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Abstract—We propose a new markerless shape and motion
capture approach from multi-view video sequences. The shape
recovery method consists of two steps: separating and merging.
In the separating step, the depth map represented with a point
cloud for each view is generated by solving a proposed variational
model, which is regularized by four constraints to ensure the
accuracy and completeness of the reconstruction. Then, in the
merging step, the point clouds of all the views are merged
together and reconstructed into a 3D mesh using a marching
cubes method with silhouette constraints. Experiments show that
the geometric details are faithfully preserved in each estimated
depth map. The 3D meshes reconstructed from the estimated
depth maps are watertight and present rich geometric details,
even for non-convex objects. Taking the reconstructed 3D mesh
as the underlying scene representation, a volumetric deformation
method with a new positional-constraint computation scheme
is proposed to automatically capture motions of 3D objects,
especially human performances. Our method can capture non-
rigid motions even for loosely dressed humans without the aid
of markers.

Index Terms—Shape recovery, depth map, 3D mesh, deforma-
tion, motion capture.

I. INTRODUCTION

CAPTURING shapes and motions of 3D objects (espe-
cially human bodies) from multi-view video sequences

is a classic and hot issue in computer vision and graphics [1]–
[3]. Some methods jointly estimate the shapes and motions of
3D scenes [4], [5]. However, in general, decoupling the two
problems are more efficient. This involves two key techniques:
shape recovery and motion capture. Shape recovery refers to
reconstructing the static model of a 3D object while motion
capture refers to tracking the motion of the 3D object with the
help of the reconstructed model. These two techniques have
great application potentials in virtual reality and future movie
industry. Therefore, high quality recovery of dynamic scenes
is highly demanded.

Reconstructing a static 3D object by a laser range scanner
is a straightforward approach, but is quite time consuming and
requires expensive special hardware. Besides, the object has
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to be kept actionless during the scanning. As an alternative,
recovering a 3D shape from a set of photographic images [6]–
[8] has attracted great interests from both the academic com-
munity and the industrial community. For this category, the
input is an array of multi-view images. The main difficulty for
this avenue is to simultaneously ensure both the completeness
and accuracy of reconstructed models.

Shape recovery methods are mainly designed for the recon-
struction of static scenes. For dynamic scenes, one intuitive
method is to reconstruct an individual mesh for each time
instant. However, the mesh topology and connectivity change
over time. Although spherical parameterization and remeshing
[9] can transform the unstructured representation to a single
consistent mesh structure, the implementation is complicated
and not robust. Moreover, high time and storage complexities
are still problematic for practical applications. It is much more
efficient to modify only the vertex positions of a 3D mesh
according to captured motions while preserving the connec-
tivity of the mesh. A variety of motion capture approaches
have been proposed in literature, and can be categorized into
marker-based ones and markerless ones. Marker-based motion
capture systems are widely used in the game/movie design and
production for measuring the motions of real performers [10].
Though the marker-based methods are accurate, they often
require performers to wear skin-tight garments with reflective
markers, which makes it difficult to capture shapes and tex-
tures. Moreover, they also demand extra manual adjustments
to clean up the recorded data. To overcome the restrictions of
marker-based approaches, markerless motion capture methods
are brought into the literature. Although markerless methods
are more flexible and some have shown amazing results in
the error range of marker-based methods [11]–[13], most of
them employ a kinematic skeleton (or kinematic chains) to
help capture the motions. A kinematic skeleton only allows the
tracking of rigid motions, and hence they have to be combined
with other scanning technologies to capture the time-varying
shapes of the object. Moreover, all these approaches start the
tracking process with a laser scanner, and mesh registration
technologies are also needed. Therefore, the animated models
generated by these methods generally have two clenched fists,
which would not change over time. The wrinkles captured by
the scanner also remain the same over time, not even consistent
with the first time instant, which looks unrealistic.

In this paper, we propose a new markerless shape and mo-
tion capture approach, which does not rely on a laser scanner.
For the shape recovery, a variational method is proposed to
generate a watertight and accurate 3D model, which owns
the main advantages of both shape from silhouette and shape
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from stereo methods. Then, taking the reconstructed model
as underlying scene representation, a volumetric deformation
method is used to achieve a photo-realistic display of the
captured performance. More concretely, multi-view videos are
first captured using a multi-camera dome system. Second, the
object is automatically segmented from the background for all
the images and an initial shape of the object is obtained by
the EPVH (Exact Polyhedral Visual Hulls) method [14] for the
first time instant. Third, for each view, a depth map represented
with a point cloud is reconstructed by optimizing the visible
points of the initial visual hull with the proposed variational
model. Fourth, the point clouds of all the views are merged
together to generate a complete 3D mesh using a marching
cubes method [15] with silhouette constraints. Finally, an iter-
ative volumetric Laplacian deformation framework with a new
positional-constraint computation scheme is used to animate
the model according to the motions in multi-view videos.
The proposed shape recovery and motion capture method is
evaluated on two publicly available datasets and seven datasets
captured by a real multi-camera system. Experiments show
that accurate and watertight 3D meshes are obtained and
realistic time-varying shapes are captured over time. Some
multi-view video datasets can be downloaded from the first
author’s homepage1. This shape and motion capture method is
automatic, easy to implement, and can handle loosely dressed
humans.

The main contributions of this paper are summarized into
the following three aspects:

• A complete automatic shape and motion capture system.
Unlike most previous methods, our method does not rely
on a 3D scanner or optical markers. Instead, we use the
high-quality 3D model reconstructed by our proposed
shape recovery method as the underlying scene repre-
sentation and deform it to follow the motions recorded
in the multi-view video sequences.

• A variational method towards shape recovery. Bridging
with a penalization factor, both the accuracy and com-
pleteness of reconstructions are jointly formulated in the
proposed variational model. The generated depth maps
present rich geometric details without loss of smoothness.
As a result, a watertight 3D mesh is obtained by a
simple and fast merging method rather than some existing
complicated methods.

• A volumetric deformation method. Positional constraint
candidates are first calculated by a new method based on
sparse representation. The most reasonable ones are cho-
sen with three spatio-temporal selection criteria, and drive
an iterative volumetric Laplacian deformation framework
to obtain realistic time-varying shapes.

II. RELATED WORK

This section provides a brief review of related work in the
fields of shape recovery and motion capture.

1http://media.au.tsinghua.edu.cn/likun.jsp

A. Shape Recovery

The most straightforward way for shape recovery is to use
a laser range scanner. However, this approach requires expen-
sive devices and time-consuming postprocessing. Besides, the
object has to keep still during the scanning, which severely
restricts its applicable scenarios. As an alternative, recovering
3D shape from real images has attracted great attentions from
both the academic and industrial fields. A family of such
techniques is called shape from X, where X can be shading,
silhouette, and stereo, etc.

In shape from shading methods, the shape of a 3D surface
is computed from a gradual variation of shading in a single
grayscale image [16]. Most recovered shapes are not a com-
plete surface of the 3D object, which is referred to as a partial
2.5D reconstruction. Jin et al. [17] extend the classical shape
from shading to the case of multiple views under unknown
illumination. The main restriction of these methods is that they
assume the Lambertian model of image formation, which is
not valid for some practical imaging scenarios.

In shape from silhouette methods, the silhouettes of a 3D
object is extracted by simple differencing or blue screen seg-
mentation techniques from the captured multi-view images. An
approximate 3D model, i.e., visual hull [14], [18], is obtained
from the computed silhouettes. The shape from silhouette
methods are straightforward to implement, and would be a
good choice when crude models are acceptable. Therefore, it
has been widely used in many realtime systems for generating
and replaying 3D digital videos [19] as well as commercial
object modeling packages [20]. However, methods of this
category suffer from severe distortion when computing the
shape of non-convex objects. The reason is that the concave
geometry of the object results in self-occlusion, which cannot
be resolved from any viewpoint unless additional information
is provided.

In shape from stereo methods, correspondences among
multi-view images are computed, and Delaunay triangulation
is used to reconstruct the objects. The representation of a 3D
object can be a set of depth maps [21]–[23], a relief surface
[24], [25], or a whole model [6]–[8]. The correspondences
between adjacent views can be computed by correlation-based
or feature-based methods. The correlation-based algorithms
typically produce dense, but a little over-smoothed, measure-
ments of depth. For the feature-based approaches, the obtained
3D points in depth maps are sparse and nonuniform, only
around the detected feature points. The shape from stereo
methods are simple and efficient. However, the reconstructed
surfaces are view-dependent and present artifacts, such as
over-smoothness or holes. Moreover, a main limitation is that
they can only represent depth maps with a unique disparity
for each pixel. More accurate 3D shape can be recovered
from images taken under different lighting conditions by
photometric stereo [26], [27]. However, as most shape from
stereo methods, the photometric stereo methods can recover
a shape for only a fixed viewpoint, which produces a partial
2.5D reconstruction.

To get complete 3D models, multi-view stereo algorithms
are proposed. The state-of-the-art multi-view stereo methods
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employ powerful nonlinear energy minimization techniques,
e.g., graph cuts [28], [29], level set evolution [30], and
mesh evolution [31]. Most global minimization methods are
proposed in a discrete formulation, which introduces some re-
construction artifacts and entails considerable memory. Kolev
et al. [32], [33] develop a continuous convex relaxation scheme
for global optimization, which is free of discretization artifacts
and also reduces the memory requirements. They transform
the binary non-convex minimization problems into convex
minimization problems and globally solve the problem by
means of variational techniques. However, the computational
complexity of this method is a little high, taking several
hours to reconstruct a 3D model from 16 multi-view images.
Moreover, these global methods emphasize the completeness
of reconstructed models, and fill the uncertain regions by
regularizations. This would lead to over-smoothness in the
reconstructed geometries. Besides, these methods often need to
handle visibility conditions and silhouette constraints carefully,
and their convergence properties in the presence of noise are
not well understood. To reconstruct more complex geometries,
Goesele et al. [8] propose a two-step algorithm, which is a
departure from most modern multi-view stereo methods. In
this algorithm, the depth map for each view is calculated by
a robust window matching method with a small number of
neighboring views, similar to the method proposed in Ref.
[34]. Each 3D point must be seen in at least three views to
be reconstructed. Then, the resulting depth maps are merged
using a volumetric method proposed by Curless and Levoy
[35]. The estimated depth maps by this algorithm are more
accurate than previous methods. However, since only a simple
NCC (Normalized Cross-Correlation)-based photo-consistency
measure is used, the individual depth map for each view
may contain numerous holes around uncertain areas such as
occlusions, highlights, and low-textured regions. As a result,
the reconstructed models present some holes of various sizes.

To reconstruct complete 3D models while preserving de-
tailed geometries, this paper proposes a new shape recovery
method using a separating and merging strategy, which pos-
sesses the main advantages of both shape from silhouette and
shape from stereo methods. In the separating step, the depth
maps are generated by a proposed variational model initialized
with visual hull. Then, the depth maps are merged to obtain
a complete 3D model. The proposed shape recovery method
shows promising reconstruction quality on the Middlebury’s
datasets and the datasets captured by a real multi-camera
system. By using the proposed variational model, the depth
map for each view contains detailed geometries, avoiding the
over-smoothness suffered in most modern multi-view stereo
methods. The final reconstructed 3D mesh is watertight and
has rich geometric details. Moreover, there is no constraint on
the number of visible views for each reconstructed 3D point.

B. Motion Capture
While shape recovery methods aim at reconstructing static

objects, motion capture methods try to capture motions of
dynamic objects. The motion capture methods, especially for
human performances, can be classified into two categories:
marker-based methods and markerless methods.

Marker-based methods generally need to attach many op-
tical markers on the object to gather motion information.
Though the motions estimated by these methods are accurate,
they often demand tedious manual adjustments to clean up
recorded data. Moreover, they often require skin-tight gar-
ments and reflective markers, which makes it difficult to
capture general shapes and textures. Park et al. [36] try to
extract a model of human skin deformation by using hundreds
of optical markers. This method provides realistic animation
results, but the manual mark-up and data cleanup are quite
time-consuming. Other researchers design patterns that can
be printed on the clothing to estimate complicated motions
of garments [37], [38]. However, markers, either attached or
printed, make it inconvenient to capture the motions of humans
wearing casual clothing.

Markerless motion capture approaches are designed to over-
come some restrictions of marker-based techniques. Some
work focus on the face deformation which can keep mesh
consistency [39]–[41]. For body deformation, some methods
try to capture some shape details in addition to skeletal joint
parameters by adapting the models closer to the observed
silhouettes [42], or by using range scan data [43]. However,
these algorithms require the performer to be tightly dressed.
Rosenhahn et al. [44] aim at capturing the performances
of humans in more general clothes by jointly relying on a
kinematic body and cloth models. However, they focus on
joint parameter estimation under occlusion rather than detailed
geometry capturing. Brox et al. [45] combine region fitting
and dense optical flow for 3D tracking. But they also do
not focus on the accurate geometry recovery of time-varying
shapes. Vlasic et al. [46] try to capture the motion of both the
skeleton and the shape from synchronized multi-view video
sequences. This method is based on an articulated template
of the performer, which is obtained with the help of a 3D
laser scanner. A main disadvantage of this method is that a
considerable amount of manual interaction is required, namely
up to every 20th frame, to correct the errors of the skeleton
estimation. Gall et al. [13] also try to achieve motion capture
by joint skeleton tracking and surface deformation, which is
evaluated on the HumanEva benchmark [47]. However, the
kinematic skeleton only allows the tracking of rigid motions.

Recently, some new methods for animation design [48]–
[50], animation editing [51], and deformation transfer [52]
are no longer based on kinematic skeletons and motion
parametrizations. Instead, they employ surface models and
general shape deformation approaches, which enables captur-
ing of both rigid and non-rigid deformation. Along this avenue,
de Aguiar et al. [53] abandon the traditional skeletal shape or
motion parametrization, and achieve high quality performance
capture by volumetric deformation based on Ref. [54]. This
method needs users to specify the key vertices and a multi-
view stereo method is used to refine the surface at each time
instant. Moreover, as many other markerless methods, they
employ a laser range scanner to reconstruct the initial 3D
model, and hence some local surface details remain unchanged
over time, which looks unrealistic.

In this paper, we apply an iterative volumetric Laplacian
deformation framework inspired by Sorkine’s work for tri-
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angle meshes [50]. In order to implicitly preserve certain
shape properties, we use a tetrahedral construction instead
of a triangle mesh construction. Positional constraints are
first computed by a method based on sparse representation
and three spatio-temporal selection criteria. Then, an iterative
Laplacian deformation system with rigidity requirement for
the local transformations is applied. Because this method does
not employ a kinematic skeleton, both rigid and non-rigid
deformation can be achieved. Our markerless method requires
no manual processing and enables simultaneous capturing of
the shape, motion and texture of an arbitrarily dressed human.

III. OVERVIEW OF THE PROPOSED METHOD

Fig. 1 illustrates the workflow of our shape and motion
capture approach. The input data are multi-view video se-
quences. To calculate the depth maps, we propose a variational
model (Section IV). For each view, a depth map represented
with a point cloud is reconstructed through optimizing the
variational model. Then, the point clouds of all the views are
merged together to generate a complete 3D mesh (Section
V). Finally, taking this 3D mesh as the underlying scene
representation, we apply an iterative volumetric Laplacian
deformation framework with a new positional-constraint com-
putation scheme to extract the 3D motion information from
the multi-view video sequences and generate time-varying
shapes (Section VI). Experiments show that the automatic
shape recovery and motion capture method can capture the
shape and motion from multi-view video sequences, without
any manual intervention or optical markers (Section VII).

IV. VARIATIONAL MODEL FOR DEPTH MAP
COMPUTATION

Depth map estimation is a key step to achieve accurate
shape recovery from a set of multi-view images. The cor-
respondence estimation in depth map computation is quite
similar to the optical flow estimation: Both are to solve the
correspondences of objects between adjacent images. Of many
optical flow estimation methods, variational methods [55]–[58]
are one category of most successful approaches. In Ref. [56],
optical flow is estimated by solving a variational model which
contains a robust data term and a spatio-temporal TV (Total
Variation) regularizer to ensure the accuracy and denseness.
The model is linearized in a numerical scheme with two nested
fixed point iterations and a multi-resolution strategy is used to
avoid falling into local minimum. Experiments show that the
novel method gives significantly smaller errors than previous
methods, thanks to the design of the variational model.

Inspired by the work in Ref. [56], we propose a variational
model for depth map computation in shape recovery. The im-
ages are captured by multiple cameras in shape recovery rather
than a single camera in the optical flow estimation. Therefore,
besides the luminance constancy and gradient constancy con-
straints, an epipolar geometry constraint is incorporated into
the model to ensure accurate estimation, and also to reduce
the searching range. In the data term, an occlusion mask is
used to handle the occlusion problem. The spatial consistency
of multi-view images is regularized by a total variation term.

A. Problem Statement
In the proposed method, the input is a set of N images

captured by N cameras, and the goal is to determine a dense
depth map for each view with the help of its neighboring view.
Then, the N depth maps represented with point clouds are
merged and reconstructed into a 3D mesh.

Consider two images of the same object captured by two
cameras, c and c+1, whose optical centers are Oc and Oc+1,
respectively. For each 3D point on the object, there is an
epipolar plane passing through the 3D point and the optical
centers, Oc and Oc+1. The intersection lines of the epipolar
plane and the two image planes are called epipolar lines. Each
epipolar line is a projection of the ray connecting the 3D
point with the optical center of the other image plane onto
the current image plane. Hence, each pixel in the image plane
of camera c has an associated epipolar line in the image plane
of camera c + 1.

As shown in Fig. 2, x := (x, y, c) denotes a pixel location
(x, y) in image of the reference camera c. Let I : Ω ⊂ R3 → R
denote a set of multi-view images, and the luminance at x
is denoted as I(x). On the associated epipolar line of x in
image of camera c + 1, xb := (xb, yb, c) is the projection of
the optical center Oc to the image of camera c + 1, called
epipole. The correspondence q of pixel x in image of c + 1
is on the associated epipolar line. Therefore, the 3D point
position associated with x can be determined by computing
the displacement d := (a, b, 1) relative to the epipole xb along
the epipolar line. The task of the proposed variational model is
to compute the displacement map for each multi-view image.

Denote w := (u, v, 1) as the disparity between the pixel
position x := (x, y, c) and the correspondence position q,
u and v its x-component and y-component. The relationship
between w and d is given by

x + w = xb + d. (1)

Let ∆d := (da, db, 0) and ∆w := (du, dv, 0) be the variation
in d and w, respectively. As shown in Fig. 2, the variation in
d is equal to that in w, i.e., ∆d = ∆w. Therefore, we have

da = du,

db = dv.
(2)

In our method, a visual hull model is obtained by EPVH
(Exact Polyhedral Visual Hulls) [14] from the multi-view
silhouette images. For the view c, the initial depth map
represented with a point cloud is generated by estimating the
visibility of the visual hull model. Specifically, if a visual ray
passing through a image pixel x intersects the visual hull
at least once, the first intersection point will be treated as
a visible point. The obtained visible 3D points are projected
to the neighboring view c + 1. For each projected point, the
displacement relative to the epipole along the epipolar line is
computed as the initial displacement d. Then, the displacement
d is optimized using our variational model proposed in the
next section.

B. The Variational Model
Before deriving a variational formulation for our shape

recovery task, we first present a description for the four
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Fig. 1. The workflow of our method.
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Fig. 2. Illustration of the epipolar geometry.

constraints in our variational model.
1) Epipolar Geometry Constraint: Epipolar geometry, as a

specific example of multi-view geometry, is the only available
geometric constraint between a pair of stereo images. We
estimate the depth map by computing the displacement from
the epipole along the epipolar line. This geometric relationship
is the basis for the following three constraints.

2) Luminance Constancy Constraint: For a point on the
surface of a 3D object, its projections onto image planes

(referred to as correspondences) approximately have the same
luminance values when the lighting is uniform, the reflective
property of the object is isotropic for different views, and the
color responses of cameras are consistent. Assuming that the
luminance values are equivalent between pixel (x, y) in image
of camera c and shifted pixel (x+u, y+v) in image of camera
c+1, this yields the nonlinear luminance constancy constraint:

I(x, y, c) = I(x + u, y + v, c + 1)
= I(xb + a, yb + b, c + 1).

(3)

3) Gradient Constancy Constraint: The luminance con-
stancy assumption can be violated by luminance variation and
color inconsistency. Therefore, to allow some small variations
in luminance values, we assume that the gradients at the
corresponding positions are constant:

∇I(x, y, c) = ∇I(xb + a, yb + b, c + 1), (4)

where ∇ = (∂x, ∂y)T denotes the spatial gradient.
4) Smoothness Constraint: To handle the outliers in the

estimation, it is necessary to impose a smoothness constraint
on the depth map. One can use a global smoothness assump-
tion. However, this assumption does not take the geometrical
singularities into account. In order to preserve the discon-
tinuities around shape variations (e.g., folds and wrinkles),
we generalize the smoothness assumption by demanding a
piecewise-smooth displacement field, which is defined as

min
(|∇a|2 + |∇b|2) . (5)

Based on the above analysis, we propose an energy function
that penalizes deviations from these model assumptions. The
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goal of our variational model is to find the parameters a and
b by minimizing the energy function:

min
a,b

(
Edata (a, b) + αEsmooth (a, b)

)
, (6)

where Edata(a, b) is a data term, Esmooth(a, b) is a smooth-
ness term, and α is a penalization parameter.

For the data term, Edata(a, b) is composed of two terms
associated with the luminance and gradient constancy assump-
tions:

Edata(a, b) =
∫

Ω

β(x)
( |I(xb + d)− I(x)|2

+ γ |∇I(xb + d)−∇I(x)|2 )
dx,

(7)

where γ is a penalization factor and β(x) is an occlusion map
to exclude occluded pixels in the data term. The occlusion map
is set at one for non-occluded pixels and zero otherwise, com-
puted similarly as in Ref. [4]. Specifically, the displacement
d is first warped to the neighboring view via Z buffering, and
then is backwarped to the current view. If the distance between
the two displacements is smaller than a tolerance (1.5 pixels),
the occlusion map is set at one, and zero otherwise. Since
the penalizers are quadratic in Eq. (7), the outliers weight too
much on the estimation. Therefore, the quadratic penalizer is
replaced by a robust function Ψ(s2) =

√
s2 + ε2, where ε

is a small constant, which yields a TV regularization. This
regularization corresponds to an `1 norm minimization, but
is still differentiable everywhere. Therefore, the data term
Edata(a, b) becomes

Edata(a, b) =
∫

Ω

β(x)Ψ
(|I(xb + d)− I(x)|2

+ γ|∇I(xb + d)−∇I(x)|2)dx.

(8)

Due to the small positive constant ε, Ψ(s2) is still convex,
which offers advantages in the minimization process. In our
implementation, ε is set at a fixed value 0.001.

For the smoothness term, Esmooth(a, b) describes the model
assumption of a piecewise-smooth displacement field:

Esmooth(a, b) =
∫

Ω

Ψ
(|∇a|2 + |∇b|2)dx. (9)

Considering the outliers problem, the same function Ψ(·) is
also used as in the data term.

With the derived data term (8) and smoothness term (9), the
energy functional to be minimized is expressed as

E(a, b) =
∫

Ω

F (a, b)dx

=
∫

Ω

(
β(x)Ψ(|I(xb + d)− I(x)|2

+ γ|∇I(xb + d)−∇I(x)|2)
+ αΨ(|∇a|2 + |∇b|2))dx.

(10)

On the one hand, the data term reflects the fidelity of
the computed depth map, which ensures the accuracy of the
reconstruction. On the other hand, the smoothness term takes
the smoothness into account, and plays an important role in
ensuring the completeness of the reconstruction. By bridging

the two terms with a penalization parameter α and minimizing
the resulting energy functional, the reconstructed depth map
will present rich geometric details without loss of smoothness.

V. SHAPE RECOVERY ALGORITHM

In this section, we first give a numerical solution for the
minimization of the energy functional. The energy functional
(10) is minimized by two nested fixed point iterations with
a multi-resolution strategy, similarly as in Ref. [56]. The
full algorithm is summarized in Algorithm 1. Then, with the
obtained depth maps of all the views, the whole 3D mesh
is generated by a marching cubes method with silhouette
constraints.

A. Euler-Lagrange Equations

Since the integrand F (a, b) in the energy functional (10) is
differentiable, the minimum of the energy functional should
satisfy the Euler-Lagrange equations:

∂F

∂a
− d

dx
(
∂F

∂ax
)− d

dy
(
∂F

∂ay
) =0,

∂F

∂b
− d

dx
(
∂F

∂bx
)− d

dy
(
∂F

∂by
) =0,

(11)

where ax = ∂a/∂x, ay = ∂a/∂y, bx = ∂b/∂x, and by =
∂b/∂y. The reflecting boundary conditions are ∂na = 0 and
∂nb = 0 on ∂Ω.

To solve the equation, Eq. (11) can be expanded and further
reformulated as Eq. (12) with the following abbreviations:

Ix := ∂xI(xb + d)
Iy := ∂yI(xb + d)
Iz := I(xb + d)− I(x)

Ixx := ∂xxI(xb + d)
Ixy := ∂xyI(xb + d)
Iyy := ∂yyI(xb + d)
Ixz := ∂xI(xb + d)− ∂xI(x)
Iyz := ∂yI(xb + d)− ∂yI(x).

(13)

B. Numerical Scheme

When the displacements are larger than one pixel, a min-
imization algorithm could easily be trapped into a local
minimum. However, with continuation methods (or graduated
non-convexity methods) [59], one can obtain considerably
more satisfactory results than a conventional optimization
strategy. The key idea is to transform the complicated original
functional to a simplified smoother functional, where a unique
minimum exists. Using the heuristic that the minimum of
the simplified functional is a good initialization for solving
a refined version, it becomes possible to approach the global
minimum of the original functional step by step. Therefore, in
our method, an incremental multi-resolution strategy [60] is



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

β(x)Ψ′
(
I2
z + γ(I2

xz + I2
yz)

)(
IxIz + γ(IxxIxz + IxyIyz)

)
− αdiv

(
Ψ′(|∇a|2 + |∇b|2)∇a

)
= 0

β(x)Ψ′
(
I2
z + γ(I2

xz + I2
yz)

)(
IyIz + γ(IyyIyz + IxyIxz)

)
− αdiv

(
Ψ′(|∇a|2 + |∇b|2)∇b

)
= 0 (12)

adopted, which can ensure that the algorithm converges to a
global minimum. Specifically, by iteratively performing low-
pass filtering and downsampling, a series of smoothed versions
of the original multi-view images are obtained for multi-
resolution optimization, which forms a pyramidal structure. A
2D Gaussian filter is employed in the low-pass filtering. For
downsampling, a relatively small downsampling factor (10/9
in our implementation) is used since continuation methods
achieve better performance when the transition from the coarse
level to the fine level is smooth enough.

Besides, the energy functional in Eq. (12) is highly nonlin-
ear, and cannot be solved with common numerical methods.
There are two kinds of nonlinearities in Eq. (12): One is due
to the non-quadratic penalizer Ψ(s2) =

√
s2 + ε2; the other is

introduced by the non-linearized data constraints. To remove
the nonlinearities, an algorithm with two nested fixed point
iterations (similar to Ref. [56]) is used. This algorithm conse-
quently postpones all linearisations to the numerical scheme,
which improves its convergence to the global minimum.

Since the problem is non-linear and non-convex, careful
initialization is important in order to avoid local minima.
We choose to start our algorithm with non-zero values using
the visible points of visual hull from the current view. To
compute the visible points for each view, we simply calculate
the pseudo intersection points of the reprojected rays passing
through the image pixels.

Let dk := (ak, bk, 1) be the solution at the kth scale. The
initial displacement map at the finest scale is downsampled
to the coarsest scale as the initialization d0. Let Ik

∗ be the
abbreviations defined in formula (13), and replace d with dk to
indicate the scale index2. Then, according to Eq. (12), dk+1 =
(ak+1, bk+1, 1) is the solution of Eq. (14). When a fixed point
in dk is reached, we go to the next finer scale, and use this
solution as the initialization for the fixed point iteration on
that scale. To remove the nonlinearity in Ik+1

∗ , the first order
Taylor expansions are used:

Ik+1
z ≈ Ik

z + Ik
xdak + Ik

y dbk,

Ik+1
xz ≈ Ik

xz + Ik
xxdak + Ik

xydbk,

Ik+1
yz ≈ Ik

yz + Ik
xydak + Ik

yydbk,

(15)

where ak+1 = ak + dak and bk+1 = bk + dbk , i.e., the
unknown parameters ak+1 and bk+1 are split into two parts:
the solution of the previous iteration step, ak and bk, and the
unknown increments, dak and dbk. With the following two
abbreviations:

(Ψ′)k
D := Ψ′




(Ik
z + Ik

xdak + Ik
y dbk)2

+γ(Ik
xz + Ik

xxdak + Ik
xydbk)2

+γ(Ik
yz + Ik

xydak + Ik
yydbk)2


 ,

(Ψ′)k
S := Ψ′

(|∇(ak + dak)|2 + |∇(bk + dbk)|2) ,

(16)

2The symbol “∗” denotes the subscripts of I in formula (13).

Eq. (14) can be rewritten as Eq. (17).
The only remaining nonlinearity in Eq. (17) is due to Ψ′(·),

and can be removed by an inner fixed point iteration loop. In
this inner iteration loop, da and db are both initialized with
zeros. Therefore, Eq. (17) is cast into a linear system Eq.
(18), where l denotes the inner fixed point iteration index,
and (Ψ′)k,l

D and (Ψ′)k,l
S are calculated as formula (16) using

dak,l and dbk,l. This linear system can be solved by SOR
(Successive Over Relaxation) iterations after discretization.
Let m denote the iteration index for the SOR iterations,
and then the iteration scheme for each pixel i is presented
in Eq. (19), where (Ψ′S)k,l

i∼j denotes the discrete diffusivity
between pixel i and pixel j, N−(i) the index set of the
causal neighbors of pixel i, and N+(i) the index set of
the non-causal neighbors. The scheme converges when the
relaxation parameter ω belongs to (0, 2), and we set ω at 1.6
in experiments.

C. Full Reconstruction Algorithm

Our reconstruction algorithm consists of two steps: the
separating step and the merging step. The algorithm for the
separating step, including the initialization, is detailed in
Algorithm 1. The merging step does not require coordinate
transformation since the point clouds for all the views are
already in the unified world coordinate system. Therefore,
they are first put together and the prominent outliers in the
whole point cloud are removed by using the visual hull as
a constraint. Then, a traditional space partitioning method is
used to reconstruct the mesh. Specifically, the overall point
cloud is first converted to an octree representation, and then
the mesh reconstruction reduces to an iso-surface contouring
problem using either marching cubes [15] or dual contouring
[61]. The main trend of merging methods is to use complicated
techniques to achieve good reconstructions; instead, we choose
to pursue the simplicity and rapidity of the method since a
simple merging method can also produce high quality 3D
reconstructions thanks to the accurate depth map estimation
in the separating step. Therefore, the marching cubes method
is used in our merging step. The obtained mesh is guaranteed
to be valid and watertight. For further denoising, simplication
or remeshing is optional and can be employed to improve the
quality of the obtained meshes.

Note that our shape recovery method can also be considered
as a shape optimization method. The initial input model of our
method can be the reconstructed 3D mesh by other algorithms,
and the output 3D mesh is a refined version of the input model.

VI. MOTION CAPTURE ALGORITHM

Taking the 3D mesh generated by the above shape recovery
method as the underlying scene representation, we can capture
the motions of the 3D object, especially human performances.
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β(x)Ψ′
(
(Ik+1

z )2 + γ((Ik+1
xz )2 + (Ik+1

yz )2)
) (

Ik
xIk+1

z + γ(Ik
xxIk+1

xz + Ik
xyIk+1

yz )
)

−αdiv
(
Ψ′(|∇ak+1|2 + |∇bk+1|2)∇ak+1

)
= 0

β(x)Ψ′
(
(Ik+1

z )2 + γ((Ik+1
xz )2 + (Ik+1

yz )2)
) (

Ik
y Ik+1

z + γ(Ik
yyIk+1

yz + Ik
xyIk+1

xz )
)

−αdiv
(
Ψ′(|∇ak+1|2 + |∇bk+1|2)∇bk+1

)
= 0

(14)

β(x)(Ψ′)k
D




Ik
x (Ik

z + Ik
xdak + Ik

y dbk)
+γIk

xx(Ik
xz + Ik

xxdak + Ik
xydbk)

+γIk
xy(Ik

yz + Ik
xydak + Ik

yydbk)


− αdiv

(
(Ψ′)k

S∇(ak + dak)
)

= 0

β(x)(Ψ′)k
D




Ik
y (Ik

z + Ik
xdak + Ik

y dbk)
+γIk

xy(Ik
xz + Ik

xxdak + Ik
xydbk)

+γIk
yy(Ik

yz + Ik
xydak + Ik

yydbk)


− αdiv

(
(Ψ′)k

S∇(bk + dbk)
)

= 0
(17)

β(x)(Ψ′)k,l
D




Ik
x (Ik

z + Ik
xdak,l+1 + Ik

y dbk,l+1)
+γ(Ik

xx(Ik
xz + Ik

xxdak,l+1 + Ik
xydbk,l+1)

+Ik
xy(Ik

yz + Ik
xydak,l+1 + Ik

yydbk,l+1))


− αdiv

(
(Ψ′)k,l

S ∇(ak + dak,l+1)
)

= 0

β(x)(Ψ′)k,l
D




Ik
y (Ik

z + Ik
xdak,l+1 + Ik

y dbk,l+1)
+γ(Ik

xy(Ik
xz + Ik

xxdak,l+1 + Ik
xydbk,l+1)

+Ik
yy(Ik

yz + Ik
xydak,l+1 + Ik

yydbk,l+1))


− αdiv

(
(Ψ′)k,l

S ∇(bk + dbk,l+1)
)

= 0
(18)

Algorithm 1 Full algorithm for depth map computation
Require: M ∈ N,M ≥ 1, maxOutIter, maxInIter ∈ N.

For each image pair of camera c and camera c+1, compute
the epipolar lines in image of camera c + 1 for each pixel
in image of camera c. Initialize d = (a, b) with the visible
points of visual hull.

for scale = M to 1 do
for (k = 0 to maxOutIter) or (no improvement) do

Compute the occlusion map β(x).
da ← 0, db ← 0.
for (l = 0 to maxInIter) or (no improvement) do

Compute (Ψ′)D and (Ψ′)S using da, db.
Obtain (da, db) via SOR iterations (Eq. (19)).

end for
a ← a + da, b ← b + db.

end for
Update d for the next scale using bilinear interpolation.

end for
Output the point cloud according to the final d.

In order to implicitly preserve certain shape properties, we
first create a tetrahedral version of the surface mesh by a finite
element method and a finite volume method [62], [63]. Then,
an iterative as-rigid-as-possible deformation scheme is applied
to extract 3D motion information from the multi-view videos.
Specifically, we first calculate a set of positional constraint
candidates with a new method based on sparse representation,
and then select the most reasonable ones with three spatio-
temporal selection criteria. An iterative Laplacian deformation
framework with rigidity requirement for the local transforma-
tions is driven by these positional constraints. By applying

this algorithm to all subsequent time instants, the mesh can
be animated over the whole multi-view video sequences.

A. Laplacian Deformation Framework

Sorkine et al. [64] review the definition of differential
coordinates (δ-coordinates) and the associated mesh Laplacian
operator for triangle meshes. In our motion capture method,
tetrahedral meshes are used since the volumetric deformation
framework can better prevent unintuitive shape transforma-
tions, such as local self-intersections of opposing surfaces.
Furthermore, it enables distance preservation not only on the
surface of an object, but also throughout its interior, which
makes the deformation resistant to changes in volume and
cross-sectional areas. In this section, we describe the relevant
definitions and the framework of Laplacian mesh deformation
for tetrahedral meshes.

1) Differential Coordinates: Let M := (V, E, T ) denote
a given tetrahedral mesh with n vertices, V, E, and T the
set of its vertices, edges, and tetrahedra, respectively. Each
vertex vi := (xi, yi, zi) in V is under the absolute Cartesian
coordinate. The differential coordinates (δ-coordinates) of vi

are defined as the difference between the absolute coordinates
of vi and the mass center of its immediate neighbors on the
mesh:

δi = (δ(x)
i , δ

(y)
i , δ

(z)
i ) = vi − 1

di

∑

j∈N (i)

vj , (20)

where the set N (i) = {j|(vi,vj) ∈ E} contains the indices of
immediate neighbors of vi and di is the number of elements
in N (i).
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dak,l,m+1
i =(1− ω)dak,l,m

i

+ω

∑
j∈N−(i)

(Ψ′S)k,l
i∼j(a

k
j + dak,l,m+1

j ) +
∑

j∈N+(i)

(Ψ′S)k,l
i∼j(a

k
j + dak,l,m

j )− ∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼ja

k
i

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Ix)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Ixx)k

i

)2
)

−ω

β(xi)(Ψ
′
D)k,l

i

α

(
(Ix)k

i

(
(Iy)k

i dbk,l,m
i + (Iz)k

i

))

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Ix)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Ixx)k

i

)2
)

−ω

β(xi)(Ψ
′
D)k,l

i

α

(
γ

(
(Ixx)k

i

(
(Ixy)k

i dbk,l,m
i + (Ixz)k

i

)
+ (Ixy)k

i

(
(Iyy)k

i dbk,l,m
i + (Iyz)k

i

)))

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Ix)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Ixx)k

i

)2
)

dbk,l,m+1
i =(1− ω)dbk,l,m

i

+ω

∑
j∈N−(i)

(Ψ′S)k,l
i∼j(b

k
j + dbk,l,m+1

j ) +
∑

j∈N+(i)

(Ψ′S)k,l
i∼j(b

k
j + dbk,l,m

j )− ∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼jb

k
i

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Iy)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Iyy)k

i

)2
)

−ω

β(xi)(Ψ
′
D)k,l

i

α

(
(Iy)k

i

(
(Ix)k

i dak,l,m+1
i + (Iz)k

i

))

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Iy)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Iyy)k

i

)2
)

−ω

β(xi)(Ψ
′
D)k,l

i

α

(
γ

(
(Ixy)k

i

(
(Ixx)k

i dak,l,m+1
i + (Ixz)k

i

)
+ (Iyy)k

i

(
(Ixy)k

i dak,l,m+1
i + (Iyz)k

i

)))

∑
j∈N−(i)∪N+(i)

(Ψ′S)k,l
i∼j + β(xi)(Ψ′D)k,l

i

α

((
(Iy)k

i

)2 + γ
(
(Ixy)k

i

)2 + γ
(
(Iyy)k

i

)2
)

(19)

Let D be a diagonal matrix with Dii = di and W the
adjacency (connectivity) matrix of M with

Wij =

{
1 (i, j) ∈ E,

0 otherwise.
(21)

The absolute Cartesian coordinates can be transformed into
the differential coordinates with an operator L defined as

L = I−D−1W. (22)

That is, Lx = δ(x), Ly = δ(y), and Lz = δ(z), where x is
an n-vector containing the x absolute coordinates of all the
vertices, and y and z are defined in the same manner. The
matrix L is called the topological Laplacian of the mesh.

2) Laplacian Mesh Deformation: The appealing properties
of Laplacian operators have been explored in various ways.
Sorkine et al. [65] propose a geometry compression algorithm,
which benefits from the strong quantization in the differential
coordinates. Alexa [66] shows the effectiveness of Laplacian
differential coordinates for mesh deformation. He suggests
differential coordinates as a local mesh description, which is a
more suitable constraint for a global deformation of the mesh.

For mesh deformation, the differential coordinates of the
vertices of M are assumed to be invariable. Hence, the
problem to be solved is how to recover the Cartesian coor-
dinates of M ’s vertices, given the differential coordinates.
We cannot uniquely restore the Cartesian coordinates from the
differential coordinates, because the matrix L is singular and,

therefore, the expression x = L−1δ(x) is undefined (taking
the x-component for example). The sum of each row of L
is zero, which implies that L has a non-trivial eigenvector
(1, 1, . . . , 1)T associated with the zero eigenvalue. Define the
Laplacian operator with the weights ωij that sum up to 1 and
translate the mesh by a vector t to obtain the new vertices
{v′i}1≤i≤n, then we have

L(v′i) =
∑

j∈N (i)

ωij

(
v′i − v′j

)

=
∑

j∈N (i)

ωij ((vi + t)− (vj + t))

=
∑

j∈N (i)

ωij (vi − vj)

= L(vi).

(23)

Hence, the differential coordinates are translation invariant,
which also demonstrates the singularity of the Laplacian
matrix L. Eq. (23) follows that

rank(L) = n− r, (24)

where r is the number of connected components of M since
each connected component has one translational degree of
freedom.

We need to solve a full-rank linear system to uniquely
restore the Cartesian coordinates. In general, M is connected,
so we can specify the Cartesian coordinates of one vertex
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to make the matrix invertible. Specifically, substituting the
coordinates of vertex vi is equivalent to dropping the ith row
and column from L. However, we usually place more than
one constraint on spatial positions of M ’s vertices and treat
the positional constraints in the least-squares sense. Denote
C := {1, 2, . . . , m} as the set of indices of the vertices whose
spatial positions are known, and we have

v′j = cj , j ∈ C. (25)

Then, the Laplacian deformation is formulated as the following
linear system:

(
L

γIm×m| 0

)
x =

(
δ(x)

γcm×1

)
, (26)

where the weight γ > 0 is used to adjust the importance of
the positional constraints. Denoting the system matrix in Eq.
(26) by L̃, we have L̃x = δ̃

(x)
. The same goes for the other

two dimensions (y and z). The over-determined linear system
can be solved by direct methods for moderate-size meshes, or
by iterative methods for large-size meshes.

B. Positional Constraints Calculation

The estimation of positional constraints is a key step in
Laplacian deformation. The quality of estimated positional
constraints has a great impact on the accuracy of the motion
capture. In our method, the positional constraint candidates
are first estimated by a method based on sparse representation.
Then, to improve the accuracy, the positional constraints are
selected from the candidates by three spatio-temporal criteria.
• Candidate Computation Based on Sparse Representation
The motion of 3D scene is called scene flow and can

be described by a three-dimensional velocity field. Several
methods have been presented for stereo data with energy
minimization frameworks to provide dense scene flow [4],
[67], [68]. The normal stereo epipolar geometry is assumed,
i.e., the disparities are only along the horizontal direction in the
left and right images. A few dense scene flow methods have
been proposed in multi-camera set-ups [5], [69]. However, the
scene flows estimated by these methods present some noise
and outliers, which would affect the performance of motion
capture. With the rapid development of sparse representation,
a remarkable new field, matrix completion [70]–[72], has
emerged very recently. This field addresses a board range of
significantly practical problems, i.e., the recovery of a data
matrix from a nearly minimal set of perhaps corrupted entries.
Positional constraint candidate estimation based on scene flow
with noise can also be formulated into such a data recovery
problem. We propose a new candidate computation method
based on matrix completion, which uses the prior of low-
rank property of the multi-view scene flow matrix to achieve
reliable estimation. The method consists of the following main
steps:

(1) Calculate optical flow fields {−→o c}0≤c≤N−1 for all the
views. For each view c, a 3D scene flow field

−→
f c is

computed by solving a linear system for each surface
vertex vi which is visible from view c and its neighbor-
ing view c + 1 [69]. For the invisible surface vertices,

their 3D scene flow values are set at a large value, e.g.,
10000.

(2) Arrange the calculated 3D scene flow field from view c

as the cth column of a matrix M = [
−→
f 0, . . . ,

−→
f N−1] ∈

RNv×N , where Nv is the number of surface vertices.
Note that each column of M corresponds to the same
3D scene flow field, and ideally should have the same
value, which means that the rank of the matrix should be
very low and theoretically one. However, there are lots
of unknown entries in M, corresponding to the invisible
vertices. Therefore, the scene flow estimation can be cast
into a matrix completion problem: recovery the low-rank
matrix given a fraction of known entries. To recover the
complete matrix, the only information available about
M is a sampled set of entries Mij , (i, j) ∈ Ω, where Ω
is a subset of the complete set of entries [Nv]× [N ] ([n]
denotes the list {1, . . . , n}.). Hence, the problem can be
formulated as

minimize
subject to

rank(X)
PΩ(X) = PΩ(M),

(27)

where X ∈ RNv×N is the decision variable and PΩ(X) :
RNv×N → RNv×N is a sampling operator defined by

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω,

0 otherwise.
(28)

However, this rank-minimization problem is NP-hard. It
is analogous to the intractability of l0-minimization in
sparse signal recovery. Fortunately, Candès and Recht
[70] prove that most low-rank matrices can be perfectly
recovered by solving the optimization problem

minimize
subject to

‖X‖∗
PΩ(X) = PΩ(M),

(29)

where the functional ‖X‖∗ is the nuclear norm of
the matrix X, i.e., the sum of singular values. This
optimization problem is convex and can be recast as
a semidefinite program [73]. Eq. (29) is the tightest
convex relaxation of Eq. (27), since the nuclear ball
{X ∈ RNv×N : ‖X‖∗ ≤ 1} is the convex hull of
the set of rank-one matrices with their spectral norms
bounded by one. We use the singular value thresholding
algorithm [74] to solve the nuclear norm minimization
problem (29), and obtain the recovered complete matrix
X. Then, the average of each row is regarded as the final
3D motion of its corresponding vertex.

(3) The generated 3D flow field
−→
f (vi) = (u, v, w) repre-

sents the displacement by which vi at time instant t
should move from its current position, and v′i = vi +−→
f (vi) is regarded as a positional constraint candidate
at time instant t + 1.

Our method for candidate computation is robust to noise,
which benefits from the matrix completion method derived
from sparse representation. In our problem, noise exists in
some known entries of the matrix M due to the errors of the
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initial scene flows. Candès et al. [71] show that matrix comple-
tion with noise is provably accurate. By matrix completion, not
only the unknown entries of the matrix are recovered, but also
the noise and outliers existed in the known entries are reduced.
As a result, our method for candidate computation is robust
to noise, and outperforms the method by using conventional
LS (least square)-based scene flow methods, which will be
demonstrated by experimental results in Section VII-C.
• Spatio-Temporal Selection:
To improve the accuracy of positional constraints, three

spatio-temporal criteria are used to select the accurate can-
didates as final positional constraints. A candidate v′i =
vi +

−→
f (vi) is considered as a final positional constraint if it

has low errors under three spatio-temporal selection criteria.
The criteria are defined as follows:

Csp =
1
N

N−1∑
c=0

(1− P c
sil (v

′
i)) , (30a)

Ctmp =
1

Nv

∑

c∈V(i)

(1− P c
z (p(vi), p(v′i))) , (30b)

Csmth = ‖−→f (vi)− 1
Ns

∑

j∈N (i)

−→
f (vj)‖. (30c)

In formula (30a), P c
sil (v

′
i) is a function that evaluates to

1 if v′i projects inside the silhouette image of camera c at
time instant t + 1, and to 0 otherwise. Hence, the spatial
criteria Csp penalizes the candidates that do not project into
the silhouettes at all camera views. In formula (30b), V(i)
is the set of visible camera indices for the vertex vi and
Nv is the number of visible cameras. P c

z (p(vi), p(v′i)) is
a function that calculates the ZNCC (Zero-mean Normalized
Cross-Correlation) score between the projection p(vi) of the
patch centered at vi and the projection p(v′i) of the patch
centered at v′i. The projections of the patches centered at vi

and v′i are on the images of camera c at time instants t and
t + 1, respectively. This temporal criteria Ctmp penalizes the
candidates whose new positions have low color consistency
with their original position in all camera views. In formula
(30c), Ns is the number of immediate neighbors of vi. Con-
sidering the existence of outliers, the smooth criteria Csmth

penalizes the candidates whose motions are not consistent with
the average motion of their immediate neighbors.

These three spatio-temporal criteria verify the accuracy of
selection from the perspective of spatial and temporal domain
and suppress the influence of outliers. A candidate v′i will be
accepted as a positional constraint if Csp < THsp, Ctmp <
THtmp and Csmth < THsmth, where THsp, THtmp, and
THsmth are thresholds for the three spatio-temporal selection
criteria. These thresholds are set at 1, 0.4, and 0.1, respectively,
in experiments. The procedure for spatial-temporal selection
is summarized as follows.

(1) Project all the vertices v′ in the candidate set onto all
the views and compute the Csp criteria by formula (30a).
Remove the candidate if its Csp value is not smaller than
THsp.

(2) For each candidate v′, compute the patch p centered at
v and the patch p′ centered at v′. A patch is essentially

a local tangent plane approximation of a surface [7]. Its
geometry is fully determined by its center, unit normal
vector of the vertex and the frontal visible view image
I(p). More concretely, a patch is a rectangle in 3D space,
one of whose edges is parallel to the x-axis of the current
camera. Overlay a (2µ+1)×(2µ+1) grid on the patches
p and p′. The size of the rectangle is chosen so that
the smallest axis-aligned square in I(p) that contains its
image projection is of size (2µ + 1)× (2µ + 1) pixels.

(3) For each visible view c of one candidate vertex v′,
sample the pixel colors r(p, Ic

t ) and r(p′, Ic
t+1) through

bilinear interpolation at image projections of all the grid
points in images Ic

t and Ic
t+1. Compute the Ctmp criteria

by formula (30b). If this criteria is not smaller than
THtmp, remove the candidate v′.

(4) Compute the smooth criteria Csmth by formula (30c)
for each retained candidate v′ = v +

−→
f (v) and accept

the candidate if its smooth criteria Csmth is smaller than
THsmth.

C. Iterative Laplacian Deformation

Sorkine et al. [50] propose a surface deformation method
based on a simple modeling operation that asks for rigidity
of the local transformations. The minimization procedure is
guaranteed to not increase energy in each step and the whole
algorithm is effective and notably easy to implement. Inspired
by this surface-based deformation method, we present an
iterative volumetric Laplacian deformation framework. This
framework is driven by the above positional constraints with
rigidity requirement for the local transformations. Assume
that a tetrahedral mesh M with geometric embedding vi is
deformed into M ′ that has the same connectivity and different
geometric embedding v′i. Initialize rotation matrix Ri with an
identical matrix. The following iterations are performed.

(1) Solve the tetrahedral Laplacian system L̃v = δ̃ with the
calculated positional constraints. The ith row of δ̃ is

∑

j∈N (i)

ωij

2
(Ri + Rj)(vi − vj),

where i = {0, 1, . . . , |V | − 1} and |V | is the number of
elements in V .

(2) Denote the covariance matrix by

Ci =
∑

j∈N (i)

ωij(vi − vj)(v′i − v′j)
T = ViDiV

′T
i .

We can derive Ri from the singular value decomposition
of Ci = UiΣiVT

i :

Ri = ViUT
i .

If det(Ri) ≤ 0, change the sign of the column of Ui

that corresponds to the smallest singular value.
(3) Update δ̃ with the new Ri and return to (1) until the

silhouette error for all the views is below a threshold
Sth or the number of iterations is larger than a given
maximum.

(4) Update the mesh M .
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Note that there would exist tracking errors to a degree
due to the nonideal imaging of multi-view video sequences,
such as noise and/or color inconsistency. Since the model at a
time instant is predicted from the one at the last time instant,
the errors would drift over time. To avoid error propagation,
the model is refreshed by the shape recovery method if the
tracking error is above a certain level. Since the ground-
truth motions are not available for the markerless multi-view
sequences, the tracking error is estimated by the silhouette
error, i.e., the average of the XORs between the projection of
the model and the multi-view silhouette images. Specifically,
a 3D model is first obtained by the shape recovery method and
then tracked by the iterative volumetric Laplacian deformation.
If the silhouette error of the tracked model is larger than a
given threshold, the 3D model is refreshed by reconstructing
a new one with the shape recovery method. Experimentally, the
refresh frequency is dozens of frames for small and moderate-
size meshes (tens of thousands of vertices), and about fifteen
frames for large-size meshes or high-quality tracking.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the pro-
posed shape recovery method (in Section VII-B) and the mo-
tion capture method (in Section VII-C) with publicly available
datasets and datasets captured by our real multi-camera dome
system (introduced in Section VII-A). Running times of our
method are reported in Section VII-D.

A. Acquisition System

In addition to the publicly available datasets, we evaluate
our method with multi-view videos captured by a multi-
camera dome system. As shown in Fig. 3, the multi-camera
dome system is equipped with controllable lighting and has
a chroma-key background. The diameter of the dome is six
meters, which provides enough space for moderate human
performances. For the sake of easy segmentation, the steel
tubes of the dome are painted green, and the whole dome is
covered with a green blanket. For environment illumination,
ambient lighting instead of directional spot lighting is used
since it provides less self-shadowing. The ceiling is installed
with 100 fluorescent light tubes, which are carefully grouped
so that the illumination can be flexibly controlled.

Twenty cameras are placed in an approximately circular
arrangement on the dome, about 70 cm off the ground. The
employed Point Grey Flea2 cameras are capable of capturing
up to 30 frames per second at 1024 × 768 resolution. The
focal length of the camera lens is 4 mm, which is enough to
film a whole body with moderate motions. All the cameras are
geometrically and radiometrically calibrated by our automatic
calibration methods for large camera arrays [75], [76].

B. Shape Recovery

The proposed shape recovery method consists of the separat-
ing and merging steps. In the separating step, the depth maps
are generated by applying the proposed variational method
to each pair of adjacent views (summarized in Algorithm

Fig. 3. The multi-camera dome system.

1). Then, in the merging step, the generated depth maps are
merged into a 3D mesh. The depth maps and the reconstructed
complete 3D meshes are presented as follows.

1) Depth Map: The parameters for Algorithm 1 are set
as follows: M = 5, α = 60, γ = 7.5,maxOutIter =
20,maxInIter = 30, and the number of iterations in SOR is
100. We evaluate the performance of the separating step with
six datasets captured by our real multi-camera dome system.
The datasets are named by their poses: dancer1, dancer2,
vollyball player, walker, fighter, and prayer. As an example,
the first frames of dancer1 (20 views) are shown in Fig. 4.

Fig. 4. First frames of dancer1 dataset captured by our system.

Since the multi-view capturing system has a chroma-key
background, silhouettes of the 3D object can be extracted
from the multi-view images simply by thresholding. Then,
the visual hull obtained from these silhouettes are optimized
with the proposed variational model, generating continuous
depth maps represented with point clouds. Reconstructed depth
maps for dancer1 and dancer2 at four viewpoints are shown
in Fig. 5 and Fig. 6, respectively. For comparison, the captured
real images and the reconstructed results of visual hull at
the corresponding viewpoints are also presented. As suggested
by the captured images, the depth map reconstructed by our
method are much more accurate than the visual hull, such
as the regions emphasized by rectangles in the figures. For
example, in Fig. 5, the non-convex shapes formed by the
interweaving of two legs are more faithfully reconstructed. The
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geometries at small scales, such as the shape of the ear, are
better recovered. Moreover, our method has stronger capability
in reconstructing the non-connected geometries of the objects,
e.g., the gap between two lower legs. Similar phenomena can
also be observed in Fig. 6. More results for other datasets, i.e.,
volleyball player, walker, fighter, and prayer, are presented in
Fig. 7. All these results suggest that our method produces more
accurate depth maps than visual hull. This demonstrates the
effectiveness of the proposed variational model.

It is worth noting that such fine granularity of reconstructed
depth maps are obtained without loss of smoothness. This
appealing property attributes to the elegant design of the varia-
tional model, which consists of the data and smoothness terms.
The data term is derived from the luminance and gradient
constancy constraints. Therefore, the data term reflects the
fidelity of the reconstructed depth map, and plays an important
role in preserving the local geometries. Simultaneously, the
smoothness term addresses the smoothness and the complete-
ness of the reconstructed results. By bridging the data and
smoothness terms with a penalization parameter and then
minimizing it, rich geometric details can be preserved in the
reconstructed depth maps while ensuring the smoothness. This
is the basis of high quality 3D mesh reconstruction as shown
by the following results.

2) 3D Mesh: With the obtained depth maps of all the
views, a 3D mesh can be reconstructed in the merging step.
Reconstructed 3D meshes are shown in Fig. 8 for dancer1
dateset. Two other shape recovery methods are compared: the
graph cuts method [28] and Furukawa’s PMVS (Patch-based
Multi-View Stereo) algorithm [7]. The results of PMVS are
generated with a software package released by the authors
[77]. In our experiments, the parameters for PMVS are set as
follows.
• One feature is detected in each 16× 16 pixel cell
• One patch is reconstructed in each 2× 2 pixel cell
• The threshold on the photometric consistency score: 0.5
• The image window size: 7× 7
• The minimum number of visible views for a patch: 3
In Fig. 8, 3D meshes reconstructed by the three methods are

shown at ten free viewpoints, including two extreme perspec-
tives given in the first column. The view-independent render-
ing results at two free viewpoints are also presented. It can be
observed that our method provides significantly better results
than the other two methods. The 3D meshes reconstructed by
the graph cuts method are visually coarse and a little over-
smoothed, losing local geometries and presenting unnatural
transitions around sharp curvature variations. The 3D meshes
recovered by the PMVS method can preserve details to some
extent, but cannot ensure completeness. As a result, the whole
model is severely distorted around small scale geometries, e.g.,
the head and arms. On the contrary, our proposed method is
free of this problem. The 3D meshes reconstructed by our
method are watertight with good visual quality at each view-
point. The proposed method shows promising performance
even for the occlusion regions. The main reason for this is that
our method does not impose any constraint on the number of
visible views for each surface point, and the occlusion map is
also incorporated in the proposed variational model. The view-

independent rendering results of the reconstructed meshes are
almost visually indistinguishable from the real images, which
suggests that the reconstructed 3D meshes are quite accurate.

We also test our method on two of the Middlebury’s datasets
[78], dinoSparseRing (16 views) and templeSparseRing (15
views), compared with the PMVS method and the captured
images. The results are presented in Fig. 9. It can be observed
that the PMVS method can accurately recover local structures,
e.g., the steps of the temple, the claws and ridges of the
dinosaur. However, the PMVS method does not perform very
well in reconstructing smooth regions, e.g., the abdomen of the
dinosaur. For these two datasets, our method is comparable
to the PMVS method. Further, our method is quantitatively
evaluated by the Middlebury’s on-line evaluation system on
the two datasets. Table I compares quantitative results for nine
methods of three categories: 1) methods using the separating
and merging strategy (ours and Ref. [8], [79]); 2) global
optimization methods in Ref. [28], [29], [32], [80], [81];
3) the feature-based PMVS method [7]. Three metrics are
measured: accuracy, completeness, and normalized time [78].
Compared with the methods that also use the separating
and merging strategy, our method significantly outperforms
Goesele’s method [8] and gives better results than Bradley’s
method [79] in terms of completeness for the dinoSparseRing
dataset. As to the global optimization methods, our method
shows better performances than the methods in Ref. [28],
[29], [32], higher accuracy than Pons’ method [80], and less
runtime than Zaharescu’s method [81]. For the two datasets,
the feature-based PMVS method provides the best results in
terms of accuracy and completeness, but requires much more
(15×) computation than our method. Overall, our method
achieves better comprehensive performance in terms of ac-
curacy, completeness and runtime. Please see Ref. [78] for
more details about the quantitative evaluation method and the
accompanying website for comparison with other methods.

To evaluate the effectiveness as a shape optimization
method, we refine a mesh generated by a graph cuts method
[29] into a more accurate 3D model. As shown in Fig. 10,
the initial input mesh is over-smoothed while more details
are generated after optimization by our method, e.g., the ears
and the small scale wrinkles on the T-shirt. This demonstrates
that our shape recovery method can improve the detailed
presentation of input meshes, especially for over-smoothed
regions.

3) Discussions: The datasets used in this experiment in-
clude four settings in terms of camera numbers: 20 cam-
eras for our captured datasets, 16 cameras for Middlebury’s
dinoSparseRing dataset, 15 cameras for Middlebury’s tem-
pleSparseRing dataset, and 8 cameras for Starck’s datasets.
Experimental results show that good reconstruction qualities
are obtained for these datasets. We test the effect of the camera
numbers on the reconstruction qualities with our datasets by
evenly removing some cameras. It is found that the recon-
struction qualities are still acceptable (comparable to visual
hull) when we keep five cameras, which is suggested as the
minimum number of cameras for acceptable reconstruction.

It is worth noting that shape recovery methods are developed
with their own considerations, and thus have different recon-
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TABLE I
QUANTITATIVE EVALUATION OF SHAPE RECOVERY METHODS ON TWO

MIDDLEBURY’S DATASETS.

Method Dataset Accuracy Completeness
Normalized

Time

dinoSR 0.47mm 97.4% 00:15:15
Our method

templeSR 0.81mm 92.1% 00:11:19

dinoSR 0.56mm 26% 14:03:12
Goesele [8]

templeSR 0.87mm 56.6% 11:26:48

dinoSR 0.38mm 94.7% 00:07:06
Bradley [79]

templeSR 0.48mm 93.7% 00:03:33

dinoSR 1.18mm 90.8% 00:40:23
Vogiatzis [28]

templeSR 2.77mm 79.4% 00:59:01

dinoSR 1.01mm 90.7% 2:57:00
Starck [29]

templeSR 1.27mm 87.7% 2:17:00

dinoSR 0.53mm 98.3% 00:48:46
Kolev2 [32]

templeSR 1.04mm 91.8% 1:00:17

dinoSR 0.71mm 97.7% 00:3:00
Pons [80]

templeSR 0.9mm 95.4% 00:10:00

dinoSR 0.45mm 99.2% 00:20:23
Zaharescu [81]

templeSR 0.78mm 95.8% 00:25:42

dinoSR 0.42mm 99.2% 3:44:00
Furukawa2 [7]

templeSR 0.62mm 99.2% 3:33:20

struction qualities on different datasets. The graph cuts meth-
ods mainly focus on the completeness of the reconstructions,
and hence generate a little over-smoothed results. Overall,
the graph cuts methods are robust to various datasets, but
the accuracy is lower than our method. Furukawa’s PMVS
method is based on features and more emphasizes the details of
reconstructions without any smoothing operation. This method
recovers more details for Middlebury’s datasets. However,
for our datasets, the 3D models reconstructed by the PMVS
method are severely distorted for low-texture regions, e.g.,
the head and arms of the human body. Therefore, the PMVS
method is sensitive to noises, the richness of textures, and
the resolution of the object in multi-view images. By using
the separating and merging strategy, our proposed method
can simultaneously ensure the accuracy and completeness of
reconstructed 3D models, which has been demonstrated by the
above experimental results. For the Middlebury’s datasets, the
nonuniform illumination leads to highlights and shadows in the
captured multi-view images, and color inconsistency among
different views. The color inconsistency does not conform to
the luminance constancy assumption, and the highlights and
shadows violate the gradient constancy assumption. Moreover,
for the surface with many wrinkles or creases, especially when
the captured images are clean and have a high resolution of
the object, feature-based methods will work better. Therefore,
our method does not show equally high-quality reconstruction,
compared with the PMVS method. For our datasets, the
ambient lighting in our dome system is uniform, and hence
the captured datasets have better color consistency and do not
present highlights and shadows. Hence, the proposed method
performs quite well on our captured datasets. Overall, our
method is versatile for various datasets by simultaneously

ensuring the accuracy and completeness of reconstructions.

C. Motion Capture

The 3D model reconstructed by our shape recovery method
is represented by a triangle mesh. In order to preserve certain
shape properties during deformation, a tetrahedral version of
the surface mesh is generated by using the TetGen package
[82]. With the tetrahedral mesh as the underlying scene repre-
sentation, positional constraints are first computed by a method
based on sparse representation and further selected by three
spatio-temporal selection criteria (presented in Section VI-B).
Then, an iterative volumetric Laplacian deformation frame-
work (presented in Section VI-C) is driven by these positional
constraints to generate the same 3D motions as those recorded
in multi-view videos. Four datasets are used to evaluate the
proposed motion capture method: dancer1 (1024 × 768, 61
frames), dancer2 (1024×768, 133 frames), skirt (1024×768,
133 frames) and Starck’s dataset (1920 × 1080, 500 frames).
Qualitative and quantitative evaluations for our motion capture
method are presented as follows.

1) Qualitative Evaluation: The motion capture results for
dancer1 dataset are shown in Fig. 11. In the top row, the
obtained optical flow results for four viewpoints are printed by
arrows on their corresponding images. The associated images
at the next time instant are overlayed on the results at 50%
opacity to compare the estimated optical flows with the real
motion. For better visualization, only the optical flows with
their magnitudes larger than one are presented. The regions
highlighted by rectangles are enlarged and shown in the
associated images for closer observation. It can be seen that
most estimated optical flow results are consistent with the
real motion. The rendered models with scene flows generated
by the method in Ref. [69] and our method are shown in
the second row. For better visualization, their magnitudes
are magnified twice and only 10% of scene flow (uniformly
sampled) are presented. As shown in the figure, the scene flow
generated by our method is less noisy, more realistic, and is
distributed more uniformly. Lacking the ground truth of 3D
models for our dataset, we evaluate the tracking results by two
methods. One is to illustrate the overlap error by overlaying
the reprojected model (rendered in white) on the real images
at 50% opacity. As shown in the third row, the reprojected
images of the tracked 3D model at the next time instant almost
coincide with the real images (suggested by the small overlap
errors). The other is to qualitatively show the positions of 7
selected features tracked across the sequence. In the fourth
row, the first two images present the reconstructed meshes
at two consecutive time instants; the third image shows the
2D projections of 7 vertex features onto the view image 18
at the first time instant; the fourth image gives the tracking
positions of these features at the next time instant. Suggested
by the positions of the tracked features, the tracking errors are
almost imperceptible by visual inspection. The small overlap
errors and the tracked features indicate reliable frame-to-frame
tracking performance of the proposed method. This experiment
also demonstrates the effectiveness of each component of the
proposed motion capture method.
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To evaluate motion capture performance on the meshes
generated by other methods, we also test our motion capture
method on Starck’s dataset [29] by using his reconstructed
mesh as the underlying scene representation. As shown in
Fig. 12, suggested by the small overlap errors and the tracked
features, our method successfully tracks the motion of the
object for three time instants, especially the variations in hand
shape, even when the object wears wide, loose, and low-texture
clothes. Although only three frames are tracked, the amount
of the motion in this dataset is about four times more intensive
than our datasets, which suggests that our method can track
objects with high motions.

To evaluate the tracking quality across multiple frames,
motion capture results for two longer sequences, dancer2 and
skirt, are presented in Fig. 13. The reconstructed mesh for
each dataset has more than one hundred thousand vertices. A
visual representation of the whole motions over time is shown
in the first image for each sequence by putting the meshes
at several consecutive time instants together (7 frames for
dancer2 and 20 frames for skirt). It can be observed that, via
the proposed shape and motion capture method, the 3D model
at each time instant is faithfully reconstructed and the motion
details are reproduced without any human intervention. The
skirt sequence is quite challenging since the loose long skirt of
the dancing girl is difficult for both shape recovery and motion
capture. The promising results on this dataset demonstrate
that our method can achieve good shape and motion capture
performance even for human body in loose clothes.

2) Quantitative Evaluation: In above experiments, the pro-
posed motion capture method is mainly qualitatively evaluated
by visual inspection on the tracking results. To further evaluate
our method in a quantitative fashion, we need measure the
tracking errors of selected features. For each dataset, seven
vertices are selected as features shown in Fig. 11, 12 and 13.
The most straightforward way is to calculate the position errors
of the selected features between the tracked mesh and the true
mesh at the target time instant. However, the ground truth
of dynamic meshes are not available. Instead of calculating
the 3D position errors of the selected features, we evaluate
the tracking errors by measuring the position errors of their
2D projections. Specifically, the features on the mesh are first
projected onto a view image at the initial time instant. The
correspondences of the projected features at the target time
instant are marked by manually adjustment to ensure a high
accuracy. Then, the features on the tracked mesh are projected
onto the same view image at the target time instant as 2D
tracked features. Finally, the position errors between the 2D
tracked features and the marked correspondences at the target
time instant are taken as the tracking errors.

Table II presents the tracking errors for four datasets, i.e.,
dancer1, starck, dancer2, and skirt. The intervals between the
target time instant and initial time instant for these datasets
are 1, 2, 6, and 19, respectively. As shown in Table II,
exact tracking is achieved for most features of dancer1 and
dancer 2 that contain relatively low motions. For starck with
more intensive motions, the average tracking error is within
one pixel per feature, which suggests a promising tracking
accuracy. Although skirt is more challenging due to the loose

clothes and larger tracking interval, the tracking errors are
within four pixels, which is acceptable for many applications.
This also substantiates the discussion in Section VI-C that the
mesh should be refreshed periodically to avoid the propagation
of tracking errors.

TABLE II
QUANTITATIVE EVALUATION OF THE MOTION CAPTURE METHOD.

(TRACKING ERRORS (ex, ey) OF SEVEN FEATURES FOR FOUR DATASETS.
ex AND ey DENOTE THE HORIZONTAL AND VERTICAL TRACKING ERRORS

IN PIXELS, RESPECTIVELY.)

Dataset f0 f1 f2 f3 f4 f5 f6

dancer1 (0, 0) (0, 0) (0, 0) (1, 2) (0, 0) (0, 0) (0, 0)

starck (0, 0) (3, 0) (0, 0) (0, 0) (0, 0) (1, 1) (0, 3)

dancer2 (4, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

skirt (2, 0) (2, 1) (4, 1) (3, 4) (0, 0) (2, 0) (2, 2)

D. Running Times

All the experiments are run on a desktop with Intel Pentium
IV 2.8-GHz CPU and 1.0-GB RAM. The proposed shape
recovery method requires much less computation than most
state-of-the-art methods. The running time is 15min57sec for
dinoSparseRing dataset (16 views, 640×480), 10min38sec for
templeSparseRing dataset (15 views, 640 × 480), and 20min
on average for our six datasets (20 views, 1024 × 768). The
separating step (depth maps computation) consumes about
80% of the overall shape recovery computation. As to the
motion capture method, the matrix completion for positional-
constraint computation is efficiently tackled by the singular
value thresholding algorithm (about 5sec for the completion
of a 100000× 20 rank-one matrix); the required computation
of the volumetric deformation is comparable to the positional-
constraint computation. The running time of the motion cap-
ture method is about 10min for moderate-size meshes (about
one hundred thousand vertices for the test datasets).

VIII. CONCLUSION

This paper proposes a new markerless shape and motion
capture approach from multi-view video sequences. Both
shape recovery and motion capture methods have shown
promising results on various datasets.

For shape recovery, the method consists of two steps: the
separating step and the merging step. In the separating step,
continuous depth maps represented with point clouds are
generated by solving a variational model, which is regularized
by four constraints to ensure the accuracy and completeness of
the reconstruction. In the merging step, the point clouds of all
the views are merged together and reconstructed to a 3D mesh
using the marching cubes method with silhouette constraints.
Experiments on both publicly available and our captured
datasets demonstrate that the generated depth maps contain
small scale geometric structures without loss of smoothness.
As a result, the recovered 3D meshes are watertight with rich
surface details. This also demonstrates the effectiveness of the
“separating + merging” framework in the shape recovery field.
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For motion capture, we propose a volumetric deformation
method. First, positional constraints are calculated by a method
based on sparse representation, and further selected by three
spatio-temporal selection criteria. Then, an iterative volumetric
Laplacian deformation framework is driven by these positional
constraints to generate the same motions as those recorded
in the multi-view videos. The whole process is totally in a
automatical mode: identify and track the 3D trajectories of
features on a moving object without the need of any priori in-
formation, manual intervention, or optical markers. Moreover,
our method does not employ a kinematic skeleton and hence
can track non-rigid motions. Experimental results demonstrate
that this automatic tracking method is accurate, connectivity-
preserving, and can track human bodies in loose clothes. These
appealing properties attribute to the careful selection of posi-
tional constraints and the volumetric deformation framework.
With the rapid development of spare representation theory,
its application in various fields is arguably of paramount
importance these days [83]–[85]. Our success of bringing
sparse representation theory into motion capture verifies again
the powerful of sparse representation. For the deformation,
although keeping mesh connectivity facilitates some appli-
cations, e.g., relighting, it is difficult to handle situations in
which the mesh topology really changes (e.g., from genus-
N to genus-zero) even if the silhouette error checker helps
somewhat. How to automatically handle the deformation with
varying mesh topology remains a challenging issue, and is to
be explored in our future work.
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“Variational optical flow computation in real-time,” IEEE Trans. Image
Processing, vol. 14, no. 5, pp. 608–615, 2005.

[59] A. Blake and A. Zisserman, Visual reconstruction. MIT Press,
Cambridge, MA, 1987.
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Fig. 5. Reconstructed depth maps of the dancer1 dataset. Top row: four sample images of the dataset. Middle row: visual hull obtained from silhouettes.
Bottom row: our reconstructed results in the separating step.
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Fig. 6. Reconstructed depth maps of the dancer2 dataset. Top row: four sample images of the dataset. Middle row: visual hull obtained from silhouettes.
Bottom row: our reconstructed results in the separating step.
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Fig. 7. Reconstructed depth maps of four datasets. Top row: four sample images of these datasets. Middle row: visual hull obtained from silhouettes. Bottom
row: our reconstructed results in the separating step.
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(b)

(c)

(a)

Fig. 8. 3D mesh for dancer1 reconstructed by (a) graph cuts, (b) PMVS, and (c) our method. Within each subfigure, the 3D mesh are presented at ten free
viewpoints, and view-independent rendering results at two free viewpoints are also presented at the most right column.
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Fig. 9. Reconstructed 3D mesh of Middlebury’s datasets. Top row: The real captured images (ground truth); Middle row: 3D meshes reconstructed by PMVS;
Bottom row: 3D meshes reconstructed by our proposed method.

Fig. 10. Shape optimization results on Starck’s datasets. Top row: The initial 3D meshes reconstructed by a graph cuts method [29]; Bottom row: 3D meshes
optimized by our proposed method.
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Fig. 11. Tracking results for dancer1 dataset. Top row: Optical flow results for four viewpoints with enlarged version of regions highlighted by rectangles;
Second row: Rendered models with scene flows (magnified twice, 10% uniformly sampled) generated by the method in Ref. [69] (the first and third images)
and our proposed method (the second and fourth images); Third row: The mesh before deformation (the first image) and after deformation (the second image),
and the tracked features at two frames (the third and fourth images); Bottom row: the overlaps between the reprojected model and three view images.
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Fig. 12. Tracking results for Starck’s dataset. First column: Rendered models with scene flows (magnified twice, 10% uniformly sampled) generated by the
method in Ref. [69] (top) and our method (bottom); Second column: Tracked features at frame 24 and frame 26; The remainder: Top: Optical flow results
for two views at frame 25 and frame 26; Bottom: Overlay of the reprojected model (rendered by white) on the real images at 50% opacity.
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Fig. 13. Tracking results for dancer2 (first two rows) and skirt (last three rows) datasets. Top row: Meshes for 7 frames of dancer2 are put together in the
first image and are shown separately in the following images; Second row: Tracked features across 7 frames for dancer2; The third and fourth rows: Meshes
for 20 frames of skirt are put together in the first image, and the first 15 meshes are shown separately in the following images; Bottom row: Tracked features
across 20 frames for skirt (shown at every five time instants for space reason).


