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Abstract—It is always a primary challenge in fault diag-
nosis of a wind turbine generator to extract fault character
information under strong noise and nonstationary condi-
tion. As a novel signal processing method, sparse repre-
sentation shows excellent performance in time–frequency
analysis and feature extraction. However, its result is di-
rectly influenced by dictionary, whose atoms should be as
similar with signal’s inner structure as possible. Due to the
variability of operation environment and physical structure
in industrial systems, the patterns of impulse signals are
changing over time, which makes creating a proper dictio-
nary even harder. To solve the problem, a novel data-driven
fault diagnosis method based on sparse representation and
shift-invariant dictionary learning is proposed. The impulse
signals at different locations with the same characteristic
can be represented by only one atom through shift oper-
ation. Then, the shift-invariant dictionary is generated by
taking all the possible shifts of a few short atoms and, con-
sequently, is more applicable to represent long signals that
in the same pattern appear periodically. Based on the learnt
shift-invariant dictionary, the coefficients obtained can be
sparser, with the extracted impulse signal being closer to
the real signal. Finally, the time–frequency representation
of the impulse component is obtained with consideration of
both the Wigner–Ville distribution of every atom and the cor-
responding sparse coefficient. The excellent performance
of different fault diagnoses in a fault simulator and a wind
turbine proves the effectiveness and robustness of the pro-
posed method. Meanwhile, the comparison with the state-
of-the-art method is illustrated, which highlights the supe-
riority of the proposed method.

Index Terms—Fault diagnosis, periodical impulse vi-
bration extraction, redundant union of dictionaries, shift-
invariant dictionary learning, sparse time–frequency repre-
sentation, wind turbine generator.
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I. INTRODUCTION

W IND energy has experienced a remarkable expansion in
recent years to improve the serious environment prob-

lems and deal with the shortage of fossil fuels [1], [2]. However,
wind turbines are usually operated in extreme and harsh en-
vironment, which generate rapid changes on temperature, air
pressure, wind shear, wind speed, and total load. These varia-
tions make wind turbines undergo constantly changing global
and local dynamics and loads and, therefore, lead to relatively
higher failure rates [3], [4]. The failures of a wind turbine not
only cause stability problems, but also result in high cost for
repairing and maintenance, especially for those large and re-
motely located wind turbines [5]. It is reported that operation
and maintenance (O&M) costs account for up to 30% of the
energy generation costs, while 66% of O&M costs are caused
by unexpected failures [6]. Therefore, many researchers have
conducted various research works to condition monitoring and
fault diagnosis technology of wind turbines.

A generator is one of the most important components in a
wind turbine, which is easy to malfunction because of severe
operation environment and wide-range fluctuation of loads [7].
The contributions of offshore wind turbine components to the
total O&M costs and downtime are given in Fig. 1. It can be
seen that generator failure is one of the three most common
failures. The failures of a blade, a generator, and a gearbox
contribute together for over 76% of the costs and over 87%
of the downtime. The cost caused by the generator is nearly
one-fifth of the total cost, and the downtime is nearly one-third.
Therefore, an effective fault diagnosis method for a wind turbine
generator is essential for wind turbine maintenance decisions.

The failure modes in electric motors can be classified as
electrical faults and mechanical faults [8]. The electrical faults
mainly include: 1) stator faults resulting in the opening or short-
ing of one or more of a stator phase winding; and 2) broken
rotor bar or cracked rotor. The mechanical faults mainly include
bearing failure, rotor unbalance, rotor misalignment, and bowed
rotor. These faults can result in the change of vibration signal,
current signal, torque, temperature, and so on. Mechanical faults
such as bearing and shaft faults constitute a significant portion
of all faults in wind turbine generators [9], [10]. The reported
failure surveys have shown that bearing problems account for
between 21% and 95% of all failures in electrical machines [11].

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1322 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 3, JUNE 2017

Fig. 1. Relative contribution of the components to the costs and downtime of wind turbine. (a) Distribution of costs. (b) Distribution of downtime.

The percentage failure by components in induction machines is
typically the following: about 40% failures are related to bear-
ings, 38% to the stator, 10% to the rotor, and 12% to others
[12], [13]. As a result, the fault diagnosis of generators has re-
ceived an intense amount of research interest during the last
30 years [14].

For the purpose of reducing maintenance costs and extracting
representative features from the complex nonstationary noisy
signal, numerous signal processing approaches have been de-
veloped for fault diagnosis of electric generators used in wind
turbines, such as statistical analysis, Fourier transform [15],
wavelet transform [16], [17], Hilbert–Huang transform [18],
and empirical mode decomposition [19], [20].

Different from traditional diagnosis methods, sparse repre-
sentation [21] aims to find sparsest or nearly sparsest represen-
tations of signal that capture higher level features in the data
over redundant dictionaries. The main idea of sparse represen-
tation theory is to concentrate the energy of feature information
into a few elements and provide a feasible way to identify mul-
tiple feature information simultaneously by projecting different
fault signals into different sparse representation spaces. Due to
the powerful ability of extracting features, sparse representa-
tion methods have been rapidly developed for fault diagnosis,
including matching pursuit (MP) [22], basis pursuit denoising
[23], and manifold sparse reconstruction [24]. Effective as they
are, a lot of prior knowledge is needed to apply them in industrial
systems. The representation effectiveness is directly influenced
by the selection of dictionary, which is difficult in fault diagno-
sis of a generator due to the changeable operation environment,
complex components, and nonstationary condition. Dictionary
learning is an effective data-driven way to construct an em-
pirically learned dictionary for sparse representation, in which
the generating atoms come from the underlying empirical data,
rather than from some theoretical models. The most commonly
used dictionary learning method is K-SVD [25], which builds
the dictionary by alternating a sparse approximation of the train-
ing signals on the current dictionary and the optimization of the
dictionary according to the computed decomposition. However,
when dealing with a long signal, the dictionary learning method
needs to split the signal into small frames, and even the same
frames with different phases will result in different atoms. As a

result, the learnt dictionary will be huge with a lot of redundant
information. Due to the characteristics of mechanical signals
such as strong periodicity, variability, and the phase problem, it
can be useful to learn a shift-invariant dictionary.

Therefore, based on the characteristics of mechanical signals,
a sparse time–frequency representation method combined with
a shift-invariant dictionary learning technique is proposed for
fault diagnosis of wind turbine generator bearings, which over-
comes the limitations of the traditional sparse representation and
dictionary learning method. All impulsive features at different
locations with the same characteristics can be represented by
just one basis function by the proposed method, with no need
to split long signals into small frames. Therefore, the learnt dic-
tionary is smaller and more applicable for vibration signals in
industrial systems with a faster convergence speed compared
with K-SVD.

This paper is organized as follows. Section II describes the
physical background and the mechanical vibration model of
a wind turbine generator. In Section III, the proposed shift-
invariant dictionary learning algorithm and the sparse time–
frequency representation technique are illustrated in detail and
verified by a synthetic signal. In Section IV, an experiment
performed on a fault simulator and a field test are performed to
illustrate the effectiveness of the proposed method. Conclusion
and future work of the research are presented in Section V.

II. MECHANICAL VIBRATION MODEL OF A GENERATOR

Vibration data are recognized as the best parameter in a wind
turbine (WT) for incipient fault diagnosis during the opera-
tion [26], because it can reflect operational condition and faults
properties rapidly, accurately and comprehensively. There are
three mainly components in the generator vibration signal, with
strong coupling effect.

A. Harmonic Component

Limited to manufacturing precision, the rotor in the gener-
ator is neither completely symmetrical and axisymmetric on
the physical structure nor completely coaxial with the bearings.
Therefore, when the rotor rotates, these unbalances and mis-
alignments will cause vibration that is made up of harmonics
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with frequencies of the rotation frequency and its multiplica-
tions. The vibration can be described as

sh(t) =
M∑

m=0

Am cos(2πmfr t + φm ), m ∈ N+ (1)

where Am and φm are amplitude and phase of the m times
rotation frequency component, respectively, and fr is the rotor
rotation frequency.

B. Periodic Impulse Component

In the generator with a faulty bearing, impulse vibration will
be generated when a ball passes through the defect, which can
be represented as

si(t) =
∑

k

h(t− T0 − kT ) (2)

where T0 is the initial phase. T = 1/ffault is the time inter-
val between two impulse. h(t) is a single impulse that varies
from different operation conditions. The fault characteristic fre-
quency ffault is set to be fi , fo , fb , and fc , respectively, when
the fault occurs on inner race, outer race, ball, and cage:

fi = 0.5NB fr

(
1 +

Db cos θ

Dc

)

fo = 0.5NB fr

(
1− Db cos θ

Dc

)

fb = 0.5fr

(
Dc

Db

) [
1−

(
Db cos θ

Dc

)2
]

fc = 0.5fr

(
1− Db cos θ

Dc

)
(3)

where NB is the number of balls in the bearing, Db is the ball
diameter, Dc is the pitch diameter, and θ is the ball contact
angle.

C. Mixed Signal

These vibration components are often distorted by relatively
strong noises, which may arise from sensor imperfection,
poor running environment or communication errors, and so
on. Therefore, the vibration caused by the generator is a
combination of three components: harmonic vibration, periodic
impulse vibration, and noise. The observed vibration signal of
a generator in the wind turbine often can be described as

s(t) = sh(t) + si(t) + n(t). (4)

It is worth noting that the power of the generator is provided
by natural wind, and the rotation frequency of the generator
changes with wind speed. As a result, the parameters ffault and
T in (2) change constantly.

III. PROPOSED ALGORITHM

Based on the physical background and sparse representa-
tion framework, a novel fault diagnosis method is proposed
for fault diagnosis of a wind turbine generator bearing, which

mainly includes three steps: harmonic components separation,
shift-invariant K-SVD dictionary learning, and sparse time–
frequency representation.

A. Sparse Representation Model

The main idea of sparse representation is to replace the basis
function sets with overcompleted redundant function sets, which
are called the overcompleted dictionary, and then trace the pa-
rameterized functions matched with the signal structure feature.
As a result, signal can be represented as a linear combination of
few vectors, which are called atoms in the dictionary.

Given an overcompleted set D = gk ; k = 1, 2, ...,K. The K
elements in D constitute the unit vectors, which span the whole
Hilbert space H = RN . If K ≥ N , the set D is called the over-
completed dictionary and the element in D is called the atom.
For any signal f ∈ H , m atoms are selected adaptively to m-
term approximate the signal s(t):

s =
∑

γ∈Im

αγ gγ (5)

where Im is the set of parameter γ, and gγ is the atom determined
by γ.

In sparse representation theory, the components in dictionary
D is nonorthogonal and overcompleted. Therefore, selecting the
sparsest representation of signal s(t) from D is equivalent to the
following optimization problem:

min ‖α‖0 s.t. s = Dα (6)

where α is the sparse coefficients, and norm ‖α‖0 is defined as
the number of nonzero coefficients in a coefficient vector.

When s(t) is noisy, then the optimization problem is trans-
formed as

min ‖α‖0 s.t. s−Dα < ε. (7)

Various greedy algorithms and convex optimization tech-
niques could be employed to solve (6) and (7), such as MP
[27], orthogonal matching pursuit (OMP) [28], stagewise OMP
[29], and basis pursuit [30].

B. Harmonic Component Separation

Harmonic components spread all over the vibration signal
and can cause modulation effect on the impact component and,
consequently, influence the result of impulsive feature extrac-
tion, which is a fundamental transient phenomenon that always
modeled as dynamic response of abnormal operations when
the generator develops local malfunction [31]. Therefore, the
first stage of the proposed algorithm is separating the harmonic
components from the vibration signal.

The vibration signal in (4), by introducing a dictionary D1 ,
can be expressed as

s(t) = sh(t) + si(t) + n(t) = D1α1 + si(t) + n(t) (8)

where α1 is the coefficient vector of the harmonic component
under the combined dictionary.

The aim of sparse representing harmonic components is to
find their frequencies. Therefore, frequency dictionary, which
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Fig. 2. Harmonic separation algorithm.

takes frequency as a parameter variable, can sparsely represent
the harmonic components and keep the impact components. The
Fourier dictionary is a typical frequency dictionary constructed
by a collection of trigonometric functions. Therefore, the sub-
dictionary for harmonic components D1 is set to be the Fourier
dictionary. The atom in the Fourier dictionary can be repre-
sented by a trigonometric function with a parameter γ = (f, υ),
where f is the frequency parameter and υ ∈ 0, 1 is the phase
parameter. When υ = 0, the atom is a cosine function, and when
υ = 1, it is a sine function:

gs(f, 0) = cos(2πft), gs(f, 1) = sin(2πft). (9)

Then, the Fourier dictionary is used to match the vibration
signal, and the optimization problem of separating harmonic
components can be described as

argmin
α1

‖α1‖0 s.t. s−D1α1 < ε. (10)

The optimization problem is solved by the OMP, which is
profoundly described in Fig. 2. After α1 is obtained, the har-
monic component can be estimated as ŝh = D1α1 . Therefore,
the combination signal of impact components and noise can
be obtained as sr (t) = Rks. Rks is the residual signal after k
iterations.

C. Shift-Invariant K-SVD Dictionary Learning

It is easy to construct a suitable dictionary to sparsely
represent harmonic components because of their fixed struc-
ture. However, due to the various failure modes in electric
machines, the internal structures of impact components vary
from different failures and make it difficult to select a proper
dictionary to fit the impact signals. Therefore, it can be useful
to learn a dictionary from signals.

After separating harmonic components, the dictionary learn-
ing problem under the combination of impact components and
noise s(t) can be expressed as the computation of a dictionary
that minimizes the approximation error under a hard sparsity
constraint:

min
‖α‖0≤L

∑

l

‖sl −Dαl‖22 (11)

where L is the maximum number of atoms, and l is the number
of samples.

However, traditional dictionary learning methods such as K-
SVD [25] are sensitive to the position and phase. That is, even
two same signals with different position or phase will result in
two different atoms. And learning from vibration signals directly
will result in time-localized atoms with arbitrary position, and
each shift of pattern will lead to another atom. At the same time,
with the wide distribution of rotating components in generators,
the vibration signals are strong cyclical and shift invariant. It
would be more efficient and effective to learn a shift-invariant
dictionary. Therefore, shift-invariant K-SVD [32], which is an
extension of K-SVD, is used for dictionary learning to separate
the impact component.

In shift-invariant K-SVD, the learning is performed on one
long signal, instead of splitting the signal into frames in K-SVD,
and the dictionary D2 is built by shifting a family M of patterns
m: M = (mk )1≤k≤K . All impulsive features at different loca-
tions with the same characteristics can be represented by just
one basis function, which is called the pattern. Therefore, the
learning problem is turned into learning the set of patterns and
can be defined by the new objective function:

min
‖α‖0≤L

∥∥∥∥∥s−
∑

k

∑

τ

αk,τ mk (t− τ)

∥∥∥∥∥

2

2

= min
‖α‖0≤L

∥∥∥∥∥s−
∑

k

∑

τ

αk,τ Tτ mk

∥∥∥∥∥

2

2

(12)

where Tτ is the shift operator that takes a pattern m and returns
an atom that is null everywhere except for a copy of m that
starts at instant τ . Therefore, the dictionary D2 can be defined
as D2 = (Tτ mk )k , τ .

Shift-invariant K-SVD is composed of alternation of sparse
decomposition stage and dictionary update stage, which follows
the iterative strategy as the K-SVD algorithm. The main differ-
ence between them is that shift-invariant K-SVD relies on the
instants where they are not null instead of the value of the am-
plitude coefficients. And it deals with the dictionary learning
problem by updating each pattern mk successively and the am-
plitude coefficients ck , τ , accordingly before updating the next
pattern.

The purpose of the sparse decomposition stage is to find the
closest sparse approximation of a signal. There are many subop-
timal algorithms that can be used to solve the problem, and the
MP algorithm [33] is applied in this paper because it performs
well in dealing with highly coherent and large dictionaries.

In the dictionary update stage, the patterns are updated to
minimize the error. For a given pattern mκ , define the signal
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Fig. 3. Shift-invariant K-SVD algorithm used for dictionary learning.

without the contributions of the other patterns mk , k �= κ, as

ŝκ = r +
∑

τ

ακ,τ Tτ mκ. (13)

Then, the best update pattern mopt
κ can be given by

(mopt
κ , αopt

κ ) = argmin
‖m‖2 =1

∥∥∥∥∥ŝκ −
∑

τ ∈στ

ατ Tτ m

∥∥∥∥∥

2

2

. (14)

As the shift operators Tτ are unitary, the objective function
can be defined as
∥∥∥∥∥ŝκ −

∑

τ ∈στ

ατ Tτ m

∥∥∥∥∥

2

2

=
∑

τ ∈στ

‖T ∗τ ŝτ − ατ m‖22 + cst, ∀m

(15)
where T ∗τ is the adjoint of Tτ . It extracts a patch with the same
length as a pattern from a signal and begins at τ . Then

mτ ← argmin
‖m‖2 =1

∑

τ ∈στ

〈m,T ∗τ ŝκ〉2 (16)

(ακ,τ )τ ∈σκ
← argmin

∥∥∥∥∥ŝκ −
∑

τ ∈στ

ατ Tτ m

∥∥∥∥∥

2

2

. (17)

More specifically, the shift-variant K-SVD algorithm is illus-
trated in Fig. 3. The computational cost is mainly concentrated
in procedure 1. In this step, the fast algorithm described in [33]
is applied, whose computing complexity of this step is order
of O(l log l). For a signal s with length N , if the algorithm is
converged after i iterations, there are ikNl log l times of mul-
tiplication operations that are required to run the shift-invariant
K-SVD algorithm.

The extracted signal can be reconstructed by

ŝi(t) =
∑

k

∑

τ

αk,τ mk (t− τ). (18)

D. Sparse Time–Frequency Representation

According to the step of shift-invariant K-SVD dictionary
learning, M and αk,τ can be obtained. Each atom in the dictio-
nary has its time–frequency characteristics, which can be rep-
resented by many time–frequency distribution methods, such as
the short-time Fourier transform, the Wigner–Ville distribution
(WVD), and the wavelet transform. In this paper, the WVD is

employed due to its advantage of high time–frequency resolu-
tion. The WVD of the kth atom can be defined as

Watom(k)(t, f) =
∞∑

−∞
m(k)

(
t +

τ

2

)
m∗(k)

(
t− τ

2

)
e−j2πf t .

(19)
After n iterations, the WVD of all atoms can be obtained.

Then, the sparse time–frequency representation of the recon-
structed impulse signal ŝi can be implemented by integrating the
WVD of the atoms with nonzero coefficient and corresponding
sparse coefficients:

STFs(t, f) =
∑

k

∑

τ

αk,τ Watom(k)(t− τ). (20)

E. Verification by a Synthetic Signal

To verify the performance of the proposed method, a synthetic
signal is constructed. According to the mechanical vibration
model in Section II, the simulation signal consists of harmonic
component, periodic impact component, and Gaussian white
noise:

x(t) = x1(t) + x2(t) + n(t)

= 0.3sin(2πfr t + π/3)

+
∑

k

h(t− T0 − kT ) + n(t) (21)

where x1(t) is the harmonic component and x2(t) is the periodic
impact component. h(t) is defined as

h(t) = exp

[(
− ξ√

1− 2ξ2
2πfnt

)
sin(2πfnt)

]
t ≥ 0

(22)
where fr is set to be 33 Hz. fn is 500 Hz, T0 is 0.05 s, T is 0.1 s,
and t ∈ [0, 10]s. That is, the signal contains 100 periodic impact
components used for learning the atom. The signal-to-noise ratio
is set to be −11.141 dB. The waveforms of a synthetic signal
are shown in Fig. 4.

Then, the simulated signal is processed by the proposed
method. The sampling frequency should be at least twice as
much as fn . In this simulation, the sampling frequency is set to
be 6400 Hz. The learnt shift-invariant atom is shown in Fig. 5.
The size of the learnt atom should be bigger than the duration
time of an oscillation and smaller than the time interval between
two impacts. The reconstructed harmonic and impact compo-
nents are displayed in Fig. 6. And the sparse time–frequency
distribution of impact signal is shown in Fig. 7.

It can be seen that the learnt atom is basically the same as the
simulation impact signal. In addition, the periodic impulse com-
ponent can be observed obviously with the oscillation frequency
of 500 Hz. Therefore, the proposed method shows excellent per-
formance under strong noise disturbance.

IV. APPLICATIONS AND DISCUSSIONS

To verify the effectiveness of the proposed method, two exper-
iments are performed. The first one is performed on a simulator
test rig, and a field test is performed as the second experiment.
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Fig. 4. Simulation signal. (a) Harmonic component. (b) Impact compo-
nent. (c) Noise. (d) Synthetic signal.

Fig. 5. Shift-invariant atom learnt by the proposed method.

Fig. 6. Reconstructed signal of (a) the harmonic component and
(b) the impact component.

Fig. 7. Sparse time–frequency distribution of the impact component.

Fig. 8. SQI test rig for an electric machine simulator. (a) Overall view
of the SQI test rig. (b) Enlarged view on the position of sensors.

Fig. 9. (a) Analyzed signal. (b) Rotation frequency.

The results of the two experiments and the comparison with
other method are reported in detail.

A. Fault Simulation Test

The first experiment was conducted on an SQI electric ma-
chine fault simulator, as shown in Fig. 8. SKF 6203 bearing is
used in this experiment. The fault characteristic frequency of
the outer race is 4.932 Hz when the rotation frequency of the
output shaft is 1 Hz, which can be calculated via (3). A simu-
lated peeling-off fault is conducted on the bearing outer race.
The vibration signals are acquired by an accelerometer with the
sampling frequency of 12 800 Hz. The rotation speed ranges
from 0 to 3600 r/min. One segment of the vibration signals and
the change of the rotation frequency are displayed in Fig. 9.
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Fig. 10. Waveforms of the learnt atom.

Fig. 11. Results obtained by the proposed method. (a) Extracted im-
pact component and (b) its local enlarged detail. The period of impulsive
signals indicates that there is a local fault in the outer race.

Fig. 12. Sparse time–frequency distribution of the extracted impulse
signal.

Then, the proposed method is applied to analyze the vibration
signal from 15 to 16 s, which is in the speed increment. Fig. 10
graphically illustrates the learnt shift-invariant atom. The re-
sulting impulse component through the proposed method and
a zoom-in view with a length of 0.1 s are depicted in Fig. 11.
Furthermore, the sparse time–frequency distribution of the sub-
component is illustrated in Fig. 12. It can be seen clearly that the
impulsive components appear periodically. In this experiment,
the diameter of the defect is about 1.5 mm, and the depth is 0.5
mm. The detail of the defect is shown in Fig. 13.

In this segment of signal, the rotation frequency ranges from
30.1 to 30.4 Hz. Based on the fault characteristic frequency of
the outer race and the rotation frequency range, the correspond-
ing fault characteristic frequency of the bearing outer race can
be calculated by rotation frequency ×4.932 Hz, which ranges

Fig. 13. Defect on the outer race of the experimental bearing.

from 148.453 to 149.933 Hz. Therefore, the impulse interval can
be obtained as the reciprocal of fault characteristic frequency,
which is between 6.670 and 6.736 ms, and agree with the ex-
tracted signal and its time–frequency distribution in Figs. 10 and
11. But the frequency band is in wide range, which indicates that
multiple natural frequencies are motivated when a roller passing
through the peeling off of the outer race and impulse occurs. It
can be inferred that the impact energy components in the range
of 4000–6000 Hz in Fig. 12 are caused by the resonance oscil-
lations of bearing components when the bearing is passing the
defect. The center frequency is related to the first-order radial
inherent vibration of the vibration system [34].

For comparison, the same vibration signal is analyzed by
spectrum kurtosis (SK) and K-SVD methods. The results of SK
are shown in Fig. 14. There are also some impulse components
can be observed in the SK-filtered signal. However, they are
not as obvious and clear as the result of the proposed method,
and the periodicity is also not significant. And the existence of
cross-term interference also influences the time–frequency dis-
tribution. Besides, due to the dictionary learning technique and
the properties of being data driven, the proposed method does
not rely on the prior knowledge. On the contrary, the frequency
band range should be determined first when using SK. There-
fore, the obtained vibration of the impulse signal concentrates
on about 5600 Hz.

The results of K-SVD after 20 iterations are shown in
Figs. 14 and 15. The length of atom is set to be 100 points,
which is kept the same with the proposed method. The num-
ber of atoms in the dictionary is set to be 256. Fig. 15 shows
two atoms of the 256 learnt atoms. Fig. 16 shows the denoised
signal and its local enlarged detail from 0.4 to 0.5 s. From the re-
sults, it can hardly be found some very unclear periodic impulse
components. Therefore, compared with the proposed method,
K-SVD is inefficient to diagnose the fault. For the vibration sig-
nals in this experiment, the running time of the K-SVD method
is 17.5575 s, while the running time of the proposed method is
0.5543 s on a corei3-3320 @ 3.3-GHz computer. Therefore, the
proposed method also shows advantages of computational cost
and practicability in industrial applications.

To further evaluate the effectiveness of the proposed method,
a health electric machine was tested on the same SQI test bed,
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Fig. 14. Results obtained by SK. (a) Fast kurtogram of the vibration
signals. (b) Filtered signal according to the optimal filter. (c) WVD of the
filtered signal.

Fig. 15. Waveforms of two learnt atoms.

Fig. 16. Results obtained by K-SVD. (a) Denosied signal and (b) its lo-
cal enlarged detail. It can hardly found the periodic impulse components.

Fig. 17. Learnt atom.

Fig. 18. Results obtained by the proposed method. (a) Extracted im-
pact component and (b) its sparse time–frequency distribution.

and the collected signal is analyzed. The parameters are both
kept the same. The learnt atom is illustrated in Fig. 17, and little
oscillation and feature information can be found.

The reconstructed impact signal and its sparse time–
frequency distribution are shown in Fig. 18(a) and (b). It can
be seen that there are only some low-frequency vibration with a
small amplitude in the reconstructed signal and the sparse time–
frequency distribution. Therefore, the proposed method has the
ability to distinguish healthy and faulty cases.

B. Wind Field Test

During one inspection in a wind field, the vibration data col-
lected by accelerate sensors from the generator of an abnormal
wind turbine are over the standard. The sensor is located at the
front of a generator bearing with the type of SKF 6326C3, as
shown in Fig. 19. The sampling frequency is 25 600 Hz. One
segment of 5-s vibration signal with decreasing rotation speed
is displayed in Fig. 20. It can be seen that the rotation speed
changes quickly, and there is no significant feature information
for fault diagnosis.

Then, the proposed method is applied to extract an impulse
vibration signal in this field test. The shift-invariant atom in the
dictionary learnt by the proposed method is shown in Fig. 21.

The extracted impulse signal and its local enlarged detail
are shown in Fig. 22, with the rotating frequency ranging from
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Fig. 19. Generator in the wind field. (a) Overall view of the generator.
(b) Position of the sensor.

Fig. 20. (a) Analyzed signal. (b) Rotation frequency.

Fig. 21. Learnt atom.

Fig. 22. Results obtained by the proposed method. (a) Extracted im-
pact component and (b) its local enlarged detail. The period of impulsive
components matches with the inner race fault.

Fig. 23. Sparse time–frequency distribution of the extracted impulse
component.

TABLE I
IMPULSE INTERVAL OF THE BEARING

Positions Characteristic frequency Range of impulse interval/ms

Outer race [74.93, 75.31] [13.28, 13.35]
Inner race [116.43, 117.01] [8.55, 8.59]
Rolling element [105.13, 105.66] [9.46, 9.51]
Cage [9.37, 9.41] [106.22, 106.76]

Fig. 24. Results obtained by SK. (a) Fast kurtogram of the vibration
signals. (b) Filtered signal according to the optimal filter.

23.92 to 24.04 Hz. Its time–frequency distribution is shown in
Fig. 23. Table I lists the impulse intervals of the bearing that are
calculated according to (3).

We found the clear periodic impulse signals in Fig. 22 with
the interval of 8.55 ms, which agree with the theoretical value
of the inner race fault. Therefore, it can be concluded that there
is a localized fault that exists on the bearing inner race. Then,
a comprehensive inspection is performed on the wind turbine
generator, and a local damage is found on the inner race of the
front bearing.

The same vibration signal is processed by SK for comparison.
The results are displayed in Fig. 24.

It can be seen that the characteristic pattern of the fault is
not significant. In addition, although there are some impulse
components being extracted, the weak impulse are submerged
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Fig. 25. Learnt atom.

Fig. 26. Results obtained by the proposed method. (a) Extracted im-
pact component and (b) its sparse time–frequency distribution.

by the strong noise and no periodic components can be found.
Therefore, the SK technique is not as efficient as the proposed
method for impulse vibration signals extraction, especially un-
der nonstationary and strong noise conditions.

To further illustrate the robustness of the proposed method,
another signal of the same wind turbine is analyzed as well,
whose rotation frequency ranges from 15.5 to 16 Hz. The pa-
rameters of the approach are kept to be the same. The learnt
shift-invariant atom is shown in Fig. 25. The extracted impact
component and its sparse time–frequency distribution are shown
in Fig. 26.

The fault characteristic frequency of inner race ranges from
75.44 to 77.88 Hz, and the corresponding impact interval ranges
from 12.84 to 13.26 ms, which are matching with Fig. 26. There-
fore, as long as the impulse interval time is longer than the os-
cillation time of the impact component, this method can work
well, and the choice of the rotation frequency will not impact
the quality of the results.

V. CONCLUSION

The periodic impulsive feature is always modeled as vibration
response of abnormal operations in a faulty generator. However,
the characteristic of impulsive component varies from differ-
ent generator systems. Therefore, in this paper, a data-driven

fault diagnosis method for a wind turbine generator bearing is
proposed based on the idea of sparse representation and shift-
invariant dictionary learning to extract different impulsive com-
ponents from vibration signal. Compared with traditional sparse
representation methods, it overcomes the dependence of prior
knowledge and the selection of proper dictionary, while extract-
ing the impulse component more effectively. Moreover, the pro-
posed method can represent the impulses at different locations
with the same characteristic by just one basis function, which
is very suitable for analyzing the fault signal with periodic im-
pulses. The verification results of both the fault simulation test
and the actual wind field test demonstrate that the proposed
method can learn shift-invariant atoms adaptively and extract
the valuable impulse components precisely from different gen-
erator systems. The comparison with the recognized method
also proves the effectiveness and robustness of the proposed
method for fault diagnosis of wind turbine generator bearings
under nonstationary and strong noise conditions. Future work
will pay more attention to composite fault detection and the
improvement of parameter self-adaption, such as the threshold
value, the atom number, and the size of the learnt atom.
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