

1/2 is normalization
constant, and Di,i is the degree of node xi .

For each set of time-series segments, the interaction-aware
layer provides an adjacency matrix A with an edge weight
value for GCN feature extraction. The edge weight ei, j reveals
the importance of node x j to node xi , especially under different
fault classes. Thus, the edge weight should be involved in the
message passing process of GCN. If a weight vector on each
edge is provided, the normalization constant c ji can be defined
as follows:

c ji = e ji�
Di,i D j, j

. (7)

The matrix form of GCN message passing operation is given
as follows:

H(l+1) = σ
	

D̃−
1
2 ÃD̃−

1
2 H(l)W(l) + b(l)



(8)

where Ã = A+ I ∈ R
N×N is the adjacency matrix with added

self-loops, and D̃ = 
i Ãi j is the degree matrix of Ã. The

weight value is also considered in the adjacency matrix A.
H(l) ∈ R

N×dl is the activated output of each GCN layer with
H(0) = x, where x is the feature vector of each node.

The graph G constructed by the interaction learning layer
is a heterogeneous graph with multiple edge types. We divide

the graph G into K subgraphs according to the number of
edge types. For each subgraph, an L-layer GCN block is used
to fuse node information, where the parameter of each GCN
block need not be shared. These parallel GCN blocks can
help keep the independence of the graph structure learning
since the interaction-aware layers are trained with these feature
extraction blocks, jointly.

C. Read Out

The GCN block updates the node feature of the sensor net-
work, where each node fuses the information of its neighbors.
To obtain the global senor network representations, a readout
function is utilized to aggregate the node features from the last
GCN layer. The readout function considers the global mean
properties and local max properties of the sensor network, and
thus the readout function is defined as the concatenation of
mean-pooling rmean and the max-pooling rmax in kth subgraph

rk = CONCAT{rmean, rmax}. (9)

The mean-pooling and max-pooling readout functions can
be described as follows:

rmean = 1

N

N�
n=1

HL
n (10)

rmax = N
max
n=1

HL
n (11)

where HL
n is the node embedding of the last GCN layer, and

N is the number of nodes.
In order to preserve the independence of the subgraph

representation with different edge types, the nodes embedding
only aggregate the information from their neighbors with the
same edge type. Therefore, the subgraph representation also
indicates a certain perspective in each feature space. One
simple and traditional way to obtain a complement graph
representation is concatenating vectors across all subgraphs
into one vector. Then, we will obtain the graph representation

R = CONCAT
�
rk ∈ R

2×n×d
�
. (12)

For subgraph representations from different representation
spaces, it is worth noting that the difference between these
spaces will not be significant. The redundant information will
be introduced to the final graph representation when only
use concatenating operation. Meanwhile, when facing a large
number of edge types, the concatenated graph representation
will lead to the exponential growth of parameters, which
can burden the classification of faults. To obtain a more
compact graph representation, a weighted summation function
is introduced to aggregate the information from subgraphs.
First, the embedding of each subgraph is transformed through
a nonlinear function, such as MLP, to obtain a transformed
embedding. The importance coefficients wSk of the trans-
formed embeddings are measured by an attention vector −→p
and are shown as follows:

wSk =
�
k∈K

−→p � · ReLu( fa(rk)) (13)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 01,2022 at 09:27:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: IAGNNs FOR FAULT DIAGNOSIS OF COMPLEX INDUSTRIAL PROCESSES 7

Algorithm 2: IAGNN
Require:

The multiple senor signals segments X ∈ R
n×dn ;

The Number of edge type to learn K ;
Depth of GNNs block layers L .
Interaction learning function �ia ;
GNNs feature extraction block �gnn;
Value of sub-graph embedding weight β;

Ensure: The graph presentation R ∈ R
2×n×d .

1: Initialize the graph G with FC structure and initialized the node
feature, H(0)← X;

2: for k ∈ K do
3: Calculate the relation score, ek

i, j ← �ia

�
xi , x j

�
;

4: Calculate the node embedding, HL
k ← �gnn

�
H(0), e

�
;

5: Read out the graph embedding of sub-graph with edge type
k, rk ← CONCAT

�
rk

mean, rk
max

�
;

6: end for
7: Fuse the sub-graph features, R← CONCAT{rk},

or R←K
k=1 βSk rk

8: return R.

where fa is one-layer neural network to obtain the transformed
embedding, and −→p is the parameterized attention vector. Then
the weight βSk of each subgraph embedding is defined as the
normalized importance coefficients using softmax function

βSk =
exp

�
wSk

�


k∈K exp
�
wSk

� (14)

which represents the contribution of different subgraph embed-
ding for the fault classification tasks. The final graph represen-
tation R can be obtained by fusing the subgraph embeddings
with learned weights

R =
K�

k=1

βSk rk . (15)

The number of edge types to learn can be treated as a
hyperparameter, and this will be discussed in the experiment.

The fault diagnosis task of industrial processes with mul-
tisensor measurement is regarded as a heterogeneous graph
classification problem. We apply an FC layer to the final graph
representation of the GNN feature extraction module, and the
last layer with a softmax classifier outputs the probability
of different fault types. We train the parameter with the
cross-entropy loss function, denoted as

L�
W f | x

� = −
N�

i=1

pi log qi
�
W f | x

�
(16)

where W f is the parameter of the model, pi is the ground truth,
and qi represents the predicted probability that the instance
belongs to fault class i . The overall graph feature extraction
process of IAGNNs is shown in Algorithm 2.

The proposed IAGNN method transforms the multivariate
sensor signals with implicit structure into explicit graph data
and uses the parallel GCN blocks to extract the subgraph
features in different representation spaces. The final fault
feature fuses multivariate sensor signals and contains the
information of complex interactions in a process.

Fig. 3. Architecture of the three-phase flow facility [44].

V. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
IAGNNs model on two industrial processes data, including a
three-phase flow facility simulation dataset and a PS simula-
tion dataset. Extensive experiments and analysis are conducted
to demonstrate the following problems: 1) the effectiveness of
the proposed method for fault diagnosis of process industry
compared with other state-of-art methods; 2) the effectiveness
of learned heterogeneous graph compared with fixed graph
structure; and 3) the parameter sensitivity analysis of the
number of edge types to learn, the depth of GNN blocks,
the hidden unit dimension of GNN block, and the embedding
dimension of the weighted summation aggregation function.

A. Data Description

1) Three-Phase Flow Facility Data: The three-phase
flow facility (TFF) [44] belongs to Cranfield University
is designed to control a pressurized system and measure
water flow rate, oil flow rate, and airflow rate, which is
shown in Fig. 3. There are 24 sensors, measuring pressure,
flow rate, density, and temperature at different key locations
of the system in Fig. 3, and the detailed information of
the sensors can be found in [44]. The dataset is available
at https://www.mathworks.com/matlabcentral/fileexchange/
50938-a-benchmark-case-for-statistical-process-monitoring-
cranfield-multiphase-flow-facility. In order to obtain data
under various normal operating conditions, 20 group process
inputs were introduced to the simulation and obtain three
datasets. For fault datasets, six faults were simulated to
indicate typical malfunctions that could occur in real practice.
The faults were introduced after a certain time of normal
state, when the fault reaching a certain level of severity,
the fault state was suspended, and returned to the normal
state. Thus, each fault case contains data from weak state
to series fault state. Meanwhile, both steady and changing
conditions were considered in the simulation process and
result in multiple datasets under one fault type. The sampling
frequency is 1 Hz. We preprocess each sensor output by
max-min normalization, where x = (x − xmin)/(xmax − xmin).
We remove the normal data from the fault datasets and take
a segment with 50 s of information as one sample. Then we
mix all the samples from fault state and normal state and
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TABLE I

FAULT TYPES IN THE TFF DATASET

Fig. 4. Simplified schematic of a typical PS.

randomly take 70% samples as training set and 30% samples
as testing set. Table I shows the fault types and corresponding
sample number of the redivided dataset.

2) Power System Simulation Data: In our experiments,
we validate the algorithmic performance on PS data with
large-scale fault types and sensor measurements. This PS
consists of one reactor and two-loop, primary loop, and sec-
ondary loop, with corresponding components, such as a steam
generator, a pressurizer, a coolant pump, turbines, a condensate
pump, and a feed water pump. The architecture of the PS
is illustrated in Fig. 4. The original data have 121 sensor
measurements including pressure, flow rate, temperature of
main components in the PS, and switch variables of relevant
valves. The outputs of the simulator were normalized to
[0, 1]. However, consistent with monitoring settings of real
practice, the redundant measurements are introduced to the
data simulation, which sets more than one sensor at the
same location. We clean the dataset by removing the switch
variables and the redundant measurements, which results in
76 monitored variables are used in our experiment. In order
to obtain normal data covering different operation conditions,
six datasets were acquired from the simulator. In the fault
simulation process, the faults were set to occur after a certain
time of normal state. We choose 53 typical fault cases and
normal state data to evaluate the effectiveness of the proposed
method. The sampling frequency is 4 Hz. We take a segment
with 80 s of information as one sample. Then we mix the data
with different categories and divided into training and testing
set containing 70% samples and 30% samples, respectively.

TABLE II

FAULT TYPES IN THE PS DATASET

Table II shows the number of samples of the training set and
testing set, respectively.

B. Experimental Setup

1) Comparison Methods: To validate the performance of the
proposed IAGNN method, we compare our IAGNN method
with state-of-the-art baseline methods, including the fault
diagnosis method and the graph-based method. The details
of the baseline methods are as follows.

1) PCA+LDA: PCA+LDA [45]–[47] is a two-stage
method, in which the first stage, PCA dimension reduc-
tion of raw data, is used to solve the singularity problem
of LDA.

2) SR-CNN: SR-CNN [6] takes SR correlation images to
reflect the variance of the fault feature, and a CNN
classifier is applied for fault classification.

3) PTCN: PTCN [16] constructs the graph structure via
physical connection of the process system and uses GCN
to extract the fault feature.

4) GAT: GAT learns the edge weights based on the node
features. If we convert no structured data into an FC
graph, GAT can be applied directly.

5) PKT-MCNN: PKT-MCNN [48] introduces a coarse-to-
fine framework for large-scale fault diagnosis, in which a
hierarchical structure of fault categories is used to guide
the knowledge transfer of a multitask CNN model.

2) Implementation Details: To evaluate the performance of
the proposed method, the micro F1 score and macro F1 score
are adopted in this article. We conduct plenty of experiments
for all baseline methods and IAGNN models and choose the
hyperparameters which can get the best results. The learning
rate of IAGNNs is tuned in the set of {0.0001, 0.0005, 0.001},
and the number of edge types to learn is sampled from 1 to 8.
The IAGNN model for both TFF and PS has two-layer GNN
blocks. And, for the TFF dataset, the graph has 24 nodes with
an initial feature size of 50, the maximum epoch is 350, the
hidden size of GCN and weighted summation module are 128,
and three-layer FC with structure {256, 128, 7}. For the PS
dataset, the graph has 76 nodes with an initial feature size
of 20, the maximum epoch is 300, the hidden size of GCN
and weighted summation module are 512, and three-layer FC
with structure {1024, 512, 54}. The hyper-parameters of the
proposed IAGNN model are selected based on the performance
and training efficiency and these settings are used to com-
pare the performance with baseline methods. More detailed
parameter sensitivity experiments are given in Section V-E.
Additionally, the proposed method was implemented using
PyTorch geometric on a PC server equipped with NVIDIA
RTX 2080Ti and Xeon Silver 4214 CPU.
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TABLE III

F1 SCORE (%) COMPARISON BETWEEN GENERATION
METHOD AND BASELINE METHODS

C. Fault Classification Performance

In this article, we follow the practical application that the
sample size of normal state data is significantly larger than
fault data. Both TFF and PS datasets are imbalanced. The
IAGNN model with concatenation operation and weighted
summation operation for subgraph feature aggregation are
noted as IAGNN-CON and IAGNN-AT, respectively. Fig. 5
shows the overall F1 score curves during the training process
and testing process of IAGNN model for both TSS and
PS datasets. Although the training curve fluctuates due to
sampling imbalance, it can still converge to a stable value
and the IAGNN model are not prone to overfitting. The
fault diagnosis results of TFF and PS datasets are shown in
Table III.

1) TFF Experiment Results Analysis: First, compared with
baseline methods, IAGNN models achieve the best per-
formance on TFF dataset. The state-of-the-art results can
reveal that the multivariate time-series embedding learned by
IAGNNs can effectively reveal the fault characteristic of the
process industry. Second, by comparing with the performance
of SR-CNN, we can observe that the IAGNN models perform
better by taking advantage of both raw data information and
interaction information between nodes. This demonstrates that
it is necessary to consider the complex interaction between
different sensors and embed it in the fault features. Meanwhile,
it can be observed that the GAT is outperforming PCA+LDA
and SR-CNN methods, which indicates that the GNN can fuse
the information of multiple sensor signals more effectively.
Third, the IAGNN model obtains better performance than
GAT and PTCN, and the reason can be illustrated by two
aspects: 1) the FC graph with edge weight without sparse
operation will introduce the edge noise to the fault feature,
and a fixed graph structure obtained via system physical
connection cannot illustrate the differences of faults in the
view of topology and 2) the final fault features contain the
information from subgraphs in different representation spaces
promote the performance of the fault diagnosis.

To further study the performance of each class based on
IAGNN models, the fault classification accuracy of various
faults for TFF dataset is shown in Table IV. Although the
baseline methods have outstanding performance on some fault
types, they both fail at some fault categories, such as four
baseline methods have poor performance on fault category
one. The reduced 2-D feature map of original data and learned

Fig. 5. Convergence of IAGNN on TFF and PS datasets. (a) TFF dataset.
(b) PS dataset.

Fig. 6. Visualization via t-SNE. (a) Raw data space and (b) IAGNN-CON
learning space.

fault feature in the last layer of the proposed model is shown in
Fig. 6 via t-distribution stochastic neighbor embedding (t-sne)
method [49]. It can be seen that the sample features of the
same fault are separated due to the various working conditions
and different fault degrees such as fault 1, while the features
of the IAGNN model obtain better cluster performance. In this
article, the class imbalance setting is introduced to the datasets.
The class with a large number of samples will dominate the
cross-entropy loss and the gradient and the class with fewer
samples cannot afford model training [50], which is also the
reason for the poor fault recognition performance of other
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TABLE IV

CLASSIFICATION ACCURACY (%) FOR VARIOUS FAULT TYPES

Fig. 7. Graph structure illustration of TFF dataset. The dark blue of the edge indicates a strong connection between nodes.

deep models. However, the proposed IAGNN model has a
significant improvement on fault 6. Although PKT-MCNN
has the best performance on fault 5, it failed to recog-
nize fault 6 because a well-defined coarse-grained structure
is hard to obtain for a small-scale classification task. In
general, the performance of IAGNN models is better than
the baseline methods, which can obtain acceptable results
on all fault categories. The above results prove that the
IAGNN models can generate expressive fault representations
and the parallel feature blocks can provide comprehensive fault
features.

The output of the interaction learning layer is the adjacency
matrix with edge weights. Then these adjacency matrices of
test samples are added to obtain the learned graph topology.
Fig. 7 gives an example of IAGNN models with four learned
edge types and shows the graph illustrations of Faults 2 and 4.
First, a regular graph structure obtained by the summation
of adjacency matrices indicates that the proposed model can
learn stable graph structures. Second, the graph output of each
interaction-aware layer is different from each other, which
indicates that each interaction-aware layer can learn a specific
graph structure. Moreover, the learned graphs demonstrate the
differences among different fault categories.

2) PS Experiment Results Analysis: In this article, we also
apply the IAGNN method to large-scale fault diagnosis of

the PS with 54 fault categories and 76 sensor signals. Based
on the results in Table III, it can be found that IAGNNs
also achieve competitive performance on the PS dataset. The
confusion matrices of PS are shown in Fig. 8. It can be
observed that the IAGNNs methods have more effective fault
diagnosis results than the baseline methods, which indicate that
the message passing operation benefits the fusion of multiple
sensor signals with multiple interactions. The competitive
results of large-scale fault diagnosis tasks further confirm the
robustness and effectiveness of the proposed method.

D. Effects of Interaction Learning Layer

In this article, the edge attributes in different representa-
tion spaces are gained through the interaction learning layer.
To further evaluate the performance of the heterogeneous
sensor network learning, a comparison between fixed graph
structures is carried out. The different fixed graph construction
methods are as follows.

1) FC graph. All the nodes are connected, except the
self-connection.

2) K-nearest neighbor (KNN) graph. The adjacency matrix
can be obtained by KNN similarity metric, where one
node has k neighbor nodes.

3) Maximal information-based nonparametric exploration
(MINE) [51] graph. MINE can explore potential
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Fig. 8. Confusion matrix of PS. (a) PCA+LDA, (b) SR-CNN, (c) PTCN, (d) GAT, (e) PKT-MCNN, (f) IAGNN-CON, and (g) IAGNN-AT.

TABLE V

F1 SCORE (%) COMPARISON BETWEEN DIFFERENT GRAPH STRUCTURES

relationships, such as monotonicity and nonlinearity
between two variables based on the max information
coefficient and the characteristic matrix. It is an efficient
tool to identify the structure in data.

4) Hybrid graph. Considering the multirelationship
between nodes, KNN and MINE connections are used
to construct a heterogeneous graph.

The model structures of these fixed graph experiments are
the same as IAGNNs models, except removing the interaction
learning layer and subgraph feature aggregation module. The
results are shown in Table V. Obviously, the FC graph cannot
reveal the relationship between variables, and the embedded
fault feature cannot meet the requirement of fault discrimina-
tion. Meanwhile, the KNN graph has a better performance
than the MINE graph. The results indicate that the KNN
structure can better describe the interactions of complex sensor
networks than MINE structures. However, the heterogeneous
graph with KNN and MINE edge has better results than
the graph with one edge type, which demonstrates that the
KNN graph and MINE graph can provide complementary
information to each other, which can prompt the learning
of fault features. Furthermore, IAGNN models achieve the

Fig. 9. Influence of different number of edge types on TFF and PS datasets.
(a) TFF dataset. (b) PS dataset.

best performance, which proves the superiority of adaptive
interaction learning.

E. Parameter Sensitivity

In this part, the impact of: 1) the number of edge types K ;
2) the depth of GNN block layers L; 3) the hidden unit
dimension of GNN block; and 4) the embedding dimension
of the IAGNN-AT aggregation function is investigated.

1) Effects of the Number of Edge Types: Since the IAGNN
models learn the interactions between nodes in different rep-
resentation spaces, the influence of the number of edge types
is worth deep analysis. Fig. 9 shows the comparison between
the different number of edge types ranging from 1 to 8. First,
it can observe that learning multiple interactions receive better
performance, which is superior to aggregation of multispace
graph information. Second, the best results of IAGNN-CON
and IAGNN-AT models are obtained when the number of
edges equals 4 for the TFF dataset. After that, the F1 score
remained relatively stable with the increase of the number
of edges. Moreover, the performance of these two IAGNN
models is close to each other. And, this indicates that an
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Fig. 10. Parameter sensitivity of depth of GNN layers. (a) TFF dataset.
(b) PS dataset.

appropriate choice of the number of edges to learn can improve
model performance.

Third, for the PS dataset, the best results of IAGNN-CON
are obtained when the number of edges equals to 3 and
then the performance decreased. The F1 scores of IAGNN-AT
are stable with the increase of the edge types and perform
better than IAGNN-CON in most cases. The above results
indicate that redundant information is introduced to the final
fault features while learning too many edge types and thus
burden IAGNN-CON model learning. In contrast, the weight
summation aggregation module can capture complementary
information from multiple subgraphs, which helps IAGNN-AT
obtain better results.

2) Effects of the Depth of GNN Layers: To explore the
effect of GNN layers, the experiments with various number of
the depth of IAGNN models is carried out and the results of
IAGNN-CON models with 3 and 4 edge type and IAGNN-AT
models with 3 and 4 edge types are shown in Fig. 10. It can
be seen that the best results for the TFF dataset are obtained
with the two-layer model. As the depth increases, training a
deeper model becomes difficult and the performance becomes
worse. The best results for PS data are achieved with the
two-layer model, and obvious decrease in the performance
of the IAGNN-CON model as the depth of layer increases.
Compared to the IAGNN-CON model, the performance of
the IAGNN-AT model is relatively stable. This attributes to
the weighted summation aggregation function, which provides
additional transformation of the subgraph embeddings and
contributes to discriminate feature learning.

3) Effects of the Hidden Unit Dimension of GNN: The effect
of the hidden unit dimension of GNNs on both the TFF dataset
and PS dataset are explored. Fig. 11 shows the results of four
IAGNN models, including IAGNN-CON models with three
and four edge types and IAGNN-AT models with three and
four edge types. In Fig. 11, TFF and PS achieved the expected
performance after 128 and 512 hidden unit dimensions, respec-
tively. After that, the performance maintains a certain level.
It can be observed that the increase of hidden unit dimensions
does help the performance improvement and it needs a wide
GNN layer to represent the fault with large-scale categories.
Based on the above observation, after obtaining an expected
performance, the proposed model is not overly sensitive to the
hidden unit dimension.

4) Effects of the Embedding Dimension of IAGNN-AT
Aggregation Function: The IAGNN-AT model with a

Fig. 11. Parameter sensitivity of hidden unit dimension of GNN layers.
(a) TFF dataset. (b) PS dataset.

Fig. 12. Parameter sensitivity of embedding dimension of IAGNN-AT
aggregation function. (a) TFF dataset. (b) PS dataset.

weighted summation function first transforms the embedding
of each subgraph through an FC layer. The impact of the size
of this FC layer is explored in this part and the results are
shown in Fig. 12. The aggregation function with 128 and
512 dimensions achieve the best performance on the TFF
dataset and PS dataset, respectively. It can be observed that
the embedding dimension of the aggregation function has no
serious impact on the fault recognition performance.

VI. CONCLUSION

In this article, we propose an IAGNN model considering
the multiple interactions in a sensor network and transform
the fault diagnosis problem of complex industrial into a
graph classification task. IAGNNs learn the complex inter-
actions between nodes in different representation spaces via
an attention mechanism and introduce independent GNN
blocks to extract interaction-based subgraph representation
and fuse them via an aggregation module to reflect the fault
features. Experiences on TFF and PS datasets show that
the proposed IAGNNs achieve superior results on each fault
category. Furthermore, the effectiveness of adaptively learned
graphs and the parameter sensitivity of the number of edge
types, the depth of GNN block, the hidden unit dimension,
and the embedding dimension of the IAGNN-AT aggregation
function are investigated. There are several problems worthy
of future work. First, introduce principal variable extraction
into message passing operation, such as graph pooling tech-
nique, to explore the root cause of the fault and improve
the training efficiency of the model. Second, since each node
corresponding to a physical measurement variable, the design
of node types is worthy for future work, such as distinguishing
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the physical variables and the switch variable. Third, learn a
graph structure with interpretability, since the edges of the
graph learned by the IAGNN model are only described by the
relation score.
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