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Abstract—In this paper, a fault diagnosis framework for the
industrial control systems is proposed based on graph attention
networks (GAT). The proposed method models the complex
relationship between sensor signals and fuses multivariate sensor
signals with relational information. First, to reveal the different
relationships between sensor signals, a graph with multi-view is
constructed considering the similarity and correlation properties.
Second, for each view of the graph, GAT is used to extract
the graph feature and adjust the structure information by
introducing an attention weight to each edge. Finally, the multi-
view graph features are concatenated to obtain the final fault
feature of multivariate sensor signals. In addition, the focal loss
is introduced to balance the contribution of easy classification
samples to the loss function. The superiority of the proposed
method is demonstrated by extensive experiments on the three-
phase flow facility data set.

Index Terms—Fault diagnosis, graph attention network, multi-
view graph, industrial control system

I. INTRODUCTION

With the rapid development of Industry 4.0, fault diagnosis
for industrial control systems (ICS) is of utmost importance
due to the high efficiency and safety production demand.
Monitoring equipment, such as sensors, has been used to
collect real-time process parameters from different sub-unit.
The monitoring data is characterized by multivariate, highly
interactive, and data imbalance of the normal and fault sam-
ples, which bring a great challenge to fault diagnosis of ICS.
However, due to a large amount of record data, fault diagnosis
based on data-driven methods has been widely studied in
recent years, such as principal component analysis (PCA) [1],
partial least squares (PLS) [2], support vector machine (SVM)
[3] and deep learning (DL) based methods [4].

Fault diagnosis consist of two main parts: (1) fault detection,
which detects an anomaly event; (2) fault isolation, which
locates the faulty unit of the ICS system. The methods, such
as PCA [1] and PLS [2] aim to reduce the dimension of
multivariate sensor signals and use control limits to detect an

anomaly occurrence. While other methods aim to learn the
discrimination information to recognize the fault categories.
In this paper, we follow the deep learning approach to extract
fault features under supervised information. However, these
methods always neglect the complex relation and interaction
among the sensor signals. Owing to the complex control
process in an ICS, the process parameters are highly interactive
with each other. Therefore, once a fault occurs on one unit of
the system, the fault will propagate to other units, which lead
to multiple sensor response. In particular, different faults will
have different propagation modes and have different effects on
the interaction between two process parameters. Thus, these
interactions contain additional fault information that can help
to extract fault features.

Recently, the researches transforms the data to graph space
and use graph neural networks (GNNs) to extract features to
improve the performance on multiple tasks, such as few-shot
image classification [5], text classification [6] and molecular
properties prediction [7]. If a senor is abstracted as a node and
the implicit relationship is abstracted as an edge, the sensors
can form a graph. But the input of GNNs is the graph with
explicit structure, which has fixed edge connection and is set
in advance. Therefore, extending ICS fault diagnosis to the
graph recognition problem, we should consider the following
challenge: (1) graph construction, which can well represent the
interaction of the ICS, and (2) feature extraction model, which
not only can extract the graph feature but also can adjust the
graph structure.

In practice, only partial process parameters can be mon-
itored by the sensors. Thus, the interaction between these
sensor signals cannot describe by the control rules. How to
represent the implicit relationship between sensor signals is
a paramount problem of encoding the interactions into the
fault feature. Although common methods, such as the K-
nearest neighbor (KNN) graph, can obtain an explicit graph
structure, the complex interaction between sensor signals can
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not be well described. In this paper, different metrics are used
to construct the graph structure of the sensor signals. Each
metrics can reveal one view of the sensor signals. However,
the graph construction based on different metrics will bring
edge noise to the graph structure due to the noise in the
original sensor signals and this edge noise will burden the
feature extraction of GNNs. Therefore, we introduce graph
attention neural network (GAT) [8] to extract the fault feature.
GAT assigns an importance weight to the edge by using an
attention mechanism, in which the learned edge weights are
involved in the message passing process of the node feature
embedding. The attention mechanism of GAT can reduce the
influence of the noise edges by introducing a small weight
value to these edges.

Based on the above analysis, an fault diagnosis framework
MG-GAT (multi-view graph and graph attention network) is
proposed, which considers multiple relationships between sen-
sor signals and constructs the graph in different views (multi-
view graph). Then the GAT module is used to extract the
fault feature. In particular, we consider the most representative
relation between sensor signals, similarity, and correlation.
Moreover, data imbalance is one of the common problems
of fault diagnosis because of the rarity of the fault event.
Therefore, the focal loss function [9] is employed in this fault
diagnosis framework, which can balance the training samples
by introducing a modulating factor to the cross-entropy loss.
The major contributions are summarized as follows:

(1) This paper proposes a fault diagnosis framework MG-
GAT based on the graph analysis problem. The multivariate
sensor signals are transformed into multi-view graphs, where
each sensor signal corresponds to a node and the relationships,
similarity and correlation, are corresponding to edges.

(2) The proposed method, using GAT to extract fault fea-
tures and adjust the edge representation formed by similarity
and correlation. In addition, the focal loss function is em-
ployed to reduce the influence of sample imbalance on the
performance of fault diagnosis.

(3) Extensive experiments are performed on a real-world
data set with ground-truth fault categories. The results demon-
strate that the proposed method can provide superior fault
diagnosis performance.

The remaining parts of this paper are organized as follows.
Section II gives the review of related works. Section III
addresses the method proposed in this paper. In Section IV
the effectiveness of the proposed method is demonstrated on
the three-phase flow facility simulation data. Section V gives
the conclusion.

II. RELATED WORKS

A. Deep learning based fault diagnosis

Due to the feature extraction power of deep learning, the
performance of the fault diagnosis method has been improved
significantly. Jiang et al. [10] propose a multi-scale convolu-
tion neural network (CNN) to extract the feature of vibration
signal in different scales for gearbox fault diagnosis. Feng et

al. [11] introduce zero-shot learning to tackle the sample lank-
ness of certain faults. Yang et al. [12] calculate the correlation
matrix and transform the multivariate time series into images
and use CNN to learn the fault feature. These works only focus
on one view of data properties, either characteristic of sensor
signals or relationship between sensor signals. Zhao et al.
[13] propose a graph embedded semi-supervised model, named
SSGCDBN, for motor bearing fault diagnosis. However, the
input signal is single time series, which cannot extend to
multivariate time series directly because lacks the relation
modeling between sensor signals. In this paper, we tend to
fuse the information of data with relational properties in a
sensor network.

B. Graph neural network

The graph neural networks (GNNs) aims to extend neural
networks for arbitrarily structured graphs, which include but
are not limited to graph convolutional networks (GCNs) [14],
GraphSAGE [15] and GAT [8]. The core idea of GNNs is
to update the node feature via aggregating the features of its
neighbors, which can be summarized as a message passing
operation. The GNN-based models have successfully applied
to many graph-based tasks, such as recommendation system
[16], relation prediction for knowledge graphs [17] multi-agent
trajectory prediction [18] and graph anomaly detection [19].
Since the superior performance of GNN, a number of appli-
cations extend to implicitly structured data. Teney et al [20]
improve visual question answer performance by constructing
a graph over the question words and scene objects. Hu et al.
[21] model the object-object relation via attention mechanism
and improve the performance of object detection.

The sensor network of an industrial control system can be
seen as a graph with an implicit graph structure. In this paper,
we take advantage of rich information in a graph and convert
the fault diagnosis problem to a graph classification task.

III. METHOD

Due to the complex interaction in an ICS, the graph
construction considers the most common relationship between
different signals: similarity and correlation corresponding to
KNN-graph [22] and maximal information-based nonparamet-
ric exploration (MINE) graph [23]. Moreover, the structured
sensor signals form a heterogeneous graph that has two types
of edges. The framework of the proposed method is shown in
Fig. 1.

A. Graph construction

The multivaite sensor signals can be denoted as S =
{si | i = 1, . . . , N}. These sensor signals are cut into seg-
ments xi =

(
sti, . . . , s

t−m+1
i

)
as the input of graph con-

struction, where m is the segment size. Therefore, the graph
constructed by sensor signals can be defined as G = (V , E).
V = {vi | i = 1, . . . , N} is a set of vertices corresponding to
the set of sensors with feature X ∈ Rn×m. E is the set of
edges with two types.
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Fig. 1. The framework of the proposed method.

1) KNN-graph construction: The k-nearest neighbor graph
is a graph in which each node has k closest neighbors. For
node vi, if vj is the top k nearest node of vi, a connection is
established between vi and vj . The neighbor set of node vi
can be defined as follows:

ψ (vi) =
{
vji

}k
j=1

,

if Distance
(
xi, x

j
i

)
is k-th samllest

(1)

where xi and xji is the node features corresponding to the
sensor signal segments and Distance (·) is the Euclidean
distance metric.

2) MINE-graph construction: To obtain the MINE-graph,
the maximal information coefficient (MIC) of each node pair
is calculated. The MIC belongs to maximal information-
based nonparametric exploration (MINE), which is designed
to measure the correlation strength between paired variables.
The MIC not only catch both linear and nonlinear relation-
ships, while other commonly used correlation metric method,
such as Person’s correlation coefficient, describe only linear
association. The definition of MIC is given as follows:

Definition: Given a set of ordered pair D = {x, y}. The
x-value and y-value are divided into s bins and t bins,
respectively. Then, a s-by-t grid G is obtained. The maximum
mutual information I∗(D,x, y) = maxG I (D|G) is taken
over all grid G. Therefore, the MIC is given as follows:

MIC(x, y | D) = max
xy<B(|D|)

I∗(D,x, y)

log2 min{x, y}
(2)

where B is a growing function. In [23] the authors suggest that
B(n) = n0.6 and n is the sample size. Higher MIC value indi-
cate that the two variables x and y are highly dependent. The

MIC value of arbitrary variable pairs falls between [0, 1] and
the MIC is also symmetry, in which MIC (x, y) = MIC (y, x).

To obtain a sparse graph structure, an edge will be estab-
lished between xi and xj , if the MIC value is over a threshold.
In this paper, the threshold is set to 0.3.

In this paper, the graphs constructed by KNN and MINE
are converted to a heterogeneous graph with multi-view, in
which there will be two types of edge between every node
pair. However, in order to maintain the independence of each
sub-graph, we use paralleled backbones (GAT) to extract the
fault feature.

B. Graph Attention network

The sub-graph construction based on KNN and MINE can
reveal the relationship between different nodes. However, all
sensor signal comes from the same ICS and share the same
control rules. Therefore, the graph structure of different faults
will have similar parts. In order to adjust the graph structure
information of different fault categories, we introduce the
attention-based graph neural network (GAT) to learn the fault
feature.

The self-attention mechanism is employed to replace the
statically normalized graph convolution operation. First, a
feature transform layer is used to produce a new set of node
features.

z
(l)
i =W (l)h

(l)
i , (3)

where hli is the lower layer feature embedding and the initial
input h0i is one senor signal segment, W (l) is the learnable
weight matrix, and z(l)i is the transformed node feature.
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Fig. 2. Simplified schematic of GAT.

Then a shared attention weight vector −→a (l) is introduced to
computes attention coefficients e(l)ij .

e
(l)
ij = LeakyReLU

(
~a(l)

T
(
z
(l)
i ‖z

(l)
j

))
. (4)

In order to compare the attention coefficient across different
nodes, a softmax is used to normalize the attention coefficient:

α
(l)
ij =

exp
(
e
(l)
ij

)
∑
k∈N (i) exp

(
e
(l)
ik

) (5)

The learned normalized attention coefficients introduce a
weight to the edge constructed by KNN and MINE, which
distinguish the importance of the neighbor node to the target
node according to the supervision information. At last, the
node feature hl+1

i is updated by aggregating the neighbor node
and edge information, which is shown in Fig. 2

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij z

(l)
j

 (6)

GAT also introduces multi-head attention to stabilize the
learning process and advance the model capability. There are
two ways to merge the outputs of each head, concatenation
and average. It is suggested to use concatenation operation for
intermediary layer and use average layer for the final layer.

Concatenation: h(l+1)
i = ‖Kk=1σ

 ∑
j∈N (i)

αkijW
kh

(l)
j

 , (7)

Average: h(l+1)
i = σ

 1

K

K∑
k=1

∑
j∈N (i)

αkijW
kh

(l)
j

 , (8)

where k is the number of attention heads and W k is the
corresponding learnable feature transform weight matrix.

C. Read out

The node feature is updated through the GAT layer by
aggregating the information of neighbor nodes with edge
weights. In order to obtain the global representation of a graph,
a read out function is employed. In this paper, we consider
the global mean and max characteristic of a graph. Thus, the
final embedding of each view of the graph is obtained by the

average-pooling and max-pooling read out function, which is
shown as follows.

rmean =
1

N

N∑
n=1

HL
n , (9)

rmax =
N

max
n=1

HL
n , (10)

In this paper, a multi-view graph is used to real the
properties of the sensor signals, and thus the multi-view graph
embedding is obtained by concatenating all views of the graph,
which is defined as follows.

r = CONCAT
{
r1mean, r

1
max, r

2
mean, r

2
max

}
. (11)

where r1 is the read out feature of the first view of graph and
r2 is the read out feature of the second view of graph.

D. Focal loss

In practice, the fault event is rare compared to the normal
state and the duration of the fault type is varied based on the
fault type, which will lead to a class imbalance problem. In
the training phase, not only the class with a large number of
samples but also the easily classified samples comprise the
majority of the loss and influence the gradient.

We first give the definition of the estimated probability pt
of a class with label y = 1:

pt =

{
p if y = 1
1− p otherwise, (12)

Focal loss introduces a modulating factor (1− pt)γ to the
cross entropy loss, where the focusing parameter γ ≥ 0 can
be tuned as a hyperparameter. The modulating factor focus
on balancing the influence of easy classification samples.
Therefore, the focal loss is defined as follows:

FL (pt) = −αt (1− pt)γ log (pt) (13)

where αt is a balance parameter.

IV. EXPERIMENT

We evaluate the fault diagnosis performance of the proposed
method on a three-phase flow facility (TFF) data set. Three
problems are considered in this paper: (1) The comparison
with the state-of-the-art fault diagnosis method. (2) The effec-
tiveness of the attention-based GAT. (3) The effectiveness of
multi-view of graph construction and effectiveness of focal-
loss.

A. Data description

The three-phase flow facility data set collected by Cranfield
University is a benchmark case for variant health monitoring
tasks [24]. The sketch of the TFF is shown in Fig. 3. The
TFF data set contain one normal case and six fault case
under steady or changing operation. Each fault case starts
by health state, and the faults are introduced after a certain
time. The simulator outputs 24 process measurements and
the details can be found in [24]. All normal and fault case
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TABLE I
FAULT TYPES IN THE TFF DATA SETS

No. Fault types Sample number
train set valid set test set

1 Air line blockage 127 23 44
2 Water line blockage 121 16 35
3 Top separator input blockage 307 35 91
4 Open direct bypass 153 20 53
5 Slugging conditions 75 11 19
6 Pressurization of the 2” line 64 13 19
7 Normal 478 72 118

TABLE II
THE MODEL STRUCTURE OF MG-GAT

Layer name Input size Output size Heads number
GAT layer1 50 128 3
GAT layer2 384 128 1
Fc Layer1 256 256 -
Fc Layer2 256 128 -
Fc Layer3 128 7 -

data were normalized by max-min normalization, where x =
(x− xmin) / (xmax − xmin). The normal data are removed
from the fault cases, and the fault data are cut into segments
with a size of 50. The samplings frequency is 1 Hz. Both
normal samples and fault samples are mixed together and
randomly divided into the training set, valid set, and test set
with the ratio 70%, 10%, and 20%, respectively. Table I gives
the number of samples and corresponding fault categories.

B. Experimental setup

The accuracy and Macro F1 score are used to evaluate the
performance of the proposed method. We conduct a number
of experiments for all comparison methods and MG-GAT
and give the best results by tuning the hyperparameters. The
learning rate is 0.0005. The hyperparameter γ of focal loss
equals 2, α for normal class is tuned in set of {1.12, 1.32, 1.8}
and α for other class equals 1. The maximum epoch equals
300. The structure of MG-GAT is shown in Table II. The
proposed method was implemented using PyTorch geometric
on a PC server with NVIDIA RTX 2080Ti and Xeon Silver
4212 CPU.

C. Comparison with baseline methods

In order to demonstrate the superior performance of the
proposed method, the comparison methods are list as follows:

1) SR-CNN: SR-CNN [12] transform the multivariate sig-
nals into 2D images by calculating the Spearman rank
correlation matrix. Then a CNN model is used to extract
the fault feature and classify the fault categories.

2) RC: RC classifier [25] is a hybrid generative-
discriminative approach, which learns the low-
dimensional embedding of multivariate time series in
an unsupervised way. And Then, a decoder (e.g. SVM,
MLP) is employed to classify the embedding.

The comparison result is shown in Table III. The MG-GAT
achieves the best performance compared with the baseline

TABLE III
COMPARISON BETWEEN BASELINE METHODS AND MG-GAT

Method Valid-set acc Valid-set F1 Test-set acc Test-set F1
SR-CNN 73.16 63.07 71.24 63.13

RC 90.00 88.90 88.39 87.86
MG-GAT 95.78 94.30 93.93 90.92

methods. The baseline methods, SR-CNN focus on extract-
ing the correlation between different sensor signals, and RC
focuses on extracting the feature of sensor signals. In conse-
quence, both the SR-CNN model and RC model only consider
a certain view of the sensor signals. In contrast, MG-GAT
fuses the data properties with the relation between the sensor
signals, and thus MG-GAT can obtain better fault recognition
results.

D. Effects of multi-view graph and focal loss

In this paper, the multi-view graphs with respect to similar-
ity and correlation are constructed to reveal different properties
of the ICS. To demonstrate the effectiveness of the multi-
view graph construction, a comparison between different graph
construction methods is given. The comparison methods are
given as follows. Meanwhile, to validate the positive effect
of focal loss, the comparison of CE loss is also given in this
section.

1) Fully connected (FC) graph. The connection exists be-
tween all the nodes, except the self-connection.

2) K-Nearest Neighbor (KNN) graph. Only one-view graph
is constructed by the KNN method.

3) Maximal information-based nonparametric exploration
(MINE) [23] graph. Only one-view graph is constructed
by calculating the MIC value.

4) Multi-view graph: Graph construction with two views,
KNN-graph and MINE-graph.

The comparison results of the valid set and test set are
shown in Table IV. It is can be seen that the Multi-view graph
achieves the best performance, the results of the KNN-graph
are better than the MINE graph, and the FC graph achieves no
competitive results. The results indicated that (1) it is effective
to construct a graph structure in advance, (2) different graph
construction methods reveal variant properties of data and have
different contributions to the fault recognition, and (3) multi-
view graph can provide support information to each other and
obtain better performance of fault diagnosis.

E. Effects of attention-based GAT

In order to differentiate the graph structure according to fault
categories, attention-based GAT is employed in this paper.
This section gives the comparison between GAT and the basic
graph convolution method GCN. The results are shown in
Fig. 4, which also include the results of the FC, KNN, and
MINE graph. All results of GAT are better than GCN. First,
although, the FC graph does not reveal any properties of the
system, the GAT can also achieve results close to the MINE
graph with the GAT backbone. This validates that the attention
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Fig. 3. Sketch of three-phase flow facility [24].

TABLE IV
COMPARISON BETWEEN DIFFERENT GRAPH CONSTRUCTION METHOD UNDER CE LOSS AND FOCAL LOSS

Method CE loss Focal loss
valid-set acc valid-set F1 Test-set acc Test-set F1 valid-set acc valid-set F1 Test-set acc Test-set F1

FC 80.00 74.24 76.51 66.90 84.74 74.78 81.00 69.00
MINE 86.32 78.61 82.85 74.69 86.31 78.86 83.37 74.88
KNN 91.05 87.48 86.81 82.93 93.16 90.50 88.39 85.03

KNN-MINE 94.21 92.39 90.76 86.95 95.79 94.30 93.93 90.92

Fig. 4. The comparison between GCN and GAT.

mechanism can adjust the structure information and promote
the performance of fault diagnosis. Second, the GCN results of
multi-view graphs are also superior to other graph construction
methods with GCN backbones, which also demonstrate the
effectiveness of multi-view graph construction.

V. CONCLUSION

Considering fusing the multivariate sensor signals with
relational information, this paper proposes a framework MG-
GAT for fault diagnosis of an industrial control system. MG-
GAT can model a multi-view graph by exploring similarity and
correlation relationships between sensor signals. Moreover, the
GAT module and focal loss are used to extract fault features

and solve the sample imbalance problem. Experiments on
the three-phase flow facility show that the proposed MG-
GAT achieves superior performance on fault diagnosis. The
effect of multi-view graph, GAT feature extraction module,
and focal loss are further investigated, and the results show the
rationality of the proposed model. Future work will focus on
exploring the relationship between sensor signals in a learning
way and introducing industrial background knowledge to the
fault diagnosis method.
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