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Abstract— In modern industry, large-scale fault diagnosis of
complex systems is emerging and becoming increasingly impor-
tant. Most deep learning-based methods perform well on small
number of fault diagnosis, but cannot converge to satisfactory
results when handling large-scale fault diagnosis because the
huge number of fault types will lead to the problems of
intra/inter-class distance unbalance and poor local minima in
neural networks. To address the above problems, a progressive
knowledge transfer-based multitask convolutional neural network
(PKT-MCNN) is proposed. First, to construct the coarse-to-fine
knowledge structure intelligently, a structure learning algorithm
is proposed via clustering fault types in different coarse-grained
nodes. Thus, the intra/inter-class distance unbalance problem can
be mitigated by spreading similar tasks into different nodes.
Then, an MCNN architecture is designed to learn the coarse
and fine-grained task simultaneously and extract more general
fault information, thereby pushing the algorithm away from poor
local minima. Last but not least, a PKT algorithm is proposed,
which can not only transfer the coarse-grained knowledge to
the fine-grained task and further alleviate the intra/inter-class
distance unbalance in feature space, but also regulate different
learning stages by adjusting the attention weight to each task
progressively. To verify the effectiveness of the proposed method,
a dataset of a nuclear power system with 66 fault types was
collected and analyzed. The results demonstrate that the proposed
method can be a promising tool for large-scale fault diagnosis.

Index Terms— Coarse-to-fine, knowledge transfer, large-scale
fault diagnosis of complex system, multitask convolutional neural
network (MCNN), structure learning.

Manuscript received September 1, 2020; revised May 18, 2021; accepted
July 17, 2021. This work was supported in part by the National Key
Research and Development Project under Grant 2019YFB2101901 and Grant
2019YFB1703600; in part by the National Natural Science Foundation of
China under Grant 61925602, Grant 61732011, and Grant 62006221; in part
by the China Postdoctoral Science Foundation under Grant 2021TQ0242 and
Grant 2021M690118; in part by the Innovation Foundation of Tianjin Uni-
versity under Grant 2021XZC-0066; in part by the Hong Kong Polytechnic
University under Grant P0030419, Grant P0030929, and Grant P0035358;
in part by the National Science and Technology Major Project under Grant
2017-I-0007-0008. (Corresponding authors: Ruonan Liu; Qinghua Hu.)

Yu Wang, Ruonan Liu, Di Lin, Dongyue Chen, and Qinghua Hu are with the
College of Intelligence and Computing, Tianjin University, Tianjin 300350,
China (e-mail: ruonan.liu@tju.edu.cn; huqinghua@tju.edu.cn).

Ping Li is with the Department of Computing, The Hong Kong Polytechnic
University, Kowloon, Hong Kong.

C. L. Philip Chen is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China, also with
the Navigation College, Dalian Maritime University, Dalian 116026, China,
and also with the Faculty of Science and Technology, University of Macau,
Macau 999078, China.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3100928.

Digital Object Identifier 10.1109/TNNLS.2021.3100928

I. INTRODUCTION

AS AN effective tool to keep the safe operation
of industrial systems and reduce the unnecessary

routine-shutdown maintenance costs, fault diagnosis has been
increasingly significant in modern society [1], [2]. Therefore,
a number of diagnosis methods have been proposed to detect
faults early and accurately [3]–[5].

In recent years, with the development of sensor and infor-
mation technology, the industrial data has been accumulated
rapidly, which promotes the emergence of deep learning
(DL)-based diagnosis methods [6]–[8]. Based on the deep
architecture and multiple nonlinear layers, DL algorithms are
able to learn high-level representation features adaptively and
thus overcome inherent shortcomings of traditional diagnosis
methods [9], [10].

The great contributions of these DL-based diagnosis
methods are undeniable. But it can also be concluded
from the literature that most state-of-the-art methods are
component-specific and can perform well on classifying sev-
eral fault types of a single or a few components. However,
with the development of manufacturing industries, both the
components and the faults are more and more complex
and various, which leads to a number of fault types and
large-scale fault diagnosis tasks. As a result, the vulnerabilities
of DL-based methods are revealed when dealing with such
large-scale diagnosis tasks with numerous fault types. First,
DL-based methods starting with random initialization easily
get stuck in a bad local minimum. Local minimum is the
case that the gradient is close to zero but the points have
a positive semidefinite Hessian, while a bad local minimum
means the obtained local minimum is suboptimal to the a
global minimum. It is pointed out by Erhan et al. [11] that
increase of labels, that is, fault types, and complex structures
will aggravate this problem. In addition, with the growing
label space, the upper bound of the generalization error
will increase and result in the decrease of final diagnosis
performance [12]. Second, from the perspective of algorithm
design, the increase of fault classes will lead to the problem
of intra/inter-class distance unbalance [13]. For a certain class,
the intra-class distance often refers to the Euclidean distance
between samples within the class, while the inter-class distance
refers to the Euclidean distance between samples of the class
and samples of other classes [14]. Data with intra/inter-
class distance unbalance have large intra-class distance and
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small inter-class distance. For instance, the distances between
similar failures of one component are small and hard to
distinguish, while the distances between the failures in dif-
ferent subsystems are large and can be classified much easier.
As a result, the inter-class distance of some similar failures
can be even smaller than the intra-class distance of other
failures in such large-scale fault diagnosis tasks, which makes
traditional DL methods can hardly be applied. Therefore,
compared with small-scale diagnosis problems, the large-scale
fault diagnosis of complex systems with various fault types
not only becomes vitally necessary, but also is a hard nut
to crack.

The study in [15] has suggested complex systems often
exhibit a hierarchical organization. When facing such a
large-scale classification task, humans usually implement it
along the hierarchical structure of candidate classes based
on a coarse-to-fine strategy. For instance, when a vehicle
is broken down, we tend to first determine the malfunc-
tion subsystem in a coarse-grained fault concept, such as
the engine, the electrical system, or the fuel supply sys-
tem. Then, the faulty component can be carefully diagnosed
within the candidate breakdown subsystems. Such a hierar-
chical structure can be seen as a knowledge structure of
fault types, which can provide additional and supplemen-
tal information in the coarse-grained for large-scale fault
diagnosis.

In this article, such a knowledge structure is used to address
the aforementioned problems in large-scale fault diagnosis
for the following reasons: 1) the problem of poor local
minima can be avoided by the macroscopical guidance of
coarse-grained knowledge, because good initialization of both
representations and classifiers is learned by convolutional
neural networks (CNNs) in the coarse-grained task and 2) the
problem of intra/inter-class distance change is alleviated by
spreading similar faults into one coarse node and transferring
the discriminant coarse-grained information to the fine-grained
task, because the degree of this problem is greatly reduced in
the coarse-grained task. Therefore, a progressive knowledge
transfer-based multitask CNN (PKT-MCNN) framework is
proposed based on a coarse-to-fine strategy for large-scale fault
diagnosis of complex industrial systems. To obtain the knowl-
edge structure automatically, a structure learning algorithm is
also proposed to extract the coarse-to-fine knowledge structure
by clustering fault types in different coarse-grained nodes of
the structure. Then, a multitask CNN architecture is proposed
to learn and transfer the extracted knowledge via a three-stage
learning process, that is, coarse-grained task learning, mul-
titask knowledge transfer, and fine-grained task fine-tuning,
which provides a flexible and effective way to realize such a
knowledge transfer process. A PKT algorithm is proposed and
embedded in the multitask CNN to regulate different learning
stages by paying different attention to each task dynamically,
which can learn the coarse-grained knowledge and transfer it
to the fine-grained task progressively.

The main contributions of this research are summarized as
below.

1) This article proposes a novel coarse-to-fine diagnosis
framework to make use of the knowledge structure in

large-scale fault diagnosis. To adaptively and automat-
ically extract the coarse-to-fine framework, a structure
learning algorithm is also proposed. The experimental
results verify that the learned nodes and hierarchical
structure coincide with the physical composition of the
diagnosed system.

2) Then, a multitask CNN architecture is designed to learn
and transfer the extracted knowledge via a three-stage
learning process, that is, coarse-grained task learning,
multitask knowledge transfer, and fine-grained task fine-
tuning, which provides a flexible and effective way to
realize such a knowledge transfer process.

3) A knowledge transfer algorithm is proposed and embed-
ded in the multitask CNN to regulate the different learn-
ing stages by paying different attention to each task
dynamically and gradually transfer the attention from
coarse- to fine-grained diagnosis task. Thus, the coarse-
grained discriminant failure information can be learned
and transferred to the fine-grained diagnosis task progres-
sively.

4) A large-scale dataset of a nuclear power system was
collected for experimental verification, which contains
362 995 samples from 66 fault types. The experimental
results and comparisons with state-of-the-art diagnosis
methods show that the proposed method can not only
learn a logical coarse-to-fine structure, but also provide
reliable diagnosis results for industrial big data, which
highlights the effectiveness of the proposed method in
large-scale fault diagnosis.

Therefore, the proposed framework satisfies the demand
for large-scale fault diagnosis of complex systems and shows
the potential to make the industrial systems more intelligent
under such a big data environment. The code for this work is
available at https://github.com/armstrongwang20/PKT-MCNN.
Refer to the link for more details and reproduction.

The rest of this article is organized as follows. Section II
illustrates the proposed framework in detail. In Section III,
the proposed method is applied to analyze a large-scale
dataset of a nuclear power system with 66 fault types. The
results and comparisons with state-of-the-art methods verify
the effectiveness of the proposed method in large-scale fault
diagnosis. Finally, Section IV concludes this article.

II. RELATED WORK

A. Fault Diagnosis Approaches

Traditional data-driven fault diagnosis methods first extract
the fault features via signal processing algorithms such as
Hilbert–Huang transform (HHT), wavelet packet transform,
and sparse representation [16]. Then, the operational condition
or the fault type can be recognized by machine learning meth-
ods, such as support vector machine (SVM) [17] and artificial
neural network (ANN) [18]. However, due to the requirement
of enough prior knowledge for feature extractor design and the
limitation when facing the changeable fault types, traditional
data-driven diagnosis methods become increasingly difficult to
apply in modern industrial systems.
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Fig. 1. Toy example of the coarse-to-fine structure.

Due to the rapid collection of industrial data, recent years
witnessed the development of DL-based diagnosis meth-
ods, which can extract features automatically and adaptively.
In literature, diverse DL models and their varieties have
been applied for fault diagnosis successfully, including recur-
rent neural networks (RNNs) [19]–[21], sparse autoencoders
(SAEs) [22], [23], deep belief networks (DBNs) [24], [25],
and the highly popular CNNs [26]–[28]. Recently, to improve
the generalization and the learning ability of target tasks,
Chen et al. [29] proposed a transferable CNN to deal with the
problem of insufficient training data, which has been inves-
tigated by different experimental datasets. Wang et al. [30]
proposed a progressive optimized cascade CNN (C-CNN)
structure to extract feature maps from different scales and to
enable the algorithm to converge to a more optimum state. The
effectiveness of the C-CNN has been verified by two motor
fault diagnosis experiments. Azamfar et al. [31] proposed a
2-D CNN architecture for multisensor data fusion and gearbox
fault diagnosis. The performance of the 2-D CNN has been
evaluated by a motor current dataset obtained from a gearbox
test rig.

However, when facing with a large number of fault types,
traditional DL-based methods still have some limitations due
to the intra/inter-class distance unbalance and local minima
problem.

B. Coarse-to-Fine Learning

Coarse-to-fine structures contain fruitful relations informa-
tion of different classes, which have been widely used for
fine-grained classification and large-scale classification with
many labels [13], [32], [33]. Deng et al. [32] used a semantic
structure to divide a complex large-scale classification into
several subproblems, and they designed a classification model
that consists of multiple logistic regression (LR) classifier
to label the samples from the coarse granularity, that is,
root node, to the fine granularity, that is, the leaf node.
Li et al. [34] leveraged the similar idea and applied it on few-
shot learning. They integrated the structure into the learning
phase of CNNs to learn multigranularity feature representa-
tions and then used the nearest-neighbor way to predict the test
samples. Wei et al. [35] found that the coarse granularity of
the structure can provide some complementary discriminative
information to the fine granularity. Therefore, they refined the
information of the learned coarse-grained features and attached
them to the learning of the fine-grained task. Zhao et al. [13]

Fig. 2. Proposed framework.

transformed the coarse-to-fine structural information to several
overlapped groups, which are applied to train multiple CNNs
to collaborate for obtain accurate predictions in many-class
recognition.

Therefore, existing studies show that: 1) the coarse-grained
labels in the structure have strong relations with fine-grained
labels and 2) some representations and discriminative informa-
tion for the coarse granularity can be helpful for the learning
of the fine granularity. Therefore, we take advantage of the
coarse-to-fine structure for CNNs to address the large-scale
fault diagnosis problems. Fig. 1 shows a toy example of the
coarse-to-fine structure, in which node #2 and node #3 are
the coarse-grained nodes which are composed of fine-grained
nodes #4, #5 and #6, #7, respectively.

III. PROPOSED APPROACH

A. Overview and Formulation

Knowledge structures usually exist in complex systems. For
example, when there is a fault in a motor bearing, it can be
regarded as a motor fault (higher level) or a bearing fault
(lower level). Such knowledge can be beneficial for addressing
the large-scale fault diagnosis task.

Therefore, a coarse-to-fine knowledge transfer framework is
proposed for large-scale fault diagnosis, as shown in Fig. 2.
First, the knowledge structure is extracted by composing
various similar fault types into different coarse-grained fault
concepts. Such knowledge is subsequently encoded in the
parameters of the CNN by learning the coarse-grained task
to obtain good initialization and coarse-grained information,
which are then transferred to the learning of fine-grained task.

To extract the knowledge structure adaptively and auto-
matically, a structure learning algorithm is proposed. Con-
cretely, the similarity graph of fault types are first constructed
(Section III-B1); then, the spectral clustering is applied to find
the most similar groups of the fault types (Section III-B2).

Based on the extracted knowledge structure, a PKT-MCNN
is proposed to learn and transfer the knowledge. First,
a multitask CNN architecture is constructed to integrate the
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processes of learning tasks in different granularity and trans-
ferring the coarse-grained knowledge to the fine-grained task
(Section III-C). Then, a PKT algorithm is proposed to split
the learning process into three stages, that is, coarse-grained
task learning, multitask PKT, and fine-grained task fine-tuning,
dynamically, by which different attention is given to different
tasks adaptively based on the training process (Section III-D).

Formally, given training samples {{x j
i }Mi

i=1}N
j=1 in N fault

types, where x j
i is the j th sample in the i th fault type; Mi is the

number of samples in the i th category; i ∈ {1, 2, . . . , Mi }, and
j ∈ {1, 2, . . . , N}. The objective of the proposed framework
is to extract the knowledge structure T , to train a PKT-MCNN
which learns the coarse-grained task TC and transfers the
coarse-grained knowledge, for example, useful features and
discriminant information, to the fine-grained fault diagnosis
task TF.

B. Coarse-to-Fine Structure Learning

1) Similarity Graph Construction of Fault Types: Knowl-
edge structures usually exist in data, but they are not always
explicitly available in many learning tasks. Moreover, it is
difficult to construct such structures due to the incomplete
physical structure information or a lack of domain human
experts. To extract the coarse-grained knowledge structure
automatically, the information in data has been used to group
similar fault types into a common superordinate node of the
structure, which represents a coarse-grained fault concept.

Given the j th sample in the i th fault type x j
i , the similarity

graph G = (V , E) contains the similarity information for each
two fault types, where each vertex vi ∈ V is a fault type and
each edge ei j ∈ E is the degree of similarity between the two
connected vertices vi and v j . To build this graph, the similarity
of each pair of fault types should be calculated. Different
from instance-level clustering, each fault type is required to
be represented before computing the similarity. In this work,
each fault type is vectorized and represented by the centroid
of all its samples. Mathematically, a vertex vi in the similarity
graph is represented as

vi = 1

Mi

∑
j

x j
i (1)

where Mi is the number of samples of the i th fault type.
There are two advantages of this representation method for
large-scale fault diagnosis. On the one hand, it is efficient to
compute the first-order statistic, that is, the mean vector, for
many fault samples. On the other hand, representing a fault
type by the mean vector can alleviate the adverse influence
of noisy samples, which usually exist in large-scale dataset.
With the representation of vertices, the similarity information
ei j between each two fault types i and j can be computed by
the Gaussian similarity

ei j = exp

(
−||vi − v j ||2

(2σ)2

)
(2)

where σ is the scaling factor that normalizes the value of ei j

to [0, 1].

2) Fault Type Clustering: With the similarity graph G,
the fault types can be assigned to different coarse-grained
fault concepts through clustering techniques. In this article,
the normalized cut (NCut) algorithm is applied to cut the graph
into several subgraphs, which can be formalized to optimize
the following objective function:

min
C1,C2,...,Ck

Tr
(
H �L H

)
s.t. H �DH = I (3)

where k is the number of coarse-grained fault concepts to be
clustered;

hi j =
{

1/|C j |, if vi ∈ C j

0, otherwise

is the element in the matrix H , i ∈ {1, 2, . . . , N}, j ∈
{1, 2, . . . , k}, L = D − G is the Laplacian matrix, D is
the degree matrix of G, I is the identity matrix, and |·|
is the cardinality of a set. Shi and Malik [36] showed that
this objective can be approximated by the eigenvector of
L associated with the second smallest eigenvalue. In this
way, k coarse-grained fault concepts {C1, C2, . . . , Ck} are
obtained to form a two-level knowledge structure T , in which
each coarse-grained concept contains several fine-grained fault
types.

C. Multitask Convolutional Neural Network

To learn and transfer the coarse-grained knowledge to the
fine-grained task, a multitask CNN architecture is designed
by sharing the representation learning layers and owning
corresponding task-specific learning layers. A multitask CNN
is an inductive transfer method that uses the domain-specific
information contained in the training signals of related tasks
by learning the multiple tasks in parallel while using a shared
representation and thus improves learning for one task by
using the information contained in related tasks [37]–[39].
The merits of this method are twofold: on the one hand,
the learning processes of the coarse- and fine-grained tasks
are unified in an integrative method, which makes the method
take advantage of related tasks in different granularity in an
end-to-end optimization way; on the other hand, the shared
representation learning layers act as a medium to store and fuse
the knowledge in different grained tasks, which enables the
transfer of the knowledge and helps the large-scale diagnosis
tasks to be learned more effectively.

1) Shared Representation Learning Layers: Typically, rep-
resentation learning layers often consist of convolutional layers
and pooling layers in a CNN. For a given sample x, each
kernel is convolved across the width and height of x, which
computes the dot product between the kernel and x. The
max-pooling is applied in this article, which chooses the
maximum value within a pooling region and propagates to
the next layer. The representation learning layers often stack
multiple convolutional layers and pooling layers, denoted as

W r = [[
W1; . . . ; W K1

]; . . . ; [
W1; . . . ; W Km

]]
(4)
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Fig. 3. PKT-MCNN framework, where LC, LF, and LM represent the loss of coarse-grained, fine-grained, and multigrained task, respectively.

where m is the number of convolutional layers, and Ki (i ∈
{1, . . . , m}) is the number of convolutional kernels in the i th
convolutional layer.

2) Task-Specific Learning Layers: Based on the learned
representations, a fully connected (FC) layer consists of a
simple multilayer perceptron (MLP) that learns to weight the
representations to identify the object fault type. Subsequently,
a softmax function is performed to map the logits produced
by the FC layer to [0, 1]. Mathematically, it can be written as

y = softmax
(
W f (Zr ) + b

)
(5)

where y is the output of the FC layer with softmax function,
W f is the weight vector of the FC layer, b is the bias term,
and Zr is the output of the shared representation learning
layers. In this work, there are two tasks to be learned: the
coarse-grained task TC and the fine-grained task TF. In this
regard, each task is attached with a specific FC layer to
learn different discriminative information, denoted as WC

f and
WF

f , for the coarse-grained task and the fine-grained task,
respectively.

D. PKT Algorithm

To make the multitask CNN pay attention to the learning on
different tasks for effective transfer, a novel PKT algorithm is
designed and embedded on the top of the multitask CNN. The
framework of PKT-MCNN is shown in Fig. 3 (the displayed
CNN structure is model 12 in Table I). Concretely, the PKT
operates on the loss layers of the multitask CNN and splits
the training process of the multitask CNN into three stages:
coarse-grained task learning, multitask PKT, and fine-grained
task fine-tuning. The PKT controls and switches the stages
through the weights of the loss layers, which represent the
current degree of attention to the corresponding tasks. The
loss function used here is the cross-entropy loss, denoted as

L(
W f |x

) = −
N∑

i=1

ri log pi
(
W f |x

)
(6)

where ri is 0 or 1 corresponding to the true label, pi(·)
producing the scores of the prediction, and it is the function of

the learnable parameter W f . Consequently, the loss function
LM of PKT-MCNN is defined as the weighted combination of
the coarse-grained and fine-grained tasks

LM = λLC + (1 − λ)LF

LC = L([
W r ; WC

f

]∣∣x)
LF = L([

W r ; WF
f

]∣∣x)
(7)

where λ is the weight that accounts for the learning attention
of the two tasks. Recall that there are three main stages
in the training process of the proposed PKT-MCNN: 1) the
coarse-grained task is trained to grasp the coarse-grained
knowledge; 2) the coarse- and fine-grained tasks are trained
simultaneously in a multitask way, where the method can
not only make the two tasks benefit each other, but also
progressively transfer the obtained coarse-grained knowledge
to the fine-grained task; and 3) the fine-grained task is trained
individually by fine-tuning the parameters that have been
updated in stage 2) to have a more accurate understanding
of the current task.

In this respect, the PKT algorithm is proposed to control
and switch different learning stages by adjusting the attention
to different tasks. It is shown by Cipolla et al. [40] that the
weight of the loss term has a great impact on the learning
process, where the task with a large loss value would update
more quickly than that with a small loss value. Therefore,
the PKT regulates the different attention to the two tasks via a
weight parameter λ. Specifically, in the first stage, λ is set to
be 1 to learn the coarse-grained task only, because the weight
of the fine-grained task is 0 and the loss is stopped from back-
propagating. In the second stage, λ gradually decreases until 0
according to the number of the training epoch, and this aims to
learn both tasks simultaneously and progressively transfer the
coarse-grained knowledge to the fine-grained one. Concretely,
λ in the second stage, denoted as λ2, is computed by

λ2 = 1 −
(

B − B1

Bmax − B1 − B3

)2

(8)

where B1 and B3 are the number of training epochs in stages
1) and 2), respectively, B is the number of the current epoch,
and Bmax is the maximum number of epochs. The reason of
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designing the function (8) for λ here is that the attention to
the fine-grained task is supposed to increase rapidly once the
coarse-grained task is well trained. Finally, the value of λ in
the third stage is contrary to that in the first stage. λ is set
to 0 to fine-tune the fine-grained task without updating the
parameters of the coarse-grained task.

The training procedure is summarized in Algorithm 1. First,
the coarse-grained fault concepts are extracted to form the
knowledge structure, by which the similarity graph is con-
structed before clustering the fault types into several groups.
Subsequently, a multitask CNN is designed to learn and trans-
fer the coarse-grained knowledge. Then, the proposed PKT
algorithm regulates the training stage by allocating different
loss weights to different tasks via parameter λ, which is set to
be 0, 1, and 1 − ((B − B1)/(Bmax − B1 − B3))

2, respectively.
The testing procedure is the same with conventional CNNs,
where the algorithm predicts the input sample as one of the
fault types without considering the coarse-grained branch.

The proposed method is general in cases that consist of
many classes. For image data, despite the existence of large-
scale pre-training models, the proposed method can still benefit
the training of the model in terms of finding a better local
minimum. For the structure of the proposed method, FC layers
and a classifier are attached to each task in the fault diagnosis
problem. For image data, it may need simple adjustment by
adding additional convolutional layers for each task before the
FC layer according to the characteristics of data. Additionally,
the proposed method can also be applied to structures with
more than two levels by transferring the high-level knowledge
to the low level layer by layer.

IV. EXPERIMENTAL STUDY

Currently, most existing datasets usually consist of a
few fault type, but users may encounter dozens of pos-
sible fault classes in real industrial applications. In this
regard, a new large-scale dataset is collected and ana-
lyzed by the proposed method, which is described in
Section IV-A, namely FAult Recognition Of Nuclear power
system (FARON), which contains 362 995 samples from
66 types. In Sections IV-B and IV-C, the effectiveness of the
proposed approach is verified by conducting the large-scale
diagnosis task based on this new dataset in comparison with
12 baseline CNN models. The ablation study is carried out
in Section IV-F, and the analyses on parameters and the
extracted knowledge are discussed in Sections IV-G and IV-H,
respectively.

A. Data Description

The FARON dataset consists of many encrypted operational
data of a nuclear power system, which is composed of a
reactor, a main coolant pump, a pressurizer, a steam generator,
a feed pump, feed water heaters, a condensate pump, a sea
water pump, a separator, and a reheater, as shown in Fig. 4.
Different conditions were simulated by a nuclear power system
simulator with 121 sensor-respond outputs for the primary sys-
tem and the secondary system. Data under normal operational
environment were collected by 5.32-h simulation. During the

Algorithm 1 Training Procedure of the Proposed
Approach

Input: Training samples {{x j
i }Mi

i=1}N
j=1.

Output: Knowledge structure T , multitask CNN
W = [W r ; WC

f ; W F
f ].

Extract the knowledge structure;
1. Construct the similarity graph G according to
Equation (1) and (2);

2. Build the knowledge structure T through clustering
coarse-grained fault concepts by optimizing the objective
(3);

Transfer knowledge through training the multitask CNN;
3. Update the model W = [W r ; WC

f ; W F
f ] through

optimizing loss (7) in first B1 epochs with λ = 1
produced by the PKT algorithm;

4. Update the model W = [W r ; WC
f ; W F

f ] through
optimizing loss (7) in (Bmax − B3 − B1) epochs with λ
generated based on Equation (8) by the PKT algorithm;

5. Update the model W = [W r ; WC
f ; W F

f ] through
optimizing loss (7) in last B3 epochs with λ = 0
produced by the PKT algorithm;

return T , W .

Fig. 4. Experimental setup of the nuclear power system.

process of fault data generation, the nuclear power plant started
from the normal state in each simulation and ran for 2 min;
then the faults were introduced at a certain point in the oper-
ational process. Thus, the operational data of 65 fault types
were collected by 19.89-h simulation, in which the simulation
time of each fault type ranges from 10 to 77.7 min. There
are 76 632 samples under health state and 286 363 samples
of different faults, respectively. Six raw signal examples of
the feed water pump and the main condenser under different
health conditions are displayed in Fig. 5. In order to extract
the spatial and temporal domain features, the collected time-
series multivariable samples were cut into time segments to
form a 2-D m × n matrix, where m is the length of sampling
time and n is the number of variables. In this article, m is
20 according to [41] and n is 121. 70%, 10%, and 20% sample
matrices are selected according to the chronological order as
the training set, the validation set, and the test set, respectively.
To simulate the actual conditions, followed by [42], the raw
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Fig. 5. Six raw signal samples under different health conditions: (a) health feed water pump; (b) feed water pump fault; (c) valve fault; (d) health main
condenser; (e) main condenser pump fault; and (f) valve fault.

data are added by white noise whose mean value is 0 and the
standard deviations are randomly assigned from 0 to 0.05 for
different dimensions of the raw data.

B. Experimental Setups and Implementations

1) Experimental Setups: To verify the effectiveness of the
proposed approach comprehensively, 12 CNNs with differ-
ent architectures are adopted in this study as the baselines.

The reasons are mainly twofold: 1) the proposed method is
designed based on the conventional CNN model and aims
to improve it and 2) different architectures of CNNs are
supposed to be compared empirically to eliminate the bias of
the CNN architecture. Concretely, the architectures of different
CNN models used in this study are shown in Table I, and
they are adjusted based on CNN structures used in previous
studies [41], [43]. In this article, classification accuracy (A)
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TABLE I

STRUCTURE OF CNNS

is used as evaluation indexes to compare the performance of
different methods. To be specific,

A =
∑

i (TPi + TNi )∑
i(TPi + FPi + TNi + FNi)

(9)

where TP is the true positive, TN is the true negative, FP is
the false positive, FN is the false negative, and i is the fault
type.

2) Implementation Details: In the training process of all
the methods, including 12 baseline CNNs and their improved
version PKT-MCNNs, the Adam optimization algorithm was
applied, in which the learning rate was set as 10−5, and other
parameters were set by default. The batch size was set to
256. The number of epochs for coarse-grained knowledge task
learning, multitask PKT, and fine-grained task fine-tuning were
set to 100, 50, and 150, respectively. σ in (2) was set to 0.01
All the diagnosis methods were implemented by Pytorch, and
the experiments were carried out by a high-performance server
with 60 GB memory and 4 GeForce RTX-2080 GPUs. The
average of ten trials of each diagnosis method is reported in
this article as the final result.

C. Results on Fault Diagnosis Task

The performance of the proposed method is compared
with common used fault diagnosis methods. Six methods
are performed on the dataset for comprehensive comparison,
including k-nearest neighbors (KNN), SVM, LR, MLP, DBN,
and CNN, which are used in many previous studies [41], [43].
In this experiment, the structure of CNN and the proposed
method uses model 1. The results are shown in Table II. It can
be seen that the proposed method outperforms other methods
in a large margin, which verifies its effectiveness. Moreover,
the accuracies of both baseline CNN and the corresponding
PKT-MCNN models with all 12 structures on raw data and

Fig. 6. Confusion matrix of (a) conventional flat CNN and (b) PKT-MCNN
with model 1. The rows correspond to the predicted class (output class) and
the columns correspond to the true class (target class).

TABLE II

ACCURACY (%) COMPARISON BETWEEN DIFFERENT FAULT DIAGNOSIS

METHODS WITH RAW INPUT AND DATA WITH WHITE NOISE

data with noise are shown in Tables III and IV. It can be
seen that the proposed framework shows clear advantages
for large-scale fault diagnosis over the baseline CNNs on all
12 different tested architectures both on the raw data and
actual noisy data. This is because the good initialization of
CNN parameters obtained from the coarse-grained task can
effectively avoid the poor local minima. Moreover, useful
discriminant information is retained and transferred to the
fine-grained task for effective fault identification. The confu-
sion matrices of the flat CNN and the proposed PKT-MCNN
are also displayed in Fig. 6 (with model 1) and demonstrate the
effectiveness of the proposed method. In addition, the coarse-
grained task can be regarded as the direct upstream task for the
objective fine-grained fault diagnosis and thus helps the CNN
learn some useful features and discriminant information that
are difficult to learn from the fine-grained task directly. Fig. 7
shows the training and testing processes of PKT-MCNN and
flat CNN with model 5. It can be seen that the accuracy curve
of PKT-MCNN keeps increasing after the intersection point of
curves of the flat CNN and the PKT-MCNN, which means that
PKT-MCNN converges to a better local minima than the flat
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Fig. 7. Accuracies for the iteration process of the PKT-MCNN and the flat
CNN: (a) coarse-grained task accuracy and (b) fine-grained task accuracy, and
accuracy of flat CNN is plotted in both subfigures.

TABLE III

ACCURACY (%) COMPARISON BETWEEN DIFFERENT KNOWLEDGE

TRANSFER-BASED METHODS ON RAW DATA

CNN. This shows that the PKT has a significant influence on
the learning of CNNs [Fig. 7(b)]. Moreover, the figure shows
that the multitask learning stage (epoch 100–150) would make
the method retain the ability for the coarse-grained task and
improve the ability for the fine-grained task. In the fine-grained
fine-tuning stage (stage 3, after epoch 150), the performance of
the coarse-grained task gradually decreases until convergence,
while that of the fine-grained task keeps increasing. This
result verifies that the three stages are all important for the
knowledge transfer process.

To illustrate the learned essential features graphically,
the t-distributed stochastic neighbor embedding (t-SNE)
method [44] is employed to provide 2-D visual representations

TABLE IV

ACCURACY (%) COMPARISON BETWEEN DIFFERENT KNOWLEDGE
TRANSFER-BASED METHODS ON DATA WITH WHITE NOISE

TABLE V

ACCURACY (%) COMPARISON BETWEEN THE PROPOSED METHOD WITH

DIFFERENT TRAINING SCHEMES AND CLUSTERING METHODS

of the raw data and the features learned in the last FC layer
of the proposed framework, as shown in Fig. 8. It can be seen
that there is a serious problem of intra/inter-class distance
change in such a large-scale fault diagnosis task due to the
huge number of fault types.

To obtain the structure, other clustering methods can also
be used, such as K -means. Therefore, the influence of the
clustering methods is also discussed in this section. Concretely,
a KM-PKT method is performed by using the K -means
method and the PKT training scheme. The results are also
shown in Table V. It can be seen that the performance of the
method using K -means is slightly lower than the one used
in the proposed method. The reason may be that K -means
method is not been very stable and thus is not so well in
dealing with high-dimensional data.

As a result, different fault states are heavily overlapped
and can hardly be distinguished. While the fault features
extracted by the proposed method can be easily distinguished
or classified, the intra-class distances have been reduced and
the inter-class distances have been enlarged, which verifies
the superiority of the proposed framework in large-scale fault
diagnosis task.

D. Comparison With Knowledge Transfer Methods

Knowledge transfer methods can generally be grouped into
two parts: cross-domain transfer and intra-domain transfer,
where the former extracts knowledge in a source domain
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Fig. 8. Feature visualization via t-SNE for (a) original data space and
(b) PKT-MCNN learning space with model 1.

and transfers it to the target domain, while the latter learns
and transfers knowledge in the same domain. In our case,
the model is supposed to extract the knowledge in the
coarse-grained level and transfer such knowledge to the
fine-grained level, where the two levels are in the same
domain/data. Among many knowledge transfer methods,
knowledge distillation (KD) is to transfer knowledge obtained
by a teacher model to the student model is trained to mimic
the prediction capabilities of the teacher. Here two KD models
are performed. The vanilla KD is to train the student by
minimizing the Kullback–Leibler (KL) divergence between
the outputs of the teacher and the student, and AB-KD,
which is proposed by Heo et al. [45], also minimizing the KL
divergence between the logits of FC layer in addition to the
vanilla KD.

The results on raw data and data with noise are shown
in Tables III and IV, respectively. It can be seen that the
proposed method can not only obtain the best performance, but
also simpler to implement because KD methods need to train
a larger model first and then proceed to transfer the knowledge
to the small model. The reason why the proposed method can
perform better may mainly be that coarse-grained knowledge
can be learned by the model and is complementary to the
target task, but such knowledge cannot be extracted by KD
methods.

E. Analysis on the KT Controller

The proposed method designs a KT controller to effectively
transfer the knowledge from the coarse to the fine. This can

Fig. 9. Accuracies of PKT-MCNN under different fault type clusters with
different CNN structures: (a) model 1–model 6 and (b) model 7–model 12.

TABLE VI

ACCURACY (%) COMPARISON BETWEEN DIFFERENT
WEIGHTING STRATEGIES

also be seen as weight the parameters of the loss terms.
To this end, different weighting methods are also discussed
via experiments on various CNN structures, including scaling
weighting (scaling) [46] and uncertainty based self-learning
weighting (self-learning) [40]. Specifically, we used the scal-
ing weighting method to adjust both loss terms to the same
scale. The uncertainty-based self-learning weighting method
sets the parameters by calculating the uncertainty of two
losses. The results are shown in Table VI. It can be seen that
the proposed method is better than the two compared ones,
which demonstrates the effectiveness of such a strategy.

F. Ablation Study

To explore the influence of different stages of knowledge
transfer, the ablation study was performed in this section
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Fig. 10. Coarse-to-fine knowledge structure (SVP: speed variable pump; SWP: seawater pump; FWP: feed water pump; MP: main pump; ME: main engine;
SOV: steam outer valve; CP: condensate pump; SL: secondary loop; NLPH: normal low-pressure heating; DCV: discharge cutoff valve; PBDV: pump bubble
deaeration valve).

TABLE VII

KNOWLEDGE HIERARCHY WITH FIVE CLUSTERS

for all 12 PKT-MCNN methods. Concretely, there are three
compared methods: 1) PKT-MCNN, which is trained by the
proposed PKT algorithm; 2) CF-MCNN, which first trains
the model on the coarse-grained task and then fine-tunes the
fine-grained task; and 3) CM-MCNN, which first trains the
model on the coarse-grained task and then simultaneously
learns the coarse- and the fine-grained tasks via the designed
PKT-MCNN model.

The results of the ablation study are shown in Table V. It can
be seen that the performance of PKT-MCNN is significantly
better than CF-MCNN and CM-MCNN, and CF-MCNN out-
performs CM-MCNN by a large margin. Therefore, it can be
concluded that the fine-grained training stage is indispensable
for the fault diagnosis task. Moreover, CF-MCNN outperforms
CM-MCNN by 2%–5%, and this may be because although the
multitask learning stage is good to learn the two tasks simulta-
neously, it retains some features and discriminant information
that are important for the coarse-grained task but not informa-
tive for the final fine-grained task. In addition, there is also an
around 3% gap between PKT-MCNN and CF-MCNN, which
empirically proves that the progressive multitask process
controlled by the PKT can effectively transfer the useful
coarse-grained knowledge to the fine-grained task.

G. Parameter Analysis

The number of coarse-grained fault concepts k is a
hyper-parameter that may influence the performance of the
proposed method. In this regard, the values of k were set to
{5, 10, 15, 20, 25, 30, 35, 40} among 12 PKT-MCNN methods
to discuss the effect and optimal value of k. The diagnosis
performance of the 12 PKT-MCNNs with different ks are
shown in Fig. 9. It can be seen that the best k varies from
the CNN architectures. Generally, the proposed method shows
good performance when k ≤ 15. This may be caused by
the capacity of transferable coarse-grained knowledge to the
fine-grained fault diagnosis task. When the value of k is small,
for example, k = 5, the dissimilar fault types can also be
clustered to a coarse node. Thus, the intra/inter class dis-
tance unbalance problem still exists in this node. In addition,
the method may pay attention to more general and discriminant
features that are less helpful for the fine-grained task, while too
large values of k may provide too specific information, which
makes the information of the coarse-grained task similar to
that in the fine-grained task. Note that even though a relatively
unreasonable k value would have an adverse effect on the
training of the PKT-MCNN methods, their performances still
exceed that of the conventional flat CNNs, which demonstrates
the great advantage of the proposed approach for large-scale
fault diagnosis task.

H. Analysis on the Extracted Knowledge Structure

Since the proposed approach is data-driven, the coarse-
to-fine knowledge structure can be extracted without human
intervention. To interpret the rationale behind the learning
mechanisms, the automatically learned knowledge is analyzed
in this section. The knowledge structure with k = 15 is
illustrated in Fig. 10, and the numbers in the figure are the
ordinal of fault types. It can be seen that the coarse-grained
fault concepts are extracted based on two main evidences: fault
types from the same components and fault types with similar
operational characteristics. For example, in Fig. 10, SVP, SWP,
MP, and CP are different components of the nuclear power
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TABLE VIII

KNOWLEDGE HIERARCHY WITH 10 CLUSTERS

TABLE IX

KNOWLEDGE HIERARCHY WITH 20 CLUSTERS

system, and they were extracted as mutually exclusive super-
ordinate fault concepts. By contrast, faults from pump fault
and valve fault of SL were assigned to two different superor-
dinate fault concepts, which implies that some faults are very
different even if they come from the same component. It is
worth noting that the component information plays a major
role of knowledge extraction, because fault types with similar
operational characteristics also occur on the same component.

Although results vary from different clusters and values of k,
there are some common rules for them. First, fault types from
the same components are often assigned to the same groups.
For example, there are two groups in all the coarse-to-fine
network structures that follow such a rule: 1) 17, 24, 30, 32,
34, 36, 43, 56, 65; and 2) 20, 22, 45, 61, 63. The numbers here
are the ordinal of fault types. It can be seen that all the fault
types in group 1) are valve failures and those in group 2) are
pump failures. Second, some fault types are split into smaller
fault concepts with the increase of the cluster number. This can
be commonly observed in most results from Tables VII–IX.
The rationale of this phenomenon is that the proposed model
clusters the fault types based on the similarity between them,
and some clusters of the structures with more coarse-grained
nodes (e.g., k = 20) are the same with the subclusters of those
with fewer coarse-grained nodes (e.g., k = 5).

V. CONCLUSION

In this article, a novel coarse-to-fine knowledge trans-
fer framework is proposed for large-scale fault diagnosis.
First, the coarse-to-fine structure is learned adaptively by
the proposed structure learning algorithm. Then, to inte-
grate the processes of learning each task and transferring
the useful information from the coarse-grained to the fine-
grained, a multitask CNN is designed by sharing the rep-
resentations and owing different classifiers to each task.
Third, a PKT algorithm is designed to transfer the discrim-
inant information and turn the attention of the PKT-MCNN
from the coarse-grained to the fine-grained fault diagnosis
task progressively. Finally, a large-scale dataset of a nuclear
power system is collected and analyzed by the proposed
approach. The experimental results illustrated the effectiveness
and superiority of the proposed method, which not only
intelligently learned a reasonable knowledge structure that
coincides with the physical composition of the nuclear power
system, but also has great advantages on dealing with the
special physical background of large-scale fault diagnosis
via extracting and transferring the coarse-grained knowledge
to the final fine-grained diagnosis task, and thus can be
a promising tool in future research of industrial big data
analysis.
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