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ABSTRACT

Background extraction from video sequences is a useful and
important technique in video surveillance. This paper pro-
poses a motion-assisted matrix completion model for back-
ground extraction from video sequences. A binary motion
map is first calculated for each frame by optical flow. By
excluding areas associated with moving objects with the bi-
nary motion maps, the background extraction is formulated
into a motion-assisted matrix completion (MAMC) problem.
Experimental results show that our method not only extracts
promising backgrounds but also outperforms many state-of-
the-art methods in distinguishing moving objects on challeng-
ing datasets.

Index Terms— Background extraction, optical flow, mo-
tion detection, matrix completion, video surveillance

1. INTRODUCTION

Video analysis, [1, 2] is of crucial importance to dig out in-
teresting information from mass data in videos. Background
extraction, as a prerequisite technique to detect interesting
objects, has been used in many applications such as motion
detection, object recognition, and video coding. Background
extraction from video sequences is to estimate an image that
contains only the background of the captured scene rather
than any interesting fore-object.

Background extraction techniques, as currently an active
area of research, have made significant progress over the
recent years. Many algorithms and models in terms of extract-
ing background are proposed. The Gaussian mixture model
(GMM) [3, 4] is the most popular pixel-level method. How-
ever, GMM algorithm is sensitive to light condition. Self-
organization background subtraction (SOBS) [5] achieves ro-
bust detection for scenes with gradual illumination variations,
but its model bears a high computational complexity burden.
Barnich et al. put forward a powerful pixel-based background
extraction algorithm named ViBe [6]. Recently, the robust
principal components analysis (RPCA) [7] is essentially a ma-
trix recovery problem. It is proved that, under some suitable
assumptions, both the low-rank and the sparse components

can be exactly recovered by solving a convex programming.
However, these RPCA-based methods [7, 8, 9] do not se-
riously address complex motion characteristics in video se-
quences, and do not perform well in the videos which contain
slowly-moving objects, camouflages, and large foreground
objects. Methods above are all faced with several challenges
arising from the practical video surveillance, for example,
under changeable illumination condition, the background can
hardly adapt to the environment [10] and camouflage: moving
objects are difficultly identified, resulting in wrong classifica-
tion.

In this paper, we propose a new background extraction
method via motion-assisted matrix completion. The main
idea is to incorporate motion information into the matrix
completion framework to facilitate the separation of the fore-
ground from the background. To this end, an optical flow
estimation method is used to extract motion information from
the video sequence. Binary motion maps are created by
thresholding the estimated optical flow. The background
extraction is formulated into a motion-assisted matrix com-
pletion (MAMC) problem by zeroing out areas associated
with moving objects with the binary motion maps. The model
is solved by the alternating direction method under the aug-
mentation Lagrangian multiplier (ADM-ALM) framework.
Experiments show that our method achieves consistently bet-
ter performance than many state-of-the-art methods. The
evaluations on challenging datasets demonstrate our method
is quite versatile for surveillance videos with different types
of motions and lighting conditions.

2. BACKGROUND EXTRACTION VIA
MOTION-ASSISTED MATRIX COMPLETION

The powerful robust principal components analysis (RPCA)
developed by Candes et al. [7] is suitable for background
modeling in video analysis. However, the extracted
background images present smearing artifacts on the regions
where moving objects ever appear. These annoying artifacts
are not only visually unpleasant, but also can deteriorate
the performances of following modules, e.g., recognition or



coding.
We observe that background is occluded by moving ob-

jects in most frames of the analyzed sequences. In the RPCA-
based background extraction method, nuclear norm and ℓ1
norm are used to separate background from moving fore-
objects under the convex optimization framework. Essen-
tially, the nuclear-norm term describes low-frequency com-
ponents along the temporal while the ℓ1 norm addresses the
high-frequency components. However, the high-frequency
components can leak into extracted background images for
areas that are dominated by moving objects. The leakage
as smearing artifacts present in extracted background cannot
be well handled by adjusting the weights between the two
regularization terms. In summary, the RPCA-based method
suffers from the above artifacts due to the unawareness of
motion information.

2.1. Proposed Background Extraction MAMC Frame-
works

We propose a motion-assisted matrix completion for accu-
rate background extraction, to overcome the aforementioned
shortcoming of RPCA, and eliminate the deficiency of other
methods in the presence of lighting conditions, camouflage,
and different types of motion. The key idea is to assign the
reliabilities of the observed pixels that would contribute to the
background. The background is to be extracted from the K
frames of surveillance video sequences denoted by {fk}K−1

k=0

of size M × N . For easy mathematical manipulation, let
fk be the vector form of frame fk with the size MN × 1.
Then, we represent the video sequences with matrix F =
(f0, f1, ..., fK−1) of size MN × K, where each column is
the vector form of a video frame. The recovered background
component and complementary error in F, are denoted by B
and E respectively. The aim is to separate B and E from F.
Denote a matrix, named motion map, as W ∈ [0, 1]

MN×K

whose element wik represents the likelihood of pixel fik in
F that belongs to the motion region (hence foreground). We
propose the model for background extraction as the following
convex optimization:

min
B,E

||B||∗+λ||E||1, subject to W◦F = W◦(B+E) , (1)

where || · ||∗ and || · ||1 denote the nuclear norm and ℓ1
norm of a matrix, respectively, and “◦” denotes element-wise
multiplication of two matrices. Like previous methods, it is
reasonable to assume the background to stay motionless in
most practical surveillance applications (otherwise a global
motion should be compensated). Under this assumption,
any area with motion should not be considered as a part of
background. Therefore, the motion map W is constructed
from motion information (see Sec.2.2 ). By incorporating
motion information, areas dominated by moving objects are
suppressed while the background that appears at only a few
frames has more chances to be recovered in the final results.

Model (1) extends the classic matrix recovery model by
taking the likelihood of observed data into consideration.
When W is an all-one matrix, Model (1) turns into the classic
matrix recovery model. When W is a binary matrix (called
binary motion map), i.e., W ∈ {0, 1}MN×K , it becomes the
following matrix completion model:

min
B,E

||B||∗+λ||E||1, subject to PΩ (F)=PΩ (B+E) , (2)

where Ω :=
{
Z|Z = W ◦X,X ∈ RMN×K

}
denotes the

linear subspace of entries in the observed matrix that belong
to background for sure, and PΩ(·) is the associated projection
operator. Note that whether a pixel belongs to the background
or not is a binary decision. Model (2) is stronger to prevent
moving objects from appearing in the recovered background
than the more general Model (1). Therefore, we will develop
our proposed method with Model (2), which is referred to as
motion assisted matrix completion (MAMC).

2.2. Construction of Binary Motion Map W

In the proposed model, the motion map W is constructed
from motion information. We use the optical flow method
in [11] to extract a dense motion field (Ox

k,O
y
k) for video

frame f , where Ox
k and Oy

k are the horizontal component and
vertical component of the motion field, respectively. Both Ox

k

and Oy
k are in the vector form with the same organization as

fk. We define Ox of size MN × K as the matrix form of
horizontal motion fields for all frames in F by stacking Ox

k ,
k = 0, 1, ...,K − 1 as columns. Similarly, Oy is defined
for vertical motion fields. The binary motion map W is
constructed as follows

wik =

{
0,
√

(Ox
ik)

2
+ (Oy

ik)
2 ≥ τ,

1, otherwise,
(3)

where τ is a threshold to determine the values of entries.
The threshold should be appropriate: too large a threshold
would lead to underestimating of motion (hence smearing
artifacts around moving objects) while too small a threshold
would result in overestimating of motion (hence incompletely
recovered background). The threshold is set at one in our
experiments as a matter of experience.

2.3. The ADM-ALM Algorithm to Solve the MAMC
Model

The MAMC model is essentially a convex optimization
problem that can be solved by the alternate direction method
under the framework of augmented Lagrange multipliers
method[12, 13]. The idea of ALM framework is to convert
the original constrained optimization problem (2) to the
minimization of an augmented Lagrangian function. The



augmented Lagrangian function of problem (2) is given by

L (B,E,Y, µ) = ||B||∗ + λ||E||1 + ⟨Y,PΩ (F−B−E)⟩

+
µ

2
||PΩ (F−B−E)||2F

(4)
where µ is a penalty parameter, ⟨·, ·⟩ denotes the matrix
inner product, and || · ||F denotes the matrix Frobenius norm.
Instead of optimizing E and B simultaneously, the ADM
solves E and B alternatively:

Ej+1 = argmin
E

λ||E||1 − ⟨Yj ,PΩ (E)⟩

+
µk

2
||PΩ (F −Bj −E)||2F

Bj+1 = argmin
B

||B||∗− < Yj ,PΩ(B) >

+
µk

2
||PΩ (F −B−Ej+1) ||2F

Yj+1 = Yj + µjPΩ (F −Bj+1 −Ej+1)

µj+1 = ρµj

(5)

The solution of E has the following closed-form

Ej+1 = shrink

(
1

µj
Yj + PΩ (F−Bj) ,

λ

µk

)
(6)

where shrink (·,·) is the soft-thresholding function that is
in an element-wise manner applied on the matrix. The B
subproblem in (5) does not have a closed-form solution, and
we resort to the accelerated proximal gradient algorithm given
as:

(Ui,Si,Vi) = svd
(

1
µj
Yj + PΩ (F)−Ej+1 + PΩ̄(Zi)

)
Bi+1 = Uishrink

(
Si,

1
µk

)
VT

i

Zi+1 = Bi+1 +
ti−1
ti+1

(Bi+1 −Bi)

ti+1 = 0.5(1 +
√
1 + 4t2i )

(7)
where ti is a positive sequence with t0 = 1, Ω denotes
the complementary of Ω, and svd (·) denotes the singular
value decomposition of a matrix. The solution of Model
(2), denoted by B∗, is obtained after the convergence of the
iterative procedure (5). B∗ contains a background image for
each frame. We take the average of all backgrounds in B∗

as the final extracted background image; while E contains
foreground information, light variation noise, and so on.

3. EXPERIMENTAL RESULTS
In this section, the proposed method is evaluated on four
datasets of surveillance videos, i.e., Cars (320×240), Brows-
er1 (384×288), Hallmonitor (352×288), Cell phone theft
(720×576). Besides background extraction, we also apply
our method to motion detection to distinguish moving objects
and compare with other five methods.

Experiments on Background Extraction: Fig. 1 presents
the extracted background for the four videos by the proposed

(a) (b) (c)

Fig. 1. Background extraction results for four test sequences:
(a) Ours, (b) RPCA [7], and (c) SOBS [5]. Regions are
highlighted in red rectangles for better visual inspection.

method, the RPCA-based method [7], and the SOBS algo-
rithm [5]. Compared with other two methods, our method
provides the best performance. The background recovered
by our method is a quite reliable representation of the real
background while the ones extracted by the RPCA-based
method and the SOBS algorithm present severe smearing
artifacts along the trajectories of moving objects as shown in
the red rectangles. Moreover, for Browser1 where moving
objects are small, it is observed that the ghosting artifacts
appear around the pavement. In general, our MAMC method
indeed creates the best extracted background as indicated in
the test results.

Experiments on Motion Detection: We apply our back-
ground extraction method to motion detection, and compare
with five methods, i.e., GMM [15], SOBS [5], FBM [14],
ViBe [6], and RPCA [7]. All the compared methods are tuned
to yield their best results. For benchmarking, ground truth
motion segmentation data of video sequences are manually
created. For all the methods, we perform the same post
processing (dilation morphological operations with a 3 × 3
square mask) on the obtained foreground binary maps.

In terms of objective comparison, we measure the correct-
ness of the motion detection results with three metrics, name-
ly Precision (P ), Recall (R), and F-measure (F1), defined as
follows:  R = tp/(tp+ fn)

P = tp/(tp+ fp)
F1 = (2×R× P )/(R+ P )

(8)



(b) (c) (d) (e) (f) (g) (h)(a)

Fig. 2. Visual comparison on motion segmentation results: (a) origin frame, (b) ground truth, (c) ours, (d) ViBe [6], (e) SOBS
[5], (f) FBM [14], (g) GMM [15], and (h) RPCA [7].

Table 1. Quantitative motion detection results on four datasets in terms of precision (P ), recall (R), and F-measure (F1).

 
Hallmonitor Cars Browser1 Cell_phone_theft 

Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 

Ours 0.94 0.94 0.94 0.87 0.81 0.84 0.85 0.88 0.86 0.76 0.93 0.84 

ViBe[6] 0.61 0.97 0.75 0.58 0.85 0.69 0.49 0.72 0.58 0.69 0.64 0.67 

SOBS[5] 0.77 0.93 0.84 0.66 0.91 0.77 0.76 0.71 0.62 0.90 0.46 0.61 

FBM[14] 0.61 0.99 0.75 0.62 0.79 0.70 0.36 0.59 0.45 0.60 0.63 0.61 

GMM[15] 0.74 0.78 0.76 0.86 0.76 0.81 0.52 0.21 0.30 0.57 0.15 0.24 

RPCA[7] 0.80 0.90 0.84 0.71 0.81 0.76 0.72 0.87 0.79 0.70 0.85 0.74 

 

where tp is correctly classified foreground pixels, fn is the
number of foreground pixels incorrectly classified as back-
ground, fp stands for the total number of background pixels
incorrectly classified as foreground. For all the three metrics,
higher values imply better motion detection accuracy. As
shown in Table 1, though some values of the three metrics
are a little lower than other methods, our method obtains the
best results for most cases.

Fig. 2 presents visual comparison of foreground detection
for one typical frame in each sequence. Our result is the
closest to ground truth motion segmentation, and outper-
forms other algorithms. For example, for Hallmonitor and
Cars, the foregrounds (man and cars) are completely detected
while excluding extra noises in background. For Browser1
and Cell phone theft, these datasets contain intense lighting
variations and wide waggling by the train. It is observed
that our method successfully picks up the intact foreground
while other methods cannot precisely identify the foreground
people with considerable amount of noise.

Running Time: We report running time for Cars with
40 frames of size 320 × 240. The ADM-ALM algorithm
is implemented in MATLAB (R2013a) running on a desktop
with a 3.4 GHz Core4 i7 processor and 8 GB memory. The
motion estimation takes about 100 seconds on average to
process 40 frames. The ALM-ADM algorithm to solve the
MAMC model takes 2.53 seconds to extract the background.

4. CONCLUSION

In this paper, we propose a motion-assisted matrix completion
model for background extraction from video sequences. Our
method extracts promising backgrounds and provides excel-
lent performance in distinguishing moving objects. Exper-
imental results show that our method is quite versatile for
surveillance videos with different types of motions and light-
ing conditions. In future work, we will exploit fast motion
extraction strategies to accelerate our method for practical
applications.
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