
Robust Non-Rigid Registration with Reweighted
Position and Transformation Sparsity

Kun Li ,Member, IEEE, Jingyu Yang , Senior Member, IEEE, Yu-Kun Lai ,Member, IEEE,

and Daoliang Guo

Abstract—Non-rigid registration is challenging because it is ill-posed with high degrees of freedom and is thus sensitive to noise and

outliers. We propose a robust non-rigid registration method using reweighted sparsities on position and transformation to estimate the

deformations between 3-D shapes. We formulate the energy function with position and transformation sparsity on both the data term

and the smoothness term, and define the smoothness constraint using local rigidity. The double sparsity based non-rigid registration

model is enhanced with a reweighting scheme, and solved by transferring the model into four alternately-optimized subproblems which

have exact solutions and guaranteed convergence. Experimental results on both public datasets and real scanned datasets show that

our method outperforms the state-of-the-art methods and is more robust to noise and outliers than conventional non-rigid registration

methods.

Index Terms—Non-rigid registration, noise and outliers, deformation, position sparsity, transformation sparsity

Ç

1 INTRODUCTION

NON-RIGID registration is an active research area in com-
puter graphics and computer vision [17], [24], [32],

[37], and is a key technique for dynamic 3-D reconstruction
using a depth camera. Commodity depth sensors, e.g.,
Microsoft Kinect, become cheaper and more widely used,
but depth images and reconstructed point clouds captured
by such devices contain much noise. Hence, non-rigid
registration methods robust to noise and outliers are highly
desirable to scan dynamic scenes with deformable objects.

Given two input 3-D shapes, one as the template shape
and the other as the target shape, non-rigid registration
aims to find a suitable transformation that when applied
deforms the template shape to be aligned with the target
shape. Non-rigid registration is often formulated as an opti-
mization problem. Most methods formulate some energy
functional with both position and transformation con-
straints. The position constraint measures the closeness of
the transformed template shape and the target shape, and
the transformation constraint measures the fitness to model,
which might include the smoothness, namely the total
energy of transformation differences of all the local

neighbors. Most work uses the classic squared ‘2-norm in
the position constraint and the transformation constraint
[21], [3], [33]. However, the quadratic energy functional is
more easily affected by noise and outliers. To address
this problem, Yang et al. [40] propose a sparse non-rigid
registration (SNR) method with an ‘1-norm regularized
model for the transformation constraint. However, their
position constraint is still based on the ‘2-norm. In practice,
e.g., for near piece-wise rigid deformation, which is com-
mon for real-world deformable objects, the positional error
tends to concentrate on small regions. This cannot be mod-
eled well using the ‘2-norm.

In this paper, we propose a non-rigid registration
method with sparsity-regularized position and transforma-
tion constraints. The distribution of positional errors and
transformation differences for typical non-rigid deforma-
tion can be well modeled using the Laplacian distribution,
or equivalently, the ‘1-norm should be used to measure
both the positional errors and transformation differences.
To promote the sparsity, we adopt a reweighted sparse
model, which is solved by the alternating direction method
of multipliers (ADMM). The proposed method is evaluated
on public datasets [10], [38] and real datasets captured by a
RGB-D depth sensor. The results demonstrate that the pro-
posed method obtains better results than the state-of-the-art
non-rigid registration methods.

The main contributions of this work are summarized as:

� We propose a non-rigid registration method on
both position and transformation sparsity. The pro-
posed model is robust against outliers as the spar-
sity terms allow a small fraction of regions with
larger deviations.

� We incorporate orthogonality constraints in the spar-
sity-inducing non-rigid registration framework to
promote locally rigid transformations.
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� We equip the proposed non-rigid registration model
with a reweighted scheme to iteratively enhance
sparsity in the series of alternating optimization
subproblems.

2 RELATED WORK

3-D shape registration consists of rigid registration and non-
rigid registration. Rigid registration aims to find a global rigid-
body transformation, while non-rigid registration needs to
find a set of local transformations that align two shapes.

In rigid registration, the 3-D shapes are assumed to be
aligned by a euclidean transformation, including rotation
and translation. Iterative Closest Point (ICP) and its variants
[5] are the dominant algorithms for rigid registration. This
kind of methods alternates between two steps: 1) finding
closest points and 2) solving the optimal transformation. As
an improved method of ICP, Chen et al. [12] minimize the
shortest distance between a point in the template and the
tangent plane of the closest point on the target. Pottmann
et al. [28] propose a registration method with quadratic con-
vergence, which gives faster and more stable convergence
than the standard ICP [27]. Bouaziz et al. [8] propose a new
variant of the ICP algorithm, which uses sparsity-inducing
norms to represent the positional constraint and achieves
better results for the situation with noise and outliers. Their
work focuses on rigid registration with low degrees of free-
dom, and hence regularization is not necessary.

When shapes have large deformations from template to
target, automatic non-rigid registration is necessary. It is
more challenging due to its high degrees of freedom, and an
appropriate deformation model is the key for an efficient
and robust algorithm.

Some methods compute global rigid transformations for
bones and local non-rigid transformations near joints, which
is essentially a piecewise rigid transformation model. Allen
et al. [1] place markers on the object to help reconstruct the
pose of scan and use it as a basis for modeling deformation.
Pekelny et al. [26] use predefined bone information to find
bone transformations.

Some models take more generic deformations into con-
sideration. Chui et al. [14] use the thin-plate spline (TPS) as
the non-rigid transformation model. Papazov et al. [25]
allow points to move freely and use an additional uniform
distribution to limit noise and outliers, and propose an
ordinary differential equation (ODE) model. Local affine
transformations [2] are also frequently used in non-rigid
registration. Liao et al. [22] use differential coordinates as
local affine transformations with smoothness constraints.
Amberg et al. [3] use a stiffness term to ensure similarity of
adjacent transformations. Rouhani et al. [29] model non-
rigid deformation as an integration of locally rigid transfor-
mations. In our work, we use local affine transformations
with an orthogonality constraint as it allows more flexibility
to capture fine surface details while keeping local shapes.

Non-rigid registration is often formulated as an energy
functional with data and regularization terms. Most of the
non-rigid registration work models the data term in the
‘2-norm in a least-squares sense [34], [3].

Regularization terms help to preserve smoothness, making
the optimization more robust to noise and outliers, and

‘2-norm is also widely used in regularization terms. S€ußmuth
et al. [35] use a generalized as-rigid-as-possible energy [33] to
promote smoothness. Liao et al. [22] define a transformation
model using the TPS [14], and use graduated assignment for
non-rigid registration and optimization. Wand et al. [39] take
a set of time-varying point data as input, and reconstruct a
single shape and a deformation field that fit the data. To
improve robustness, Li et al. [21] solve correspondences, con-
fidence weights, and a deformation field within a single opti-
mization framework using ‘2-norm. Their method however
requires adjacent frames to be sufficiently close to work effec-
tively. Hontani et al. [18] propose a statistical shape model
(SSM) which is incorporated into the nonrigid ICP (NICP),
and outliers can be detected based on their sparseness. Based
on the observation thatmany deformable objects, in particular
human bodies, have near articulated motions, Guo et al. [17]
introduce ‘0 regularization for motions which provide more
accurate and robust tracking in dynamic 3D reconstruction.
However, since their method is based on a tracking pipeline,
adjacent frames are required to have high similarity. More-
over, their sparse regularization is only applied to motions.
Yang et al. [40] propose a sparse non-rigid registration
method with an ‘1-norm regularized model for the smooth-
ness. However, their ‘2-norm position constraint cannot
model the concentration of positional errorswell.

Non-rigid registration is also related to and often an impor-
tant component in dynamic 3D (or 4D) reconstruction. Li
et al. [20] propose a pioneering solution to dynamic recon-
struction from a sequence of depth images captured by a sin-
gle depth camera. The method produces impressive results
but requires to capture the coarse 3D template of the deform-
ing object. It also assumes adjacent scans are reasonably close.
More recently, thework [41] achieves real-time reconstruction
withGPUacceleration.However, themethod still requires the
complete template model to be scanned in advance. To recon-
struct dynamic 3D deforming objectswithout a template prior
is still challenging, and state-of-the-art techniques such as [15]
utilize multi-camera systems (24 cameras producing 8 depth
streams are used in [15]) to achieve real-time 4D performance
capture. Our work considers general non-rigid registration
where scans can have substantial deformation and no tem-
plate prior is required.

In this paper, based on the observation that the deforma-
tions of 3-D surfaces vary smoothly and the positional dis-
tances and transformation differences are sparse, we
propose a non-rigid registration method with sparse posi-
tion and transformation constraints. The model is efficiently
solved by the alternating direction method under the aug-
mented Lagrangian multiplier framework.

3 MOTIVATION

The data terms in previous shape registration models [17],
[21], [40] are quadratic, which implicitly assumes the Gauss-
ian distribution of positional errors. However, transforma-
tions in certain common scenarios, such as articulated
motion of humans, are largely piecewise smooth signals
residing on 3D surfaces, resulting in larger positional errors
for geometric details and joints and smaller errors for the
remaining surfaces. This suggests that the positional errors
are sparse, and should be modeled by a heavy-tailed
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distribution, rather than being dense and modeled by a rap-
idly vanishing Gaussian distribution. This is verified in
Fig. 1b. We uniformly pick up 10 percent ground truth
matchings (vertices) as correspondences, and solve for the
transformations using the SNRmethod [40] which measures
the positional errors in the standard quadratic term to avoid
bias towards the ‘1-norm. The Laplacian distribution fits
the histogram of positional errors significantly better than
the Gaussian distribution, suggesting the use of sparsity-
promoting ‘1-norm in the data term.

Let di ¼ ð~xi; ~yi; ~ziÞ be the difference between the ith trans-
formed template vertex position and the position of its cor-
responding target vertex. Our ‘1-norm sparsity measures
equally the sum of coordinate differences in each dimension

for all the corresponding vertices (i.e., E1 ¼
P

i dik k1 ¼
P

iexij j þ eyij j þ ezij jð Þ). Another possibility is to use the sum of

euclidean distances (group sparsity) between correspond-

ing points (i.e., Eg ¼
P

i dik k2 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2
i þ ~y2i þ ~z2i

p
), which

also well fits the distribution of positional errors as shown
in Fig. 1c. The group sparsity advocates sparsity for each
euclidean distance as a whole, while the ‘1-norm allows a
large distance along a particular dimension. In this sense,
‘1-norm is more flexible to preserve large non-rigid defor-
mation along some dimensions. Such an advantage is also
observed in the anisotropic total variation (TV) [16] that
applies the ‘1-norm to the image gradient over the isotropic
TV [30] that measures TV as the sum of ‘2-norm (not
squared). Birkholz [6] showed that anisotropic TV achieves
better denoising performance in preserving the geometries
of corners in images. We choose the ‘1-norm to measure the
positional errors for its potential flexibility, and also for its
easier and faster implementation with an element-wise
shrinkage (cf. Table 5 for statistics of running times).

In this paper, we make the assumption that the surfaces
to be registered undergo transformations which are near
piecewise smooth. This covers a broad range of practical
scenarios ranging from common (near) articulated deforma-
tions such as human bodies to certain non-articulated defor-
mations such as facial expressions. In such cases,
substantial changes of transformations or large registration
errors occur in relatively local areas. Note that our model

does not require such consistency to satisfy entirely, and
can well cope with situations such as muscle bulge, change
of local shapes at joints, etc. Our assumptions also fit well
with inaccurate correspondences and sparse noise/outliers,
as they also induce sparse distributions of errors.

4 THE PROPOSED METHOD

4.1 Iterative Framework

We iteratively compute the deformation between the tem-
plate shape and the target shape. Each iteration consists of
two steps. In the first step, the correspondences between
template and target are estimated using the registration
result obtained from the last iteration. At the beginning of
the iteration, we use a technique based on local geometric
similarity and diffusion pruning of inconsistent correspond-
ences [36] as it often provides reliable correspondences.
Alternative correspondence techniques or manual specifica-
tion of a few correspondences may instead be used (an
example is shown in Fig. 5). These computed correspond-
ences are used to initialize the correspondence mapping,
referred to as f . Then, during the iterative process, we
update f by using the closest points between template and
target shapes to find additional correspondences similar to
ICP. In the second step (Section 4.2), we propose an energy-
minimization approach based on double sparsity represen-
tation to estimate the non-rigid transformations using the
correspondences obtained from the first step.

4.2 Deformation Estimation

Let vi , ½xi; yi; zi; 1�> be a 3D point in the homogenous coor-
dinates. Denote by V , fv1; � � � ; vNg a template set of 3D
points and by U , fu1; � � � ;uMg a target set of 3D points,
where N and M are the numbers of points. Denote by
ufðiÞ 2 U the correspondence of vi 2 V. Define f : f1; � � � ; Ng
7! f0; 1; � � � ;Mg as the index mapping from the template
points to the target points, where fðiÞ ¼ 0 means the corre-
sponding vertex cannot be found for the ith vertex. Denote
by Xi the 3� 4 transformation matrix for point vi. Define
X , X1; � � � ;XNf g as the set of non-rigid transformations.
For compact notation, we define X , X1; � � � ;XN½ �> as a
matrix containing the N transformation matrices to be

Fig. 1. Normalized histograms and the associated fitted Laplacian and Gaussian distributions of positional errors measured in the ‘1 norm (with equal
contribution from each dimension) (b) or with euclidean distance (c) for Bouncing dataset (a). The graphs show proportion of correspondences (y-
axis in logarithmic scale) with specific positional errors (x-axis).
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solved. The proposed method is to find non-rigid transfor-
mations X that transform the template V into the target U as
accurately as possible, given a correspondence mapping f .

The non-rigid registration is formulated as the minimiza-
tion of the following energy function:

E X; fð Þ ¼ Edata X; fð Þ þ aEsmooth Xð Þ þ bEorth Xð Þ; (1)

where Edata Xð Þ, Esmooth Xð Þ and Eorth Xð Þ are data term,
smoothness term, and orthogonality constraint, respec-
tively. a and b adjust the importance of different terms. The
data term measures the position accuracy, the smoothness
term imposes a smoothness constraint so that the original
ill-posed problem (defined by only the data term) is now
well-posed, and the orthogonality constraint promotes
locally rigid transformations, which is particularly needed
for underconstrained scenarios such as partial meshes.

Data Term. We measure the accuracy of deformation as
the closeness of the transformed points to their correspond-
ing target points. We assign a weight, denoted by wi, for
each point. The weight wi is one if there is a corresponding
point on the target shape for vi, and zero otherwise. Hence,
we propose the following data term

Edata X; fð Þ ¼
X
vi2V

wi

����Xivi � ~ufðiÞ

����
1

; (2)

where ~ufðiÞ is the Cartesian coordinate of ufðiÞ.
For the compact representation in algorithm derivation,

we define the following matrix/vector form of the variables
to reformulate data term Eq. (2):

W ¼ diag
ffiffiffiffiffiffi
w1

p
; � � � ; ffiffiffiffiffiffiffi

wN
pð Þ;

V ¼ diag v>1 ; � � � ; v>N
� �

;

~Uf ¼ ~ufð1Þ � � � ~ufðNÞ
� �>

;

(3)

where diagð�Þ is a diagonal matrix containing the input ele-
ments as diagonal entities. Then, the data term can be
rewritten as

Edata X; fð Þ ¼
����W VX� ~Uf

� �����
1

: (4)

Smoothness Term. In the smoothness term, local rigidity is
assumed: for vertex vi, the transformations of neighboring
vertices vj 2 N i should have very close transformed posi-
tions when applied to vi. Therefore, we define the following
smoothness term:

Esmooth Xð Þ ¼
X
vi2V

X
vj2N i

����Xivi � Xjvi

����
1

: (5)

Define a graph G , V; Eð Þ, where the vertices of the graph
are the 3D points in V, and the edges of the graph are
denoted by E. For a 3D mesh, edges of the graph are simply
defined by the edges of the mesh; for 3D point clouds, edges
can be defined by connecting each vertex with its K-nearest
neighbors (K is typically set to 6). Denote the neighborhood
of vertex vi by N i, and an edge eij is defined between each
neighboring vertex vj and vi. So, we have E ¼ eij j vj

�
2 N i; vi 2 Vg. Similar to the data term, we define a differen-
tial matrix K 2 f�1; 1gjEj�jVj on the graph G for concise pre-
sentation. Concretely, each row of K corresponds to an edge

in E and each column corresponds to a vertex in V. Each
row in K has only two nonzero entries. For example, assum-
ing the rth row in K is associated with edge eij, then the
entry related to the reference vertex vi is set at 1, while the
one related to the neighboring vertex vj is set at -1, i.e.,
kri ¼ 1 and krj ¼ �1. Let ki: denote the ith row of K. We
introduce a matrix B 2 RjEj�4jVj, where the ith row of B is
defined as bi: :¼ ki: � v>i and � denotes the operator of Kro-
necker product. Therefore, the cost of transformation
smoothness is rewritten as

Esmooth Xð Þ ¼
����BX

����
1

: (6)

Orthogonality Constraint. Especially for partial meshes with
large motions, the problem may be underconstrained lead-
ing to large distortions. In this case, the orthogonality con-
straint as defined below is effective in better preserving
local shapes and making the solution more reasonable.

Eorth X;Rið Þ ¼
XN
i¼1

����SXi � Ri

����
2

F

;

s:t: R>
i Ri ¼ I; detðRiÞ > 0;

(7)

where Ri is a 3� 3 rotation matrix, and S ¼
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5

is a constant 3� 4 matrix that extracts the rotation compo-

nent of Xi. detðRiÞ > 0 ensures that Ri is a rotation matrix,

not a reflection matrix.
The final energy function has the following compact form

with matrix-vector notations:

min
X;Ri

����W VX� ~Uf

� �����
1

þ a

����BX
����
1

þ b
XN
i¼1

����SXi � Ri

����
2

F

;

s:t: R>
i Ri ¼ I; detðRiÞ > 0:

(8)

Reweighting. In a sparse representation, the gap between the
convex ‘1-norm and the noncovex ‘0-norm in measuring
sparseness could be filled by reweighting the ‘1-norm [11].
To further promote sparsity, both the data term and the
smoothness term are weighted, and the weighting matrices
are updated at each iteration of non-rigid registration. The
weighted version of the double sparsity model Eq. (8) is
defined as follows:

min
X;Ri

����WD VX� ~Uf

� �����
1

þ a

����WSBX

����
1

þ b
XN
i¼1

����SXi � Ri

����
2

F

;

s:t: R>
i Ri ¼ I; detðRiÞ > 0:

(9)

where WD and WS are diagonal weighting matrices for the
data term and smoothness term, respectively. The weight-
ing matrices are updated according to the ‘1-norm of the
corresponding entries. For the data term, the weights are
updated as

W
ðlÞ
D ði; iÞ ¼

1

X
ðl�1Þ
i

vi�~u
ðlÞ
fðiÞ

��� ���
1
þ�D

; fðiÞ 6¼ 0;

0; fðiÞ ¼ 0;

8<
: (10)
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where l represents the index of iteration, �D is a constant to
avoid the division-by-zero issue, and is set as 0.01 in the
experiments. Similarly, the weights for the smoothness term
are updated as

W
ðlÞ
S ði; iÞ ¼ 1

X
ðl�1Þ
i vi � X

ðl�1Þ
j vi

��� ���
1
þ �S

; (11)

where �S is a constant which is set as 0.01 in the experi-
ments, and the rth row of matrix BX is associated with edge
eij between vi and vj. The reweighting scheme is incorpo-
rated into the iterative registration framework, which only
slightly increases the computation to calculate the weights.
The reweighted ‘1-norm is also related to robust kernels [41]
in suppressing the influence of outliers, although we pro-
pose a different formulation that works well in our sparse
non-rigid registration framework.

To solve the problem, we first transform the minimiza-
tion Eq. (9) into the following form with auxiliary variables
A and C:

min
X;C;A;Ri

����C
����
1

þ a

����A
����
1

þ b
XN
i¼1

����SXi � Ri

����
2

F

;

s:t: C ¼ WD VX� ~Uf

� �
;

A ¼ WSBX;R
T
i Ri ¼ I; detðRiÞ > 0:

(12)

Then, we solve the constrained minimization Eq. (12)
using the augmented Lagrangian method (ALM) [4]. The
ALM method converts the original problem Eq. (12) to
iterative minimization of its augmented Lagrangian func-
tion:

LðX;C;A; fRig;Y1;Y2;m1;m2Þ ¼
����C
����
1

þ a

����A
����
1

þ Y1;C�WD VX� ~Uf

� �	 

þ m1

2

����C�WD VX� ~Uf

� �����
2

F

þ hY2;A�WSBXi þ m2

2

����A�WSBX

����
2

F

þ b
XN
i¼1

����SXi � Ri

����
2

F

;

s:t: RT
i Ri ¼ I; detðRiÞ > 0;

(13)

where (m1, m2) are positive constants, (Y1;Y2) are
Lagrangian multipliers, and h�; �i denotes the inner prod-
uct of two matrices considered as long vectors. Under
the standard ALM framework, (Y1, Y2) and (m1, m2) can
be efficiently updated. However, each iteration has to
solve A, C, fRig and X simultaneously, which is difficult
and computationally demanding. Hence, we resort to the
alternate direction method of multipliers (ADM) [9] to
optimize A, C, fRig and X separately at each iteration.
Detailed derivation of the ADMM algorithm is referred
to Appendix A.

The iterative non-rigid registration with reweighting is
summarized in Algorithm 1, and the algorithm for minimiz-
ing the Eq. (9) is summarized in Algorithm 2 (see the
Appendix for the detailed derivation).

Algorithm 1. Algorithm of Reweighting Non-Rigid
Registration

1: Input: template V, target U.
2: While not converged do
3: Find correspondence mapping f ðlÞ : V 7! U;
4: UpdateW

ðlÞ
D andW

ðlÞ
S acco. to Eqs. (10) and (11), resp.

5: Solve transformations XðlÞ via Algorithm 2;
6: End while
7: Output: X

Algorithm 2. ADMM algorithm to solve Eq. (9)

1: Input: ~UfðlÞ 2 RN�3, V 2 RN�4N , B 2 RjEj�4jVj;
2: Initialize: Xðl;0Þ ¼ Xðl�1Þ, Yð0Þ

1 ;Y
ð0Þ
2 ¼ 0;

m1;m2 > 0, r1; r2 > 1;
3: While not converged do
4: Solve Cðl;kþ1Þ by Eq. (16);
5: Solve Aðl;kþ1Þ by Eq. (18);
6: Solve R

ðl;kþ1Þ
i by Eq. (19);

7: Solve Xðl;kþ1Þ by Eqs. (21)�(22);

8: Update m
ðkþ1Þ
1 , and m

ðkþ1Þ
2 according to Eq. (15);

9: Update Y
ðkþ1Þ
1 , and Y

ðkþ1Þ
2 according to Eq. (15);

10: End while
11: Output: XðlÞ.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method on clean datasets (Section 5.1), noisy datasets
(Section 5.2), and real scans (Section 5.3). Running times of
our method are reported in Section 5.4. All the experiments
are performed on a desktop computer with an Intel i5
3.2 GHz CPU and 8 GB RAM. The numbers of inner and
outer iterations of our method are both set as 20.

5.1 Results on Clean Datasets

We evaluate the proposed method on two datasets: TOSCA
high-resolution dataset [10] and a human motion dataset
[38]. Figs. 2 and 3 give the registration results on a particular
pair of cat and jumping datasets, compared with the classic
‘2-norm regularized non-rigid ICP method and the SNR
method [40]. The results are shown as the overlap of the
deformed template shape (blue) and the target shape (gray)
and the registration errors are color-coded on the recon-
structed mesh for visual inspection. Denote gi as the
ground-truth correspondence of vi. For a vertex vi, the reg-
istration error is defined as kXivi � gik22. The compared

Fig. 2. (a) Template (top) and target (bottom) shapes, (b)-(d): Compari-
son results (top) and registration errors (bottom) of (b) ‘2-norm method,
(c) SNR method [40] and (d) Our method on Cat dataset.
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classic ‘2-norm based non-rigid ICP method [7] is formu-
lated as optimizing:

min
X

����WðVX� ~UfÞ
����
2

F

þ a

����BX
����
2

F

: (14)

The smoothness constraint of this kind of methods is
imposed on the transformation differences. To ensure fair
comparison, we adjust the weight a until we get the most
accurate registration without loss of smoothness for each
method. The result shows that our method achieves the best
results with less registration errors in the areas with inten-
sive deformations than the SNR method [40] and the classic
‘2-norm regularized non-rigid ICP method, such as the tail
of the cat and the wrinkles around the waist of the person
highlighted in rectangles.

We compare our method with a state-of-the-art non-rigid
registration method [21] in Fig. 4. Obvious registration
errors can be seen in the result of the method in [21], espe-
cially in the right foot (top) and head (bottom), while the

methods with sparse representation (SNR [40] and our
method) achieve better registration results. The method in
[21] works effectively when the template and target shapes
are close so that good initial correspondences can be
obtained, but the pose changes substantially in this

Fig. 6. Registration results on Jumping dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP þ ‘0-norm
method [17], (c) Diffusion pruning (DP) þ ‘0-norm method [17], (d) The SNR method [40], and (e) Our method.

Fig. 3. (a) Template (top) and target (bottom) shapes, (b)-(d): Compari-
son results (top) and registration errors (bottom) of (b) ‘2-norm method,
(c) SNR method [40] and (d) Our method on Jumping dataset.

Fig. 4. Comparison results on Bouncing dataset: (a) Template and tar-
get, (b) The method in [21], (c) SNR method [40], and (d) Our method.

Fig. 5. Comparison results on Jumping dataset with 35 manually-speci-
fied correspondences: (a) Given correspondences, (b) ‘2-norm method,
(c) SNR method [40], and (d) Our method.
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example. Moreover, our result is more accurate and better-
distributed for the whole body than the SNR method [40],
due to the sparse constraint on the position.

To evaluate the robustness of the proposed method, we
manually assign 35 correspondences on Jumping dataset,
and compare the result of our method with the SNR method
[40] and the ‘2-regularized method. As shown in Fig. 5, our
method achieves the best result, especially around the pla-
ces with substantial deformation, e.g., the right knee.

We also compare our method with a state-of-the-art
method [17] that uses ‘0 norm in Fig. 6. The code from the
authors is used. The original method [17] uses ICP

correspondences. When registering scans with large defor-
mations, correspondences derived from intrinsic geometric
properties can be more effective. To ensure fair comparison,
we compare our method with two versions of the ‘0-norm
method: ICP þ ‘0-norm method that uses ICP to compute
correspondences, and Diffusion pruning (DP) þ ‘0-norm
method that computes correspondences using [36] as ini-
tialization like our method. Fig. 6 gives the registration
results for three different degrees of deformation (increas-
ing from top to bottom). It can be seen that with moderate
deformation (top row), both variants of [17] work reason-
ably well. However, when the deformation is large, the
method fails to align the two surfaces, resulting in large
errors. On the contrary, our method achieves more accurate

TABLE 1
Quantitative Evaluation for Fig. 6

Deformation Mean Error

ICP þ ‘0-norm DP þ ‘0-norm SNR Ours

Small 0.0148 0.0142 0.0121 0.0003
Median 0.1707 0.0371 0.0221 0.0023
Large 0.2011 0.2029 0.0247 0.0038

TABLE 2
Quantitative Evaluation for Five Sets
of Shapes from the TOSCA Dataset

Method Cat Centaur Gorilla Horse Wolf

DP þ ‘0-norm 2.6366 0.7311 22.1740 6.6398 0.0545
SNR 0.0902 0.1799 5.364 0.0865 0.0359
Ours 0.0090 0.0297 0.5315 0.0089 0.0012

Fig. 7. Registration results on TOSCA dataset: (a) Template and target, (b) Diffusion pruning (DP) þ ‘0-norm method [17], (c) The SNR method [40],
and (d) Our method.

Fig. 8. Fraction of correspondences within the error threshold. The graph
shows the fraction of correspondences (y-axis) within the error threshold
(x-axis).
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results than the other methods. The quantitative evaluation
(the mean of registration errors over all the vertices) is
shown in Table 1. While diffusion pruning helps reduce the
errors of [17] in most cases, our method has significantly
smaller errors than both variants and the SNR method [40].

To more comprehensively evaluate the proposed
method, we test our method on five sets of shapes from
the TOSCA high-resolution dataset [10], compared with
the Diffusion pruning (DP) þ ‘0-norm method [17] and the
SNR method [40]. The initial correspondences are uni-
formly selected 5 percent ground-truth correspondences.
We test every pair of models in each set (treating one as
template and the other as target), and the quantitative
evaluation (the mean of registration errors over all the

vertices for all the models) is shown in Table 2. Some
examples are given in Fig. 7. The average errors are shown
in the subfigures. Fig. 8 shows the fraction of correspond-
ences (y-axis) within the error threshold (x-axis) [19]. Our
method (green curve) detects nearly 100 percent correct
correspondences for a small threshold of 0.05. The results
show that our method achieves the most accurate and
robust non-rigid registration.

To evaluate the effectiveness of the proposed reweight-
ing scheme, we compare the registration results with and
without reweighting on Bouncing dataset in Fig. 9. The
parameters �D and �S are set as 0.01. As shown in the figure,
the reweighting scheme significantly improves the registra-
tion results.

Fig. 9. Comparison results with and without reweighting scheme on Bouncing dataset: (a) Template, (b) Target, (c) Registration result without
reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f) Registration errors
with reweighting scheme.

Fig. 10. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) ‘2-norm method, (c) SNR
method [40] and (d) our method on Bouncing whole-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as targets.

2262 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 6, JUNE 2019



We also evaluate our method on the harder whole-
to-part and part-to-part registration problems. Since the 3D
models in the public dataset are complete, we obtain partial
models by extracting the visible part of each complete

model with a virtual depth camera rotating around the
model, while keeping the ground truth correspondences.
Figs. 10 and 11 give the whole-to-part and part-to-part
registration results on the Bouncing dataset which has a total

Fig. 11. (a) Template (left) and target (right) shapes, (b)-(d): Comparison results (left) and registration errors (right) of (b) ‘2-norm method, (c) SNR
method [40] and (d) Our method on Bouncing part-to-part dataset with frames 1, 21, 51, 84 as templates and frames 87, 107, 137, 171 as targets.

Fig. 12. Registration results on Bouncing whole-to-part dataset with deformation degree increases from top to bottom: (a) Template and target,
(b) ICP þ ‘0-norm method [17], (c) Diffusion pruning (DP) þ ‘0-norm method [17], (d) The SNR method [40], and (e) Our method.
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of 172 models. We use a systematic approach that takes the
models at frames 1-86 as templates and the models at
frames 87-172 as targets such that frame t is registered to
frame tþ 86. We have compared the methods on all the
models in this dataset, and Figs. 10 and 11 show the regis-
tration results for 4 frames. The mean of registration errors

over all the vertices in the overlapping regions for all the
models in the entire dataset of ‘2-norm method, SNR
method [40] and our method in the whole-to-part case are
0.0323, 0.0324 and 0.0262, respectively. The mean of registra-
tion errors over all the vertices in the overlapping regions
for all the models in the entire dataset of ‘2-norm method,
SNR method [40], and our method in the part-to-part case
are 0.0380, 0.0381 and 0.0318, respectively. It can be seen
that our method achieves the best registration with the
smallest errors among these methods. For part-to-part
registration, our method reduces errors by more than a
half, compared with state-of-the-art sparse non-rigid reg-
istration method [40]. We also compare with the ‘0-norm
method [17] for the whole-to-part case in Fig. 12. The
quantitative evaluation (the mean of registration errors
over the whole model) is shown in Table 3. The ‘0-norm

Fig. 13. Comparison results on Jumping dataset with partially incorrect correspondences: (a) Template and target, (b) SNR method [40] result with
one third SHOT correspondences, (c) Our method result with one third SHOT correspondences, (d) SNR method [40] result with all SHOT
correspondences, and (e) Our method result with all SHOTcorrespondences.

TABLE 3
Quantitative Evaluation for Fig. 12

Deformation Mean Error

ICP þ ‘0-norm DP þ ‘0-norm SNR Ours

Small 0.0279 0.0275 0.0269 0.0261
Median 0.0413 0.0541 0.0249 0.0195
Large 0.3390 0.0977 0.0430 0.0284

Fig. 14. Comparison results on Bouncing with noise (s ¼ 0:3; 0:7; 1). (a) Template and target, (b) Curves of registration errors versus normalized
noise levels, (c) Target with noise, (d) ‘2-norm method, (e) SNR method [40], and (f) Our method.
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method [17] has similar limitations to handle large defor-
mations, while our method gives more accurate and
robust results.

5.2 Results on Noisy Datasets

1) Correspondences with partially incorrect matchings: It
is common to include incorrect correspondences using
established methods. We simulate this in two cases. In the
first case, we obtain two thirds of correspondences using
diffusion pruning [36] and the remaining one third using
local geometric feature matching based on SHOT signa-
tures [31]. The majority of correspondences from the former
are correct while many correspondences from the latter are
incorrect due to the ambiguity of local features. In the

second case, we generate all the correspondences using
SHOT signatures. Fig. 13 gives the results for the two cases
in a difficult situation which involves very complex trans-
formations from template to target. As shown in the figure,
our method is significantly more robust than the SNR
method [40] with respect to incorrect correspondences. The
mean of registration errors over all the vertices for the four
cases in Figs. 13b, 13c, 13d, 13e are 0.038, 0.012, 0.047, and
0.032, respectively.

2) Target shapes with noise or outliers: In the first case,
3-D shapes of targets are polluted with dense noise along
the normal directions of the associated vertices. All the tar-
get vertices are perturbed with Gaussian noise. The stan-
dard deviation of the noise s is normalized by �l, where �l is

Fig. 15. Comparison results on Bouncing with 1, 2, 5 percent outliers. (a) Template and target, (b) Curves of registration errors versus normalized
noise levels, (c) Target with noise, (d) ‘2-norm method, (e) SNR method [40], and (f) Our method.

Fig. 16. Comparison results with and without reweighting scheme on Bouncing dataset with noise (s ¼ 1): (a) Template, (b) Target, (c) Registration
result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and
(f) Registration errors with reweighting scheme.

Fig. 17. Comparison results with and without reweighting scheme on Bouncing dataset with 50 percent outliers: (a) Template, (b) Target, (c) Registra-
tion result without reweighting scheme, (d) Registration result with reweighting scheme, (e) Registration errors without reweighting scheme, and (f)
Registration errors with reweighting scheme.
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the average length of triangle edges on the associated target
mesh, and chosen in the range of ½0:1; 1�. Fig. 14 gives the
registration results compared with the SNR method [40]
and the ‘2-norm regularization method. The results show
that our method is more robust to noise, performing signifi-
cantly better for models with high noise levels.

In the second case, 3-D shapes of targets are polluted
with sparse outliers along the normal directions of the asso-
ciated vertices. Fig. 15 gives the results for the situations
when 1, 2, 5 percent of target vertices are perturbed with

Gaussian noise. The results show that our method is more
robust than the other two methods, particularly for cases
with larger proportion of outliers.

To evaluate the effectiveness of the proposed reweight-
ing scheme, we also compare the registration results with
and without reweighting for noise and outlier cases on
Bouncing dataset in Figs. 16 and 17. The parameters �D and
�S are set as 0.01. The standard deviation of the noise s is set
as 1, and the percentage of outliers is set as 50 percent. It
can be seen that the reweighting scheme contributes signifi-
cantly to improving the registration results for the dataset
with noise and outliers.

We compare the registration results with different
parameter settings for the reweighting scheme on Bouncing
dataset with 50 percent outliers in Fig. 18 to evaluate the
influence of the paremeters �D and �S. To make experiments
more tractable, we adjust both parameters consistently (i.e.,
�D ¼ �S ¼ �). It can be seen that the best setting is 0.006 for
this case, which has the smallest registration errors. How-
ever, the performance is quite close, and 0.01 is a generally
good choice (found in experiments).

5.3 Results on Real Scans

Fig. 19 presents the results on real scans generated by Kinect
Fusion [23] using Kinect V2.0. The real scans are very chal-
lenging, because they havemuch noise and a large number of
outliers. Moreover, eachmesh is incomplete and the topology
between the template and the target is inconsistent. Hence, it
is difficult to obtain sufficient and reliable correspondences.
The overlap of the deformed template and the target shows
that the ‘2-norm regularization method and the SNR method
present misalignments around the hands, arms and some
other jointswhich have large deformations, while the result of
ourmethod iswell-distributed and better registered.

We also compare our method with the ‘0-norm method
[17] on the Kongfu dataset [17] in Fig. 20, where pairs of (non-
adjacent) frames with increasing degree of deformation are
used as input. Our method clearly outperforms both variants

Fig. 19. Comparison results on Kinect datasets: (a) Template and target,
(b) ‘2-norm method, (c) SNR method [40], and (d) Our method.

Fig. 18. Comparison results with different parameter settings for the
reweighting scheme on Bouncing dataset with 50 percent outliers: (a)
Curves of registration errors versus � values, (b) Registration result with
� ¼ 0:006, (b) Registration result with � ¼ 0:01, and (d) Registration result
with � ¼ 0:05.

Fig. 20. Registration results on Kongfu dataset with deformation degree increases from top to bottom: (a) Template and target, (b) ICP þ ‘0-norm
method [17], (c) Diffusion pruning (DP) þ ‘0-norm method [17], (d) The SNR method [40], and (e) Our method.

TABLE 4
Quantitative Evaluation for Fig. 20

Deformation Mean Error

ICP þ ‘0-norm DP þ ‘0-norm SNR Ours

Small 0.0035 0.0035 0.0031 0.0033
Large 0.0039 0.0039 0.0033 0.0028
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of [17], especially for the hands where significant movements
exist between scans. The quantitative evaluation (the mean of
registration errors over the whole model) is shown in Table 4.
Ourmethod has the smallest errors.

Fig. 21 gives an example of generating a complete color
mesh for a human head. A base mesh is scanned by Kinect
Fusion using Kinect V2.0, and four partial color meshes are
registered to the base mesh using our method. The textures
are blended by solving the Poisson equation over the sur-
face of mesh [13]. As shown in the figure, our method cor-
rectly registers the input view surfaces with better
registration than alternative methods, and successfully gen-
erates a watertight color mesh.

5.4 Running times

We compare the running times of the proposed method
with the ‘2-norm regularized method, SNR method, and
group sparsity method on Crane dataset. We downsample
the meshes into smaller meshes with 1K to 10K vertices.
The number of NICP registration iterations for each method
is set as 20. The comparison results are shown in Table 5.
Our method has similar time complexity as SNR.

6 CONCLUSIONS

This paper proposes a non-rigid registration method with
reweighted sparse position and transformation constraints.
We formulate the energy function with position and trans-
formation sparsity on both the data term and the smooth-
ness term, and define the smoothness constraint using local
rigidity. The double sparsity based non-rigid registration
model is equipped with a reweighting scheme, and solved
by the alternating direction method under the augmented
Lagrangian multiplier framework which has exact solutions
and guaranteed convergence. Experimental results on both
public datasets and real scans show that our method pro-
vides significantly improved results over alternative

methods, especially for more challenging cases, and is more
robust to noise and outliers.

APPENDIX A
DERIVATION OF THE ADMM ALGORITHM

Under the ADMM framework, the augmented Lagrangian
function Eq. (13) is optimized with respect to the variables
alternately, yielding the following subproblems to optimize:

Cðkþ1Þ ¼ argminC kCk1
þ Y

ðkÞ
1 ;C�WD VXðkÞ � ~Uf

� �D E

þ m
ðkÞ
1
2
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� �����
2
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;
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The C-subproblem has the following closed solution:

Cðkþ1Þ ¼ shrink WD VXðkÞ � ~Uf

� �
� 1

m
ðkÞ
1

Y
ðkÞ
1 ;

1

m
ðkÞ
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 !
; (16)

Fig. 21. Comparison results on Kinect datasets: (a) Base mesh and four partial color meshes, (b) Registered results of ‘2-norm method, (c) Regis-
tered results of SNR method [40], (d) Registered results of our method, and (e) Texture fusion results of our method.

TABLE 5
Comparison on Running Times

Num. vertices 1000 2000 5000 10000

‘2-norm 1.23s 3.51s 12.88s 29.78s
SNR 8.05s 17.36s 52.48s 119.06s
Group sparsity 7.39s 24.83s 59.96s 126.58s
Ours 7.17s 22.13s 55.68s 122.85s
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where shrink(�; �) is the shrinkage function applied on the
matrix element-wise:

shrink x; tð Þ ¼ signðxÞmaxðjxj � t; 0Þ: (17)

The A-subproblem is solved in a similar way:

Aðkþ1Þ ¼ shrink WSBX
ðkÞ � 1

m
ðkÞ
2

Y
ðkÞ
2 ;

a

m
ðkÞ
2

 !
: (18)

The Ri-subproblem can be explicitly solved using Pro-
crustes projection:

ðU;D;V>Þ ¼ svdðSXk
i Þ;

Rkþ1
i ¼ UV>;

(19)

where svdð�Þ is the singular value decomposition. If the
obtained matrix has a negative determinant, take Ri with
the opposite sign to turn the matrix into a rotation matrix.
This step is similar to [33] for minimizing as-rigid-as-
possible energy, although our overall alternating optimiza-
tion is different and more complicated.

Being quadratic, the X-subproblem can be readily solved
by using the first-order optimality condition:
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(20)

However, the straightforward matrix inversion in solving
Eq. (20) is inefficient or even practically impossible for
large-scale problems, e.g., registration of tens of thousands
of points. This can be relieved by using the LDL decomposi-
tion:

L;Dð Þ ¼

ldl m
ðkÞ
1 V>W>

DWDVþ m
ðkÞ
2 B>W>
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XN
i¼1

STS

 !
;

(21)

where L andD are the lower triangular matrix and the diag-
onal matrix of the LDL decomposition. Then, the linear
equations in Eq. (20) is solved by solving the following
much easier linear systems:

LQ ¼ V>W>
D Y

ðkÞ
1 þ m
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DZ ¼ Q;

L>X ¼ Z:

(22)
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