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AIsystemfacilitatespeoplewithblindness
and low vision in interpreting and
experiencing unfamiliar environments
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Engaging with nature significantly enhances well-being, yet millions of individuals with blindness and
low vision (BLV) are often excluded from these benefits due to constrained environmental perception.
Here, we introduce VIPTour, an AI-driven system powered by the FocusFormer algorithm, which
transforms complex scenes into structured, personalized graphs using tailored attentionmechanisms
and a BLV-in-the-Loop Adapter. Through intuitive, user-centered interaction, VIPTour facilitates
active exploration and in-depth comprehension during dynamic sightseeing, while enabling accurate,
long-lasting recollection and effective communication amongBLV individuals post-journey. Extensive
experiments demonstrate that VIPTour significantly enhances positive emotions and memory
retention, with a 67.9% increase in positive emotional response, a 94.7% rise in arousal, a 772.73%
improvement in cognitive mapping accuracy, and a 200% enhancement in long-term memory
accuracy. These results underscore VIPTour’s ability to deliver an unparalleled, enjoyable, and
memorable experience, promising profound benefits for the BLV community.

Visiting natural environments, such as parks, has been identified as a sig-
nificant benefit for both physical and mental well-being1. Millions of indi-
viduals with blindness or low vision (BLV) also express a keen interest in
proactively engaging with these unknown beauties2. While there have been
many attempts to improve the quality of life of BLV individuals, previous
studies have assumed that BLV individuals are aware of their goals and have
focused on providing functional assistance such as navigation and obstacle
avoidance, leaving BLV individuals to passively engage with the world3–13.
Consequently, during leisure travel in unfamiliar environments, BLV
individuals often experience a profound sense of helplessness and are
compelled to rely on the assistance of their friends, family, and volunteers.
This reliance often impedes their ability to actively explore and comprehend
unfamiliar environments during dynamic sightseeing, as well as recollect
and communicate with other BLV individuals after a journey2,4,5. Therefore,
it is crucial to aidBLV individuals in understanding and relishing unfamiliar
environments.

Technologies supporting independent mobility and scene compre-
hension for BLV individuals have been extensively discussed. Existing
assistive solutions, such as canes, and artificial intelligence (AI) solutions aid
BLV individuals in navigation and obstacle avoidance6–13. For example,

NavDog12, a robotic guide dog system, can help BLV individuals navigate to
their destination while avoiding environmental obstacles. Additionally,
OmniScrib13 allows BLV individuals to access audio descriptions of the
environment from videos. However, these solutions, assuming BLV indi-
viduals are aware of their goals andproviding functional assistance, fall short
in helping them perceive and understand unfamiliar environments, con-
sequently leading to passive engagement. In reality, what BLV individuals
urgently need is the ability to actively engagewith unfamiliar environments.
However, due to the overwhelming amount of visual information in unfa-
miliar settings surpassing the perceptual capabilities of BLV individuals, this
task remains extremely challenging.

Here, we present an AI-driven System, named VIPTour (Fig. 1B, and
Supplementary A), which aids BLV individuals in interpreting and
experiencing unfamiliar environments. Unlike existing functional assis-
tance technologies, VIPTour empowers BLV individuals with active
exploration, in-depth comprehension, accurate and long-lasting recollec-
tion, and effective communication with other BLV individuals (Fig. 1A).
VIPTour comprises a set of lightweight, portable, consumer-grade devices
(Fig. 1B-i) and a brand-newAI framework called FocusFormer (Fig. 1B-iii).
FocusFormer considers aesthetics, freshness, and basic needs as main
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factors and develops tailored attentionmechanisms to distill overwhelming
information inunfamiliar environments, and it restructures vast amounts of
information into a sparse and hierarchical graph structure. Based on this
well-structured graph, FocusFormer interactswithBLV individuals through
a smartphone application, and gradually understands their preferences
through a nuanced BLV-in-the-Loop Adapter, and ultimately helps BLV

individuals establish comprehensive and personalized cognition maps
(Fig. 1B-ii). FocusFormer is trained through a graph masking self-
supervised learning scheme using thousands of tourism videos from sigh-
ted tourists (Fig. 1B-iv, and Supplementary B.1), which effectively reduces
the potential aesthetic bias arising from manual annotations and learns
semantic cooccurrence relationship among thousands of objects.

Fig. 1 | The overview of the VIPTour system. A VIPTour enables BLV individuals
to understand and relish unfamiliar environments, encompassing exploration,
comprehension, recollection, and communication. i) VIPTour gives BLV a heads-up
about anything interesting, novel, or necessary nearby. ii) VIPTour exhibits a
hierarchical organization of environmental information on a smartphone with a
touchscreen interface. iii) VIPTour grants BLV individuals the capability to replay
their tour experience. iv) VIPTour facilitates the dissemination of these experiences
to other BLV individuals. B The VIPTour includes a novel deep learning algorithm
framework, named FocusFormer, leveraging easily accessible hardware. i) The
hardware components of the VIPTour system comprise lightweight, portable,
consumer-grade devices, including a camera and a smartphone. ii) BLV individuals

interact with the VIPTour system through efficient multisensory interaction tech-
niques, like audio and hierarchy tactile interaction. iii) FocusFormer processes
semantic graph sequences extracted from ego-view panoramic videos as input, and
highlights relevant objects as output. Additionally, FocusFormer includes a BLV-in-
the-LoopAdapter to interact withBLV individuals, throughwhich FocusFormer can
identify the preference of different BLV individuals and provide personalized
assistance. iv) Thousands of public tourism videos are collected to train FocusFor-
mer in a self-supervisedmanner, which is beneficial for effectively reducing aesthetic
bias caused by manual annotations and learning semantic cooccurrence relation-
ships among thousands of objects.
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The VIPTour system was thoroughly evaluated by over 30 BLV indi-
viduals by supporting themtoactively engagewithunfamiliar environments
(Fig. 1A). Extensive analysis of their momentary emotion self-reports,
performance on externalizing cognitive maps via verbal description,
memory retention of the cognitive map, and their physiological measures
reveals the vital role of VIPTour in bringing positive emotion and accurate
long-lasting memory to BLV individuals (Fig. 1A-v). The compared
experiment (a condition with or without the FocusFormer) further proved
that the AI-driven VIPTour system offers well-structured and meaningful
information, which aligns with cognitive principles of fluency and leads to
an unprecedentedly enjoyable and memorable experience.

Results
VIPTour: AI system for BLVs understanding unfamiliar
environments
Research has established that, akin to their sighted counterparts, BLV
individuals harbor a strong desire for active engagement, which can result in
an enhanced sense of control and improved psychological well-being14–16.
However, the information about an unfamiliar environment can be over-
whelming for BLV individuals, especially during dynamic sightseeing.
Furthermore, unlike sighted individualswho can easily recall and share their
experiences through photographs, BLV individuals encounter barriers in
recollection and communication. Based on extensive literature and BLV
individuals’ feedback collected over several rounds of co-design sessions, we
have developed VIPTour with the following considerations specifically
tailored for BLV individuals.

Distilling overwhelming information for BLV individuals. When
assisting BLV individuals in unfamiliar environments, it is important to
provide compact but effective information while avoiding cognitive
overload. Our research suggests that BLV individuals place considerable
emphasis on factors such as aesthetics, freshness, and basic needs to
explore and comprehend the unfamiliar environments. However, dis-
cerning aesthetics and freshness is subjective due to the diverse pre-
ferences among BLV individuals. Therefore, we propose FocusFormer
algorithm with several attention mechanism to distill effective informa-
tion for BLV individuals, which is trained through a graph masking self-
supervised learning scheme to mitigate subjective annotation bias.

Catering to personalized interests of each BLV individual. Engage-
ment requirements of BLV individuals differ significantly from those of
sighted individuals, such as obstacle avoidance and wayfinding in
unknown spaces4,17. Further, individual preferences and interests vary in
the context of engagement. The VIPTour system, therefore, gathers
specific needs of BLV individuals from survey data (see Supplementary
B.2) including 118 participants for pre-tuning our algorithms. Addi-
tionally, we develop a BLV-in-the-Loop Adapter to incorporate feedback
from BLV individuals during sightseeing for providing personalized
assistance.

Enhancing environmental cognition through hierarchical Graph.
Given the visual channel’s superior bandwidth compared to tactile and
auditory channels—estimated to be 0.01% and 1%, respectively18—pre-
senting complex visual information toBLV individuals poses a significant
challenge. The VIPTour system employs a dual-layered Hierarchical
Interaction (Fig. 1B-i), incorporating highlighted spots from FocusFor-
mer and scenemapping to facilitate a simplified and sensible information
presentation. This approach has been proven effective for BLV indivi-
duals in previous research19,20. Participants can opt to zoom into the scene
graph according to the learned hierarchy, enhancing their exploration of
node relationships reflected in the scene.

Promoting recollection and communication among the BLV com-
munity. Prior research suggests that the BLV community exhibits a
strong desire to share experiences and foster a strong sense of

community4. To enable information sharing and emotional commu-
nication among BLV individuals, the VIPTour system features options
for recording, storing, and sharing experiences (Fig. 1A-iii, iv). With
these features, VIPTour allows BLV individuals to document and share
scenes and moments encountered during their journeys, promoting a
sense of connection and facilitating the exchange of knowledge and
experiences within their social networks.

FocusFormer: the core of VIPTour system
FocusFormer aims to distill overloaded contextual information and align it
with the personalized interest of each BLV individual, so that VIPTour can
efficiently and effectively interact with BLV individuals given their limited
bandwidth. FocusFormer mimics how humans would select views when
assisting and accompanying blind people during sightseeing, and then
dissect the motivation of BLV into three sources: the aesthetics of the
unfamiliar scenes, the freshness (or novelty) of scenes arising from the
incoming temporal dynamics, and thewarning signals regardingdailyneeds
(e.g., drinking, toilet usage, obstacle avoidance). Moreover, to learn these
aspects for guidance, FocusFormer is trained in a self-supervised masked
semantic graph scheme by only exploiting the rich structure within the
unlabeled training data itself 21–25.

FocusFormer architecture
As outlined in Fig. 2A, the FocusFormer comprises four subnetworks. Each
incoming video frame is initially translated into semantic graph sequence26

using the scene graph generation technique27–30 before being fed into
FocusFormer for a training forward pass. The predicted output of Focus-
Former is a reordered list of object instances corresponding to the nodes of
the input scene graph. These nodes are ranked according to the predicted
“BLV interest scores” associated with each object instance/node in the list,
which FocusFormer uses for guiding decisions and interactions with BLV
individuals.

The background subnetwork learns to extract the background objects
enormously distributed in the training data, whichmay include objects such
as “sky”, “sun”, “trees” and other common objects that are ubiquitously
present in the parks but are potentially of least interests of tourists. These
likely background objects are predicted with higher background scores,
denoted as background score Sb. The attraction subnetwork infers the
objects that sighted people may have focused on. This subnetwork reflects
situations where sighted people might have steered the camera toward
specificobjects outof interest, akin tohowonemight consistentlyobserve an
appealing landscape. Objects captured by the attraction subnetwork are
considered potentially interesting to sighted people and are assigned high
attraction scores Sa by FocusFormer. However, high attraction scoresmight
also include backgroundnodes since these are likely to be constantly present
during the tour. To compensate for the effect of background noise, we
further define the pruned version of the attraction scores as aesthetics score
SA, computed as SA ¼ Sa � α � Sb, where α is a predefined hyperparameter
defined as background weight. Meanwhile, the freshness subnetwork
detects the novel objects in dynamic scenes, reflecting the emergence of
objects not observed in the recent past. We assign a freshness score SF to
each object, measuring its novelty. FocusFormer also incorporates the
obstacle avoidance and needs information through the BLV needs sub-
network, which draws on surveys collected from the BLV individuals (see
Supplementary B.2). We assign SN to represent the Need score, which is
normalized according to the scale of SA and SF : After training procedure is
complete, FocusFormer eventually computes and associates each class
object present in the training datawith three predicted scores SA, SN , and SF .
We define Sc;a, Sc;b, Sc;A, Sc;N , and Sc;F , to indicate each specific scores are
assigned to specific class c. However, for general illustrating purpose (as in
Fig. 2), we omit the c subscript to avoid cluttering.

FocusFormer SSL training philosophy
Distilling useful information for BLV individuals is challenging to achieve
through supervised learning, as people have different interpretations of
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beauty, making it difficult to annotate accurately. For instance, some indi-
viduals may prefer splendid landscapes, while others favor human history,
and some enjoy the sounds of cicadas and birds. Therefore, we propose a
graph masking self-supervised learning scheme to train FocusFormer,
leveraging a vast collection of tourism videos from sighted tourists, which
can effectively reduce the potential aesthetic bias arising from manual
annotations and learn semantic cooccurrence relationship among thou-
sands of objects.

Particularly, we use the semantic graph sequence corresponding to the
tour videos as input for FocusFormer. For different subnetworks, we design
different graph mask strategies and attention mechanism. FocusFormer is
trained to recover these masked graphs as the objective. Through effective
masked self-supervised training, FocusFormer can distill useful information
to select the most relevant touring highlights from the three proposed
touring incentives, potentially interesting to BLV people, without over-
whelming them. The training mechanism of each subnetwork is illustrated

Fig. 2 | FocusFormer distills valuable contextual information for BLV indivi-
duals. A The Architecture of FocusFormer is composed of four subnetworks
(background, attraction, freshness, and BLV needs. The background subnetwork
infers the common background across various parks covered by the training data.
The attraction subnetwork calculates the scores of potentially interesting objects
during brief, local sessions. The freshness subnetwork identifies and captures unique
and unexpected scenes during the sightseeing. The BLVneeds subnetwork recognize
the basic needs for BLV individuals. This architecture is trained under different
masking strategies. BDifferent attention mechanism for the FocusFormer network.
These units instill diverse inductive biases, allowing each subnetwork to detect

distinct patterns that correspond to the background, attraction, and freshness
characteristics.CThe t-SNE visualization of embedding representing each class after
training via (left) BERT and FocusFormer (right). FocusFormer captures semanti-
cally meaningful contextual information based on tourism training data.
DEvaluation of the FocusFormer architecture. The inferred highlight signals are also
compared with the constructed baselines including “Top” and “Random,” demon-
strating FocusFormer’s accuracy in capturing sighted individuals’ preferences.
E Ablation study against the change of hyperparameter α, and the size of training
data. The performance of FocusFormer keeps improving as training size increases,
with an optimal point in α values.
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as in Fig. 2B. FocusFormer masks certain percentage of the nodes in the
scene graphs according to thepredefinedmaskedpatterns, andpredict those
masked nodes according to the specific training reconstruction objective in
different subnetworks. The masked patterns are implemented through
special form of attention mechanisms. The Background attention utilizes a
positional-unaware design, capable of indiscriminately attending to ran-
domly selected frames within a video segment. This stochastic approach
ensures the extracted background is uncorrelated to any specific scene
within the segment, thereby enabling the identification of common back-
ground elements throughout various scenes. The Attraction attention is
architecturally constructed to attend to a sequential selection of frames. The
design ensures the attention function operates across each pair of image
embeddings, confined within a short consecutive local session. Conse-
quently, entities with persistent presence in the scene, distinct from back-
ground objects, are associated with elevated pruned attraction scores.
Finally, theFreshness attentionpredicts consistent entities thatmay linger in
the scene, utilizing a positional-aware attention mechanism across all pre-
vious instances. This aids in the identification of novel events and helps spot
the presence of fresh objects within the scene.

BLV-in-the-LoopAdapter. During inference time on a BLV sightseeing,
FocusFormer gradually learns to comprehend the preference of each BLV
individuals and provide the personalized assistance through interaction.
Specifically, with the inference time functioning unit named BLV-in-the-
Loop Adapter, the weights associated with SA, SN , and SF will be itera-
tively updated during the tour, adjusting the final guiding list in real-time.
The overall BLV interest score, considering all of the guiding informa-
tion, is computed as L ¼ λ � SA þ β � SN þ γ � SF . Specifically, the weights
λ, β and γ are the weights respectively learned through the Aesthetics
Estimator, Needs Estimator, and Freshness Estimator, respectively, using
the maximum likelihood estimation method (MLE) learning procedure.
According to VIPTour guiding philosophy, the objects with the highest
overall score L (i.e, higher Aesthetics Score, Freshness Score, Needs score,
and lower Background Score) will be eventually assigned a higher overall
score L and will thus receive higher priority and rank in the guiding list.

During the tour guidance, VIPTour will prioritize highlighting the top
attractions to BLV individuals based on the list ranked according to their
overall scores L. The final presentation layout and hierarchy of the view will
also be updated according to these scores. Through MLE, the BLV-in-the-
Loopadaptor receivesBLV feedbacks in the formof “likes” and “dislikes” for
each object. TheBLV-in-the-LoopAdapter then learns to adjust theweights
between the three sources SA, SN , and SF . (See Methods for more details).
This MLE iteration leads to updated test time tour guiding plans as the λ, β
and γ that reflect the tailored personal BLV interests are updated. This
process can be viewed as the participant implicitly selecting important
parameters that defined how the scene graph prioritizes the nodes, where
FocusFormer tries to estimate the true value of these weights.

FocusFormer evaluations. Figure 2C presents the resultant t-SNE31

embedding representing each object class, revealing interesting insights
from the training. The plot at the left demonstrates the embedding
obtained via conventional BERT32 pre-training. Conversely, the right
t-SNE plot compares the changes in the relative t-SNE embedding dis-
tribution after FocusFormer training. Intriguingly, unlike the BERT
which clusters semantically similar objects together (i.e., duck and bird
are in closer positions), FocusFormer training uncovers the unique
underlying contextual information during sighted individuals’ tourism.
For example, the “duck” embedding is located in positions closer to
“dock”, “pond”, “fish”, “bridge” and other “pond” related classes for
FocusFormer, showcasing the extracted contextual relationship between
“duck” and “pond” under the particular occasion of tour in park.

Figure 2D quantifies the accuracy of how well FocusFormer predicted
objects with the highest predicted aesthetics scores SA align with the actual
preferences of the tourist who captured the video. We compare FocusFor-
mer with two considered baseline models here. FocusFormer chooses the

top five objects with the highest SA scores. The “Random” baseline ran-
domly selects the top five classes in the ranking list, while “Top” calculates
the frequencies of each object class (each instance will count as 1) out of the
total number of nodes across all training scene graphs, and chooses the top
five objects with highest frequencies for each view. We assess how these
returned top five objects from each algorithm correspond to the true pre-
ference (annotated) of the tourist according to the evaluation metrics
Normalized Discounted Cumulative Gain (NDCG@5) and Hit Ratio
(HR@5)33. FocusFormer demonstrated a significant advantage over the two
baselinemodels, justifying the effectiveness of using self-supervised learning
to extract the statistical patterns in terms of aesthetics (SA), reflecting a
relatively accurate prediction on landscape background (Sb) and touring
attraction (SaÞ.

Figure 2E ablates the effect of the “Background Weight” hyperpara-
meter α and illustrates an optimal point of the α value in achieving the best
“Preference” prediction accuracy. Notably, the prediction accuracy of
FocusFormer continually improves as the size of the training data increases,
justifying the critical role of training data scales in terms of FocusFormer’s
self-supervised training efficiency. We also report the influence of other
hyper-parameters in Supplementary C.2.

Interpret and experience unfamiliar environments with VIPTour
VIPTour system aids the BLV individuals in interpreting and experi-
encing the unfamiliar environments across four key aspects, including
exploration, comprehension, recollection and communication. We
collected emotion regulation performance data from these scenarios
with the participation of 33 individuals (See Supplementary D.1 for
participant recruitment details), thereby demonstrating the efficacy of
VIPTour.

Exploration. While walking in an unfamiliar environment, BLV indi-
viduals can gain an essential understanding of the surroundings
through VIPTour’s voice broadcast (Fig. 3a). In this scenario, BLV
individuals can receive information from VIPTour and provide feed-
back through single-handed interaction using their smartphone while
navigatingwith their regular aid (e.g., a white cane). ABLV-in-the-Loop
Adapter (Fig. 3b) is utilized to adjust the weights between the three
sources, leading to updated tour guide plans displayed in the subsequent
capture frame. Therefore, the VIPTour system primarily offers a quick
“glance” at the surroundings, including the name, direction and attri-
butes of the selected items, as determined by the FocusFormer frame-
work’s ranking score. With VIPTour, the valence of the post-test was
significantly increased by 50% ð66:67%Þ (3:00 ± 0:67Md ± SD versus
2:00 ± 0:87Md ± SD, p ¼ 0:04, effectsize ¼ 0:16, paired Wilcoxon
signed-rank test) and the arousal of the post-test’s was significantly
increased by 200% ð120%Þ (1:00 ± 1:05Md ± SD versus
3:00 ± 0:73Md ± SD, p ¼ 0:02, effectsize ¼ 0:18, paired Wilcoxon
signed-rank test) in exploration (Fig. 3g). The detailed experimental
procedure can be referred to Supplementary D.2.

Comprehension. Upon encountering picturesque locations, BLV indi-
viduals can interact with VIPTour system with a tactile interface,
enabling them to gain a profound understanding of their surroundings
(Fig. 3c). Given that typical scenes contain numerous objects, we opted
for a hierarchical structure to visualize objects information, as its effi-
ciency has been validated for BLV individuals in previous studies19,20. BLV
individuals can the surroundings by slowly moving their touch on the
smartphone screen (Fig. 3d). Additionally, they can zoom in or out of the
detail layer with familiar daily smartphone gestures. This allows BLV
individuals to carefully explore the current scene and reconstruct their
mental map independently. With VIPTour, the valence of the post-test
was significantly increased by 75% (2:00 ± 1:30Md ± SD versus
3:00 ± 0:60Md ± SD, p ¼ 0:048, effectsize ¼ 0:16, paired Wilcoxon
signed-rank test) and the arousal of the post-test was significantly
increased by 50% (2:00 ± 0:97Md ± SD versus 3:00 ± 0:87Md ± SD,

https://doi.org/10.1038/s44387-025-00006-w Article

npj Artificial Intelligence |             (2025) 1:7 5

www.nature.com/npjAI


p ¼ 0:04, effectsize ¼ 0:23, paired Wilcoxon signed-rank test) in com-
prehension (Fig. 3g). The detailed experimental procedure can be
referred to Supplementary D.2.

Recollection. After a sightseeing, BLV individuals can recollect the
scenes they explored and memorable events they recorded as voice tags
during the trip (Fig. 3e). The interaction modality is the same when they
comprehend the unfamiliar environments, eliminating the need for
additional instruction. With VIPTour, the valence of the post-test was
significantly increased by 100% (1:71 ± 1:25M ± SD versus
0:86 ± 0:90M ± SD, p ¼ 0:02, effectsize ¼ 0:78, paired two-sided t-test,
n ¼ 14) and the arousal of the post-test was significantly increased by
100% (2:00 ± 1:16Md ± SD versus 1:00 ± 0:98Md ± SD, p ¼ 0:015,
effectsize ¼ 0:25, paired Wilcoxon signed-rank test) in recollection

(Fig. 3g). The detailed experimental procedure can be referred to Sup-
plementary D.3.

Communication. With the VIPTour system, BLV individuals can share
the scenes and associated voice tags with their friends via a smartphone
(Fig. 3f). Sharing experiences is essential for both sighted and BLV
individuals. The personal experiences of BLV individuals not only serve
as valuable references for others with visual impairments, but they also
foster a strong sense of community4. Thus, VIPTour enables individuals
to share the scenes they have explored with others, either in person or
through social media, allowing BLV individuals to learn about scenes
recommended and shared by their peers and the community. The
interaction modality is the same as comprehension and Recollection.
With VIPTour, the valence of the post-test was significantly increased by

Fig. 3 | Typical application scenarios. a Exploration: BLV individuals acquire
essential information about their surroundings and provide feedback through
single-handed smartphone interaction while using their standard navigation aid
(such as a white cane). b The BLV-in-the-loop unit: The FocusFormer framework
learns and adapts to the individual touring preferences of BLV individuals during
interactions. The parameterization reflecting the various needs BLV individuals, as
recorded in VIPTour, is updated iteratively throughout the tour. c Comprehension:
BLV individuals can comprehend objects of interest in detail when they encounter
picturesque locations. d Hierarchical Interaction: This entails a dual-layered scene
structure that incorporates recommendations from the FocusFormer and scene
mapping to establish a streamlined information hierarchy. The smartphone
touchscreen mirrors the scene graph structure of the nodes described in the audio

play. BLV individuals can select to zoom into the scene graph based on the learned
hierarchy to better understand the relationships between the nodes reflected in the
scene. The edges in the scene graph correspond to the direction and position
information of the objects. e Recollection: BLV individuals can revisit scenes they
explored and memorable events they recorded as voice tags during the trip at any
time after the tour. The interaction modality is as same as comprehension.
fCommunication: BLV individuals can share scenes and related voice tags with their
friends via a smartphone using the VIPTour system. The interaction modality is the
same as comprehension and recollection. g Emotion Regulation Effect: Momentary
emotion self-reports from BLV individuals indicate an increase in both emotional
valence and arousal after using the VIPTour system.
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100% (2:00 ± 0:25Md ± SD versus 1:00 ± 0:30Md ± SD, p ¼ 0:08,
effectsize ¼ 0:09, paired Wilcoxon signed-rank test) and the arousal of
the post-test was slightly increased by 21:95% (1:64 ± 1:08M ± SD versus
2:00 ± 1:04M ± SD, p ¼ 0:132, effectsize ¼ 0:34, paired two-sided t-test,
n ¼ 14) in communication (Fig. 3g). The detailed experimental proce-
dure can be referred to Supplementary D.4.

The comparative experiment of the FocusFormer algorithm
Participants and experimental design. We recruited participants from
a local university for individuals with blindness or low vision. All parti-
cipants were initially invited to a two-hour park tour. Seven days after the
park tour, we invited the participants back for a two-hour recollection
and communication experiment. For the communication experiment,
the participants were asked to invite a friend with similar age and visual
impairments. The entire recruitment and study procedure was approved
by the institutional review board. Finally, we had 46 participants in total,
where 18 participants attended the exploration and comprehension
experiment, and 16 of these attended the subsequent recollection and
communication experiment. An additional 16 participants, invited by
their friends, attended the communication experiment. The detailed
experimental procedure can be referred to Supplementary D.3.

We evaluate the effectiveness of the FocusFormer algorithm by setting
up a controlled experimentwith both quantitative and qualitativemeasures.
We collected the feedback, memory task performance, and physiological
data from participants when using the FocusFormer algorithm (“Focus-
Former” condition) and compared it with their feedback when using the
Random Algorithm (“Baseline” condition). Each participant experienced
both conditions on one day, and the order of each condition is counter-
balanced through swapping.

Overall usability and emotion regulation effects. The results suggest
the VIPTour facilitate independent mobility for visually impaired indi-
viduals. The average usability scores34 given by participants for
Exploration and Comprehension, Recollection and Communication
were 80:83, 80:18, 80:00 out of 100, respectively. These scores are either
higher than or comparable with other assistance tools for BLV
individuals35,36. With the VIPTour system, the arousal of the post-test’s
momentary emotion self-reports increased by an average of 1:07 ± 1:12
(M ± SD, p = 0.001, effectsize ¼ 1:03, paired two-sided t-test), which
corresponded to an average increase of 94:7% when compared with pre-
test. At the same time, the valence of the post-test’s momentary emotion
self-reports increased by an average of 0:95 ± 1:11 (M ± SD,
½min; max� ¼ ½�4; 4�, pvalence ¼ 0:001, effectsize ¼ 0:91, paired two-
sided t-test,n ¼ 80), which corresponded to an average increase of 67:9%
when compared with pre-test.

Momentary emotion self-reports. The arousal and valence of the pre-
test’s momentary emotion self-reports has no significant difference
between FocusFormer condition (n ¼ 9) and Baseline condition (n ¼ 9).
After experiment, the arousal of post-test’s momentary emotion self-
reported increased by an average of 2:00þ 1:33 (Md ± SD, p ¼ 0:02;
effectsize ¼ 0:19, paired Wilcoxon signed-rank test) in FocusFormer
condition, while it has no significant difference with the Baseline con-
dition (Fig. 4C). The valence of the post-test’s momentary emotion self-
reported increased by an average of 1:00þ 1:24 (Md ± SD,
pvalence ¼ 0:02, effectsize ¼ 0:18, paired Wilcoxon signed-rank test) in
FocusFormer condition, which corresponded to an average increase of
50:0% (93:33%) when compared with Baseline Condition (Fig. 4D).

Performanceonexternalizing cognitivemaps via verbal description.
Participantswere required to describe the scene they just explored as detailed
as possible to externalize the cognitive map they reconstructed through the
VIPTour system. Two trained raters rated each participant’s verbal
description based on the rating scheme (see Supplementary Table S6)
independently. Inter-rater reliability was conducted on 48:28% of the data,

where the inter-rater Kappa was greater than 0:89 (p < 0:001). With
FocusFormer, the performance on externalizing cognitive maps increased
18:18% when compared to the Baseline Condition (2:08 ± 1:39M ± SD
versus 1:76 ± 1:20M ± SD, p ¼ 0:02, effectsize ¼ 0:25, two-sided t-test,
n ¼ 16). For the analysis, the accuracy of cognitive map verbal description
was extracted for three parts: the accuracy of object name, object direction
and object attribute. With FocusFormer, the accuracy of object name was
significantly increased 52:35% (32:26%) (2:59 ± 0:86Md ± SD versus
1:70 ± 0:85Md ± SD, p ¼ 0:047, effectsize ¼ 0:755,Mann-WhitneyU test,
between-subject, n ¼ 16) in exploration, and 55:94% (3:15 ± 0:79M ± SD
versus 2:02 ± 0:57M ± SD, p ¼ 0:001, effectsize ¼ 0:688, two-sided t-test,
n ¼ 14) in comprehension. At the same time, the accuracy of object direc-
tion was significantly increased 772:73% (173:92%) (2:88 ± 1:33Md ± SD
versus 0:33 ± 1:30Md ± SD, p ¼ 0:007, effectsize ¼ 1:166,Mann-Whitney
U test, between-subject, n ¼ 14) in comprehension with FocusFormer
(Fig. 4E).

Memory retention of the cognitive map. We conducted both the short-
term memory (STM) test and long-term memory (LTM) test of compre-
hension by requiring the participants (n ¼ 14) to give answers to a same
question list (Supplementary Table S7). The STM test was conducted after
experiment directly and the LTM test was conducted about seven days
(d ¼ 7:13 ± 0:96M ± SD) after experiment. Besides, we invited the parti-
cipants intomemory experiment and collected their STMperformance data
after that. Two trained raters rated each participant’s answers based on the
rating scheme (see Supplementary Table S8) independently. Inter-rater
reliabilitywas conductedon31:82% of thedata,where the inter-raterKappa
was 1:00 ðp < 0:001Þ. Without FocusFormer, the LTM score (Fig. 4F) sig-
nificantly reduced by 2:00 ± 1:73 (Md ± SD, p ¼ 0:017, effectsize ¼ 0:12,
pairedWilcoxon signed-rank test, n ¼ 14) compared to their STM score in
Baseline condition. However, with FocusFormer, the participants’ LTM
performance increased 200% ð85:71%Þ (3:00 ± 1:37Md ± SD versus
1:00 ± 1:09Md ± SD, p ¼ 0:001, effectsize ¼ 1; 48,Mann-WhitneyU test,
between-subject,n ¼ 14),when comparedwithBaseline condition. Besides,
the participants also got a significantly better STM after memory than
Baseline (1:77 ± 1:34Md ± SD versus 1:38 ± 1:17Md ± SD, p ¼ 0:003,
effectsize ¼ 1:35, Mann-Whitney U test, between-subject, n ¼ 14).

Physiological measures. The Electrodermal Activity (EDA) and Heart
Rate Variability (HRV) of participants (n ¼ 12) were recorded by an E4
wristband[https://www.empatica.com/en-int/research/e4/] during the
experiment. For analysis, we conducted time-normalization for different
phases of each participant’s experiment.With the FocusFormer, the EDA
data (Fig. 4G) was significantly increased by 9:17% (2:38 ± 0:37M ± SD
versus 2:18 ± 0:11M ± SD, p < 0:001, effectsize ¼ 1:45, two-sided z-test,
n ¼ 12) in exploration and by 23:77% (2:76 ± 0:30M ± SD versus
2:23 ± 0:08M ± SD, p < 0:001, effectsize ¼ 2:35, two-sided z-test,
n ¼ 12) in comprehension when compared with baseline condition.
Simultaneously, the HRV data (Fig. 4H) was significantly decreased by
3:46% (327:75 ± 109:52M ± SD versus 339:09 ± 82:35M ± SD,
p ¼ 0:004, effectsize ¼ 0:73, two-sided z-test,n ¼ 12) in exploration and
by 21:25% (248:84 ± 49:68M ± SD versus 301:48 ± 34:95M ± SD,
p < 0:001, effectsize ¼ 1:23, two-sided z-test, n ¼ 12) in comprehension.

Memorable tourism experience scales and Social virtual reality
photo sharing experience questionnaires. We collected the subjective
experience of participants during the sightseeing and sharing experiment
after the trip through tourism memorable tourism experience scales37 and
Social virtual reality photo sharing experience questionnaires38. With
FocusFormer, the participants (n ¼ 18) reported significant higher mean-
ingfulness (5 ± 0:68Md ± SD versus 4 ± 1:04Md ± SD, p ¼ 0:04,
effectsize ¼ 1:09, Mann-Whitney U test, between-subject, Fig. 4I) and
higher quality of interaction (26 ± 1:89Md ± SD versus 21 ± 4:96Md ± SD,
p ¼ 0:026, effectsize ¼ 1:49, Mann-Whitney U test, between-subject,
n ¼ 14, Fig. 4J).
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Discussion
Millions of people worldwide suffer from vision impairment, often
experiencing feelings of isolation and frustration as they struggle to establish
a connection with unfamiliar environments. While numerous efforts have
been made to enhance the quality of life for visually impaired individuals,
previous studies have predominantly focused on functional assistance, such

as navigation andobstacle avoidance, assuming that individuals are aware of
their goals in unfamiliar environments, leaving BLV individuals to passively
engage with the world. However, what BLV individuals truly need is a sense
of control over their surroundings.Therefore, in this paper,we introduce the
VIPTour system, for the first time, it empowering BLV individuals to
actively explore unfamiliar environments, establish an in-depth

Fig. 4 | Compared experiment to evaluate the effectiveness of FocusFormer
algorithm. A, B The experimental site and experimental condition design. The
between-within-subject design paradigm is utilized in this experiment. C, D The
momentary emotion self-reported by BLV individuals in two conditions. Both the
valence and arousal of BLV’s emotion become significantly higher after the trip in
both conditions. The post valence of FocusFormer group is significantly higher than
baseline condition. E The performance on externalizing cognitive maps via verbal
description task, the accuracy of object name, object direction and object attribute
show higher in FocusFormer than Baseline condition. FThe long-termmemory (the

memory effect lasted seven days) is also significantly more accurate in FocusFormer
condition than the Baseline condition.G, HOn a time-normalized scale, it becomes
apparent that the increase in both Electrodermal Activity (EDA) and Heart Rate
Variability (HRV) in FocusFormer condition. Solid lines denote mean values. The
grey background area denotes exploration and comprehension. I, J The BLV par-
ticipants involving in our experiment reported significant higher meaningfulness
and higher quality of interaction based on memory tourism experience (MTE) scale
and photo sharing experience (PSE) questionnaire.
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comprehension, maintain accurate and long-lasting recollection, and
communicate with other BLV individuals, which aids BLV individuals in
understanding and relishing unfamiliar environments.

Technically, VIPTour encompasses both algorithmic and interactive
innovations. At the algorithmic level, we propose FocusFormer, a neural
network that integrates two key advancements: (1) multi-attention
mechanisms to extract meaningful information from complex scenes—
focusing on aesthetics, novelty, and basic needs—thereby reducing the
cognitive load on BLV users; and (2) the BLV-in-the-Loop Adapter, which
enables real-time, personalized interaction by dynamically adapting to
individual preferences. At the interaction level, we developed dedicated
software that leverages intuitive auditory and tactile feedback, optimizing
the use of BLV users’ limited perceptual bandwidth. Together, these inno-
vations address the unique challenges of understanding unfamiliar envir-
onments. Compared to previous technologies with the potential to provide
environmental information descriptions for BLV users, such as video cap-
tioning, VIPTour not only offers a real-time interactive hardware-software
system but further advances the field through its FocusFormer algorithm,
which filters redundant visual information to recommend meaningful,
personalized environmental exploration spaces for BLV users.

Research39,40 indicates that the presentation of organized and engaging
information enhances individuals’ pleasure and facilitates deeper memory
encoding.Cognitive andpsychological theories propose that humans have a
natural inclination towards processing well-structured and meaningful
information, leading to a more enjoyable and memorable experience. One
possible explanation for this phenomenon is the concept of cognitive flu-
ency, which relates to the ease with which information is processed and
understood. Clear and organized information presentation reduces cogni-
tive load, enabling individuals to concentrate their mental resources on
comprehending and assimilating the content. This improved processing
fluency leads to a positive affective response, as individuals perceive the
information as more pleasant. Moreover, the interaction between freshness
and familiarity plays a role in the effect of organized and interesting infor-
mation on memory. Freshness stimulates curiosity and attracts attention,
while familiarity provides a sense of cognitive comfort and coherence.
Information presented in a structured and engaging way balances freshness
and familiarity, maintaining individuals’ interest and engagement. This
optimal stimulation level promotes active memory encoding and con-
solidation, leading to enhanced retention and recall.

Our empirical evidence supports that a self-supervised learning tech-
nique aptly captures the cognitive fluency discussed above, excelling parti-
cularly at revealing how different concepts during tourism scenes are
statistically related.Without relying on human annotations, self-supervised
learningmodels predict the required statistical patternsusingonlyunlabeled
tourism data, leveraging the rich structure of the data itself. This approach
removes potential bias in touring preference labeling and encourages the
model to learn meaningful deep representations related to tourism that
reflect the true inherent contextual structure of landscapes and tourist views.
While the adopted self-supervised learning method learns to extract inter-
esting contextual information, its supervised counterpart may be more
limited. These tailored design considerations of FocusFormer enable the
VIPTour system to successfullymodel the desired cognitivefluency, thereby
improving the tourism experience for BLV individuals. Therefore, the
VIPTour system, incorporating FocusFormer, provides organized and
engaging information associated with increased pleasure and deeper
memory encoding for BLV participants. By aligning with cognitive prin-
ciples of fluency and leveraging the interplay between freshness and
familiarity, this information facilitates more effective information proces-
sing and memory formation.

Empirical evidence demonstrates that the VIPTour system, in con-
junction with the FocusFormer framework, successfully captures and
models these cognitive fluency principles. Participants’ overall feedbackwas
quite positive, and their emotional state significantly improved when using
the VIPTour system. Particularly, when comparing the VIPTour system
with andwithout the FocusFormer, we observed a significant impact on the

participants’ positive emotions and accurate long-lasting memory. These
results indicate that VIPTour leads to an unprecedentedly enjoyable and
memorable experience, which will have a profound impact on BLV indi-
viduals. We also hope that this work can raise awareness for the BLV
community and inspire further research on improving the quality of
their life.

Method
The architecture of VIPTour was carefully tailored to meet the goal of BLV
touring guide, i.e., to communicate with BLV via succinct and selective
touring guiding information in away that howhuman think. Tomimic how
human select the views when accompanying blind people during sightsee-
ing, we decompose the touring incentive of BLV into 3 sources: the aes-
thetics of the unknown scenes, the freshness of scenes stemming from the
temporal dynamics, and the warning signals regarding daily needs (e.g.,
drinking, toilet usage) and obstacle avoidance. We propose FocusFormer
architecture, which learns to associate each object with three scores, namely
“Aesthetics Score SA”, “Freshness Score SF”, and “Need Score SN”, each
reflective of one of the three guiding sources from enormous crowd sourced
data. Through effective training on FocusFormer, VIPTour only selects and
returns touring highlights potentially of interests to BLV people, without
overwhelming BLV with the complex scene layout.

Architecture of FocusFormer
FocusFormer is essentially a deep Transformer neural network architecture
implemented with three types of attentionmodules. Each attentionmodule
mimics a specific type of view selection strategy. The network is input with
sequences of scene graphs extracted from the sightseeing views. FocusFor-
mer applies masked modeling techniques through these attention modules
on the scene graph sequence, to predict respectively “Aesthetics Score SA”,
“Freshness Score SF”, and “Need Score SN”. The FocusFormer then outputs
a ranking list of the graph nodes according to the computed overall score L.

Input. For each training video, we first evenly sample n image frames per
minutes from the ego-viewed video sequence.Weuse these total number of
Ntot ¼ n×minutes sampled frames as the training images. Each training
image is then transformed into scene graphs by employing the scene graph
generation (SGG) technique27–30. Specifically, each edgeEij in the generated
scene graph represents a particular form of relationship between a con-
nectedpair of nodesni andnj, where ni represents the i

th node in the graph.
Examples of relationships could be “in”, “on”, “against” and so on. Each
node essentially represents a detected object in the scene, such as “fish”,
“lake”, “boy”. A generated scene graph of the kth image is then represented
as Gk, which is composed of several {ni-Eij-nj} tuples. We build training
sequences in the form of sl ¼ fGl; . . . ;Glþm; . . . ; GlþMg;where thelth
sequence sl consists ofM total number scene graphs. Each training batch
includes Nb total number of input training sequences.

Training objective and the sequence mask modeling. We propose a
sequential graph level masked modeling paradigm which is the central
idea of FocusFormer. The object selection is based on ranking of the
objects, where a ranking score Px

l 2 RC is the output of the FocusFormer,
where C is the total number of classes present in the training data. Px

l

assigns each class of objects in the scenewith the ith entry denoting a score
pxl;i. Superscript x is a place holder that may replace any scores as its name
implies, i.e., x may represent Sa; Sb; Sp; Sf ; Sn, and each pxl is computed
given each sequence graph sl ¼ fG1; . . . ;Gk; . . . ; GMg, i.e.,
Px
l ¼ g zxl

� � ¼ g f sl
� �� � 2 RC:Here, function f x represents the feature

extractor out of the deep neural network, where x indicates which sub-
network (e.g., x = b: background, x = f: freshness, x = a: attraction) the
feature is from; function g is the associated classifier of FocusFormer that
maps the embedding out of each scene graph sequence into C number of
classes. FocusFormer resorts to three subsets of ranking scores that are
eventually combined to obtain the final ranking list as explained in main
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paper. zxl denotes the feature respectively out of the subnetworks, where
again x indicates which subnetwork the feature is from. We sometimes
associate each score with addition subscript, e.g., Sc;a;l indicates the

attraction score of the cth class in the lth sequence of graphs. The definition
of the subscripts become clear when mentioned in their contexts.

Attention
Attraction score. The first goal of FocusFormer is to transfer the
sightseeing preference of sighted people during BLV’s tour. An important
assumption here is that sighted people would pay locally consistent
attention to the highlights, therefore naturally leading to consistent scene
graph structure within short local sessions when they stop to watch
(focus). If there are no captured attraction objects (relatively consistent
objects within a video segment), this implies a quick change of the scene,
and the quick leaving of the tourist from the scene without a “focus”. We
hope to locate these attraction objects that have drawn attention from
sighted people (during a relatively long and consecutive period of time),
andwe call them attraction objects. This assumption on attraction objects
helps us to trace what objects are potentially of interests of sighted people.
To find the “attraction” pattern from the crowed sourced training data,
we introduce FocusFormer attention module as Fig. 2B illustrates. The
supporting idea is as follows: the network is input with a sequentially
temporally ordered input scene graphs (computed from a locally con-
secutive touring video) with their sequential frame orders, while the
prediction objective is to reconstruct the target nodes present in the right
next single scene graphs following the input sequence. We design the
attention model such that each time only a single frame of scene graph
sampled from sequence sl associated with its position embedding is used
to predict the nodes in the target scene graph. As training proceeds, only
those nodes that are frequently shared within these sequences would
return high reconstruction accuracy on predicting the target (in the
following neighboring scene) nodes, because attractionmodes aremostly
probably shared within these locally consecutive frames. The joint use of
graph embedding and position embedding helped to achieve the goal of
FocusFormer in achieving attraction score in a position sensitive manner
(attention applied only on each sole scene with itself in predicting the
target scene).

During each batchwise training, the subnetwork of FocusFormer
is input with a consecutive sequence of graph input sl ¼
fGl; . . . ;Glþm; . . . ; GlþMg which is of length M. For each batch of
sequence, we have total number ofN sequences. The objective function
is defined to be:

La θð Þ ¼ 1
N

XN
l¼1

XC
k¼1

1 k 2 Y lþMþ1ð Þ� �
log

exp ðθ cð ÞÞTzal
h i

PC
j¼1 exp ðθ jð ÞÞTzal

h i

Here, θ jð Þ is the learnable classifier parameter corresponding to the ground
truth class of the jth class. k 2 Y lð Þ indicates that at least one of the nodes in
the ðl þM þ 1Þth scene graph, i.e., the next following scene graph after the
input sequence, belongs to the kth class. Here, zal denotes the feature of l

th

sequence of graphs, and zal is extracted from the attraction subnetwork.
After training for the optimal θ jð Þ for all classes via the above training

loss, we obtain the eventual training attraction score of the cth class by the
following formula:

Sc;a;l ¼ c
PSa
l;c ¼

exp ðθ cð ÞÞTzal
h i

PC
j¼1

exp ðθ jð ÞÞTzal
h i for class c;

where the score associated with Sc;a;l in the last training iteration is then
assigned to the cth class of object, as other batchwise training machine
learning method does. Afterwards, the attraction score will be integrated

with the background score for representing the final interest level of sighted
people regarding the objectives, which will be introduced later. During
inference time,we simply associate eachobject of class c in thenewtest scene
with the converged attraction score learned from the training dataset.

Background score
A higher background score indicates that the object is likely distributed
everywhere in the video of the tour, which does not provide additional
informationon touring interests, or on freshness.Topredict thebackground
score for each node ni given a sequence l, we follow the intuition inmasked
modeling.Given the input sequence of sl , the FocusFormer randomlymasks
out a graph inputG½mask� through the attentionmodel. The trainingobjective
is to reconstruct all the node classes c 2 1; . . .C½ � of the masked graph
G½mask� with equal probability. This can be reformulated as a conventional
classification cross entropy loss, where the “ground truth” classes are the
node classes c 2 1; . . .C½ � of themasked graphG½mask�. The intuition here is:
if the network is input with any sampled input scene graphs (computed
from a certain touring video) having shuffled frame orders, while the pre-
diction objective is to reconstruct all of the node classes present in another
randomly chosen scene graph from the same touring video, the most easily
reconstructed object classes would be background objects. Those nodes
would return high reconstruction accuracy on these, because background is
mostly probably shared across any arbitrarily chosen frames in random
order. This is equivalent to applying attention on each pair of randomly
chosen scene graphs across the whole dataset, with the goal to reconstruct
nodes in alternative scene graph. The loss function can be formulated as a
special case of SoftMax cross entropy:

Lb θð Þ ¼ 1
N

XN
l¼1

XC
k¼1

1 k 2 Y lþrandomð Þ� �
log

exp ðθ cð ÞÞTzbl
h i

PC
j¼1 exp ðθ jð ÞÞTzbl

h i

Here the zbl vector is the output learned embeddingof eachnode in the scene
graph after applying the background attention in the background subnet-
work. The intuition is that the FocusFormer learns to reconstruct the
backgrounds nodes with high probability in each arbitrary graph by simply
observing any other random ðl þ randomÞ thf g frames during the same tour.
The reason is the extracted background should be agnostic of any specific
scene of the segment but are shared across the video segments most likely.
Predicting the background nodes with high probability will then help the
network to achieve low training loss if the background node indeed is
present in randomly chosen frame (in the form of scene graph). In contrast,
unique novel nodes in the ðl þ randomÞ thf g frame would be assigned rela-
tively low scores during training, as the network cannot easily predict these
unseen nodes given arbitrary frames from the tour. The Background score
attention module then learns to extract background from the sequence
through the specific sampling of scenes.

After obtaining the optimal θ jð Þ for all classes, we obtain the back-
ground score by the following formula:

Sc;b;l ¼ cPSb
l;c ¼

exp ðθ cð ÞÞTzbl
h i

PC
j¼1

exp ðθ jð ÞÞTzbl
h i for class c:

where the score is then assigned to the objects classes in the scene following
the lth sequence. At inference time, the score associated with Sc;b;l in the last
training iteration is thenassigned to the cth class of object, as other batchwise
training machine learning method does. During inference time, we simply
associate each object in the new test scene with the background score
obtained from the training dataset. Afterwards, the attraction score will be
integratedwith the background score for representing the final interest level
of sighted people. The final attraction score will be reflecting the difference
between cPSa

l;c and
cPSb
l;c, which means that the objects that sighted people

concentrate on during specific time periods but are not uniformly present in
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the background information aremoreworthy of attention, formally defined
as:

Sc;p;l ¼ Sc;a;l � α � Sc;b;l ¼ c
PSa
l;c � α � cPSb

l;c for class c:

In the subsequent applications, this score Sc;p;l is further whitened
based on statistical observations over a period of time to have a zero mean
and unit standard deviation. For simplicity, we have omitted the
formula here.

Freshness score
For freshness detection, position embedding plays a key role in encoding
the temporal ordering of the sequence. This sub-structure of the network
aims topredict the objects in the following frameby exploiting the temporal
causal structure between the frames. We rely on position embedding to
encode the temporal ordering of the frames. The training objective is to
predict the objects in the target scene following the input sequence. Objects
less likely to be constructed during training will be determined as novel
objects. For freshness objects feature extractor, FocusFormer use the
attention model to sample a few frames from the video in the sequential
order, and makes sure the attention function is applied across each pair of
image embeddings constrained in such a short consecutive session under
the proper encoding of position embedding. The position embedding
makes sure the attention is only applied between each pair of scene graphs
within such temporally ordered sequence, and that the feature extraction
proceduremust respects the sequence temporal order. FocusFormer learns
semantically meaningful embeddings to extract freshness during the
training. Similar to how background is computed, freshness score is
computed as:

Lf θð Þ ¼ 1
N

XN
l¼1

XC
k¼1

1 k 2 Y lþMþ1ð Þ� �
log

exp ðθ cð ÞÞTzfl
h i

PC
j¼1 exp ðθ jð ÞÞTzfl

h i :

Here, vector zfl is the learned embedding of each node in the scene graph
after applying the freshness attention in the freshness subnetwork. After
obtaining the optimal θ jð Þ for all classes, at the inference stage, for a new
consecutive sequence of graph input sl ¼ fGl; . . . ;Glþm; . . . ; GlþMg; we
obtain the freshness score of the scene following the lth test sequence
according to formula:

Sc;f ;l ¼
c
P
Sf
l;c ¼ �

exp ðθ cð ÞÞTzfl
h i

PC
j¼1

exp ðθ jð ÞÞTzfl
h i for class c:

Pleasenote that themore unpredictable an object is, themore freshness
it brings during the inference time. Therefore, we have associated a negative
sign in the formula to account for this unpredictability. In the subsequent
applications, this score Sc;f ;l is further whitened based on statistical obser-
vations over a period of time to have a zero mean and unit standard
deviation. For simplicity, we have omitted the formula here.

Needs score. The needs score is computed based on how each class of
object is needed by a BLV participant according to the questionary and
survey presented in B.2. We calculate the scores by summing up the
collected scores for each class, and normalize cross all the classes.

The final inference time score of a specific class c in the scene following
sl sequence is computed as the weighted sum as in the main paper:

Lc;l ¼ λ � Sc;p;l þ β � Sc;n;l þ γ � Sc;f ;l;

where the unit Blind-in-the-loop learns the λ; β,γ through maximum
likelihood estimation (MLE) techniques elaborated as follows.

BLV-in-the-Loop Adapter
VIPTour learns to adapt to the personal touring preference of BLV during
the interaction with BLV.With the unit called “BLV-in-the-loop Adapter”,
the parameterization of the various needs of visually-impaired individuals
recorded inVIPTourwill iteratively update during the tour. Theseneeds can
be broken down into three categories: freshness, touring preference, and
needs. Freshness refers to new things encountered during the visit, like a
pavilion that comes into view. Preference refers to objects of interest tomost
people, such as lakes and shady areas. Basic needs are specific to the needs of
visually-impaired people and may include considerations of safety, such as
pedestrians and bicycles, or the availability of rest areas and garbage facil-
ities. The log reader will record the actions of the blind so that the system
remembers and processes the preference of the participant. The obtained
data then are used to train the “Blind in the Loop” online so that we obtain
the trade-off preference weighting parameters between prioritizing the
“touring preference from the sighted people” against “the freshness of the
object incoming into the new scene” and “other necessary needs owing to
safety issues”. BLV participant can choose to click “like”, or “dislike” upon
any recommended item in the view. The parameterization reweighting the
three branches in the FocusFormer then will be updated by reading the
“like” and “dislike” signals.

Through maximum likelihood method (MLE), BLV-in-the-Loop
Adapter learns to adjust the weights between the three sources of recom-
mendation, leading to updated tour guide plans displayed in the next cap-
ture frame. This may be viewed as the participant implicitly selecting
important parameters that defined how the scene graph prioritizes in
screening the nodes. We also make sure the obstacle avoidance warning is
always available which reassure us the participant is informatic of the safety
and needs relevant objects. The participant with impaired vision would
interact with the display by exploring and zooming into the details in the
constructed scene graph of the current view in the meanwhile.

VIPTour continuously reads the feedback from the BLV people and
accordingly updates the parameterization of the recommendation. Speci-
fically, for the i thf g object in the list, we define a weight

vectorωT ¼ λ; β; γ
� �T 2 R3, and score vector si ¼ S ið Þ

p ; S
ið Þ
f ; S

ið Þ
n

h iT
. We

define the feedback from BLV as a binary value mH clð Þ
i . Assuming the BLV

user considers each individual recommendation item/object (e.g., tree)
“liked” or “disliked” by either clicking feedbacks “like” or “dislike” upon
observation of item i. The “like” corresponds to a binary label value

mH clð Þ
i ¼ 1, while “dislike” corresponds to label value mH clð Þ

i ¼ 0. The log
likelihood function of the user’s feedback is modeled as:

log p mH clð Þ
i

���z;ω	 

¼ log

exp τωTsi
� �mH clð Þ

i exp τωTsi
	 
1�mH clð Þ

i

exp τωTsi
� �þ exp τωTsi

	 


¼ mH clð Þ
i log

1

1þ exp τωT ðsi � siÞ
	 
þ 1�mH clð Þ

i

	 


log 1� 1

1þ exp τωT ðsi � siÞ
	 


0
@

1
A:

One might recognize that equation above is essentially a logistic
regression with learnable parametersω 2 R3 and input s

i
�si. Here, si is the

mean value of si across all the objects in the training data. In other words,
feedbackmH clð Þ

i ¼ 1 in favor of the current item (e.g., tree) is more likely to
contribute to theparameterizationof the “like” label,whereas themH clð Þ

i ¼ 0
will trigger the optimization given the “unlike” label. τ is the predefined
hyperparameter (temperature of softmax).

Given this logistics regression formulation, we use MLE (maximum
likelihood estimation technique) to learn vectorω by maximizing the
log pðmH clð Þ

i ; j; z;ωÞ. The blind in the loop unit is updated using gradient
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decent w.r.t. the MLE:

ω ¼ ωþ η
∂ log p mH clð Þ

i

���z;ω	 

∂ω

;

where η is the learning rate.
By observing the returned statistics “like” and “dislike” from the BLV

feedback, VIPTour offers interpretable outputs via the change of
ωT ¼ λ; β; γ

� �T
. Here the λ; β; γ values respectively showcase the rising

importance of tour preference learned from sighted people (λ), interests in
novel objects (β) and needs (γ) for each particular BLV tourist.

Hierarchical layout
We have designed a dual-layered scene structure that incorporates recom-
mendations from the FocusFormer and scene mapping to facilitate a rea-
sonable and simplified information hierarchy. The smartphone with
touchscreen will correspondingly reflect the scene graph structure of the
nodes conveyed in the audio play. The participant can select to zoom into
the scene graph according to the learned hierarchy so that she can better
explore the relationship between the nodes reflected in the scene. The edges
in the scene graph would correspond to the direction and position infor-
mation of the objects.

The clustering of recommended objects was achieved by the Louvain
algorithm and the layout was rendered by NetworkX 3.141. Each object was
assigned to a node with its attributes and ranking score. The relations
between objects and their estimated distance were represented by edges and
weights. Each communitywas grouped by the Louvain algorithm. The node
with the highest score appeared on the top layer. Others were on the second
layer, which can be accessed through the father node on the top layer. The
initial position of each node was an egocentric bird’s eye view of the user’s
surroundings. However, the possibility of node overlapping was high
enough to affect the user’s tactile experience. Therefore, the Fruchterman-
Reingold force-directed algorithmcontributed to the spring layout to render
both layers of node graphs onusers’phones,whichavoidedoverlapping and
preserved the approximate position of the object.

Impact of upstream AI/ML techniques on FocusFormer
performance
FocusFormer relies on several upstreamAI/ML techniques, includingobject
detection and semantic graph generation (SGG), as inputs to its processing
pipeline. As such, the performance of these upstream techniques inevitably
influences the overall effectiveness of FocusFormer. In this work, we
adopted VinVL42 for object detection and Graph R-CNN30 for semantic
graph generation, which have beenwidely validated in prior research.Using
these techniques, we successfully demonstrated the effectiveness of Focus-
Former in achieving its intended goals. However, the impact of other
potential upstream techniques on the system remains an open question.
While it is theoretically expected that more accurate detection and SGG
methods would further enhance the performance of FocusFormer, com-
prehensive empirical evidence is needed to quantify this relationship.
Investigating the sensitivity of FocusFormer to different upstream techni-
ques and their performance levels is an important direction for future work,
which will provide deeper insights into the system’s robustness and
scalability.

Data availability
Data is provided within themanuscript or supplementary information files.
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