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SpeechAct: Towards Generating Whole-body
Motion from Speech
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Fig. 1: Given an audio input, our model can generate natural and diverse human motion sequences. There are two samples that are uniformly sampled
from generated space. The human body meshes corresponding to the same text color indicate the motion generated by the driven speech content.

Abstract—Whole-body motion generation from speech audio is crucial for computer graphics and immersive VR/AR. Prior methods
struggle to produce natural and diverse whole-body motions from speech. In this paper, we introduce a novel method, named SpeechAct,
based on a hybrid point representation and contrastive motion learning to boost realism and diversity in motion generation. Our hybrid
point representation leverages the advantages of keypoint representation and surface points of 3D body model, which is easy to learn
and helps to achieve smooth and natural motion generation from speech audio. We design a VQ-VAE to learn a motion codebook
using our hybrid presentation, and then regress the motion from the input audio using a translation model. To boost diversity in motion
generation, we propose a contrastive motion learning method according to the intuitive idea that the generated motion should be different
from the motions of other audios and other speakers. We collect negative samples from other audio inputs and other speakers using our
translation model. With these negative samples, we pull the current motion away from them using a contrastive loss to produce more
distinctive representations. In addition, we compose a face generator to generate deterministic face motion due to the strong connection
between the face movements and the speech audio. Experimental results validate the superior performance of our model. The code will
be available for research purposes.

Index Terms—Speech-driven motion generation, hybrid point representation, contrastive motion learning, VQ-VAE.

✦

1 INTRODUCTION

HUMAN motion generation from speech audio [1]–[3]
is a critical area in computer graphics and immersive

VR/AR [4]–[7], which has been extensively studied as a
way of human behavior understanding [1]. Given a speech
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recording, the goal is to generate a spectrum of diverse
yet natural motion sequences, which is in line with real-
life scenarios and can meet the varying needs of different
individuals.

Existing approaches concentrate on translating speech
to the motion of the partial body [3], [8]–[10]. They use
keypoints of the body as their motion representation, which
is easy to learn and contains local details for hands. How-
ever, the keypoints leave degrees of freedom undefined, e.g.,
the rotation of a limb, leading to inaccurate and unrealistic
results when fitting or animating a full 3D body. For the
whole-body motion generation, TalkShow [1] adopts the
parametric representation of SMPL-X body mesh as the
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motion representation, and proposes a two-stage model to
recover the full 3D body. However, we observe that the
motion generated by TalkShow often contains discontin-
uous results, for example, jitters and disharmony contact
between the feet and the ground. This is because they use
parametric representation defined in the axis-angle space
using the kinematic tree, which may introduce the discon-
tinuity caused by the axis-angle representation, leading to
the difficulty of modeling continuous latent space [11]–[13].
Moreover, due to the inherent one-to-one mapping in our
real life and training pairs, all the above approaches tend to
learn an average motion lacking diversity. However, in fact,
given a speech recording, different speakers tend to exhibit
varying motions in different situations. Therefore, how to
generate diverse results is also a challenging problem.

In this work, to generate smooth and natural motion,
we propose a hybrid point representation for whole-body
motion generation from speech audio. Specifically, the key-
point representation is easy to learn and contains local
details for hands, but lacks surface constraints to obtain
the 3D body model. To combat this problem, we adopt the
surface points of SMPL-X body mesh as a part of our hybrid
point representation to eliminate the ambiguity due to the
keypoint representation. Therefore, defined in Euclidean
space, our hybrid point representation is easy to learn and
encompasses global constraints and local details for whole-
body motion generation. This helps generate smooth and
natural results, e.g., avoiding foot skating. Besides, to pro-
vide an easy-to-use output representation that can be used
in many applications, i.e., SMPL-X body mesh, we design
a generator to recover the parameters of SMPL-X from our
hybrid representation.

With this hybrid point representation, we can generate
smooth and natural results, however, similar to previous
approaches, the diversity of generated results is still limited
due to the one-to-one mapping in the training data. This
one-to-one mapping in the training data makes the model
capture similar motions, e.g., certain habitual body motions
of a speaker and similar body motions of different speakers
due to specific meanings, but this limits the model to gen-
erate diverse motions. To boost the diversity of generated
results, an intuitive idea is that, the generated motion of
a specific audio should be different from the generated
motions of other audios and other speakers. To achieve this,
we introduce a novel contrastive motion learning method
to obtain distinctive motion representations. Specifically,
we first collect negative samples that are discrete motion
representations from other audio inputs and other speakers
using the translation model. Then, we pull the current
generated motion away from the negative samples by a
contrastive loss, and thus the generated motion can be more
distinctive. By using the target motion as a positive sample,
our approach encourages diverse motion learning while
capturing similar motions.

Built on our hybrid point representation and motion con-
trastive learning method, we present a novel model, named
SpeechAct, to generate natural and diverse body motion.
This model first constructs a quantized motion codebook
based on our presentation, and then regresses the distinct
motion from speech audio using our contrastive motion
learning. In addition, to support whole-body motion synthe-

sis, we compose a face generator to generate deterministic
face motion due to the strong connection between the face
movements and the speech audio. Experimental results
compared with several state-of-the-art methods validate the
effectiveness of our model. We give an application that ani-
mates avatars using speech inputs, which can be applied in
immersive AR/VR [14], [15]. Moreover, our model can gen-
erate promising results conditioned on different languages.
Fig. 1 presents two samples generated by our model. The
human body meshes corresponding to the same text color
indicate the motion generated by the driven speech content.
It can be seen that our approach not only generates smooth
sequences of movements containing diverse poses, but also
ensures that these sequences correspond to the audio con-
tent.

Our main contributions can be summarized as follows:

• We design SpeechAct, a novel framework based on
a new representation to generate whole-body motion
from speech audio, which can produce more natural
and diverse results.

• We introduce a novel hybrid point representation
that contains global constraints and local details for
whole-body, and a generator that can recover param-
eters of SMPL-X body mesh, which can be used for
avatar animation.

• We propose a contrastive motion learning method
to learn a more distinctive motion representation,
which improves the ability of our model to generate
diverse results.

• Experimental results demonstrate our model can
generate natural and diverse results. Our method can
also be generalized to other languages.

2 RELATED WORK

2.1 Human Motion Generation
Human motion generation is the task of synthesizing re-
alistic and natural human movements for various appli-
cations, such as animation, gaming, robotics, and VR/AR.
The data representations can be divided into two kinds,
i.e., keypoint-based and rotation-based. The keypoint-based
representation [3], [16], [17] adopts a set of keypoints that
are specific points on the body, e.g., joints. The keypoints
are defined using 2D/3D coordinates in the pixel or world
coordinate system. Some works [13], [18] use sparse markers
to represent human pose, which can provide more compre-
hensive information for rotation. However, the keypoint-
based methods can provide local details for hands, but
can not constrain the global shape, such as the rotation of
limbs, which can lead to unrealistic results when fitting
or animating a full 3D body. The rotation-based methods
[19], [20] adopt the rotation of the body part relative to
their parent, which helps to constrain the body pose by
modeling the body, face and hands jointly. However, this
representation can generate discontinuous results due to its
specific space [11]–[13], [21], e.g., axis-angle space for SMPL-
X body model.

In this paper, we propose a hybrid point representation
for whole-body motion generation. Our hybrid point repre-
sentation is defined in Euclidean space and is easy to learn,
which encompasses global constraints and local details.
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2.2 Whole-body Motion Generation from Speech
Previous approaches focus on generating different parts
of whole-body from speech, e.g., face, hands and body.
Existing speech-driven 3D face animation methods [22], [23]
rely on 4D face scan datasets to train their models. For
body motion generation, two kinds of methods have been
explored: rule-based methods and learning-based methods.
Rule-based methods [24]–[26] convert the input speech to
motions from a pre-collected motion database according to
manually designed rules. These methods are interpretable
and controllable, but are difficult to generate complex and
realistic motions. Due to limitations in existing datasets [3],
[8], [27], [28], previous learning-based methods primarily
concentrate on generating partial human body motions
from speech [3], [29]–[32]. Most of them adopt keypoints
as motion representation, achieving accurate results closely
approximating the ground-truth keypoints but leading to
inaccurate and unrealistic results when fitting or animating
a full 3D body. Besides, these methods generate determin-
istic results. This means that they fail to generate diverse
results given the same audio signal, which is inconsistent
with cognitive understanding.

Some approaches cooperate GANs [7], [33]–[35], VAEs
[6], [36], [37], VQ-VAEs [9], [38], and normalizing flows [39],
[40] to increase the diversity of the generated results, but
the results are inadequate [1]. Recently, due to the great
success of diffusion models [41], some methods [2], [42]–[44]
introduce diffusion models to generate human motion from
speech, which can generate promising results. However, this
kind of method requires a large number of diffusion steps,
and thus has low generation efficiency. Besides, modeling
part of the whole-body is insufficient for a comprehensive
understanding of human behavior. To generate whole-body
motion, most similar to our work, Yi et al. [1] fit the SMPL-
X body mesh based on the speaker-specific gesture dataset
[45], but the motions in their dataset focus on face and
upper-body gestures. Based on their dataset, they propose to
generate diverse motions for the body and hands using two
independent codebooks. Liu et al. [46] propose a new whole-
body co-speech dataset, i.e., BETAX dataset, and design a
masked audio gesture transformer to regress the gesture
from the audio input. However, because of the inherent
one-to-one mapping between input and output, the model
struggles to generate natural and diverse results. Besides,
they adopt parameters of SMPL-X body mesh as the motion
representation, which introduces complexity for the predic-
tion task [47] and can lead to discontinuous problems.

In this paper, we introduce a novel hybrid representation
by combining keypoints and surface points of SMPL-X body
mesh, which helps to generate continuous results and is
easy to expand to other applications. Besides, we introduce
a novel contrastive motion learning method by collecting
negative motion samples and pulling the generated motion
away from them, which promotes the model to generate
more diverse results.

2.3 Contrastive Learning
Contrastive learning is a powerful self-supervised learning
method, which has achieved great progress in many com-
puter vision and computer graphic tasks. Traditionally, the

central idea is to take a sample as an anchor, compare it
with other samples, and pull it closer to positive samples
while pushing it apart from negative samples. By doing so,
we can get a meaningful representation. Though designed
for 2D image tasks [48], [49], contrastive learning has been
used in 3D tasks [50], [51] and multi-modal tasks [42], [52].
Ao et al. [42] adopt contrastive learning to learn a gesture-
transcript joint embedding space to align the gesture space
and the transcript space. Zhao et al. [52] use a similar idea
to achieve music-driven dance generation.

Different from previous methods, instead of aligning the
multi-modal information to obtain a joint embedding space,
we propose a contrastive motion learning method to boost
the diversity of generated results.

3 METHOD

Given a speech recording, our work aims to generate diverse
whole-body motion sequences that are in harmony with
the provided speech. We design a novel framework, named
SpeechAct, to achieve this. The most significant differences
with existing approaches are that, to generate natural and
diverse results for the body and hands, we propose a hybrid
point representation to form our motion efficiently, and
a contrastive motion learning method to distinguish the
generated motion from other motions to boost the diversity
of the generated results. Fig. 2 shows the overall framework
of our SpeechAct. Our model consists of two generators:
a body generator (Sec. 3.1) and a face generator (Sec. 3.2).
Because the audio signal is not very closely related to
hand and body gestures [1], the body generator aims to
generate natural and diverse results. For an effective and
versatile motion representation, we introduce a hybrid point
representation (Sec. 3.1.1) and develop a generator to obtain
SMPL-X model parameters. To ensure the generation of
coherent and diverse results, we leverage advancements
in VQ-VAE to learn a quantized motion space (Sec. 3.1.2).
Building upon this quantized motion space, we propose a
translation model (Sec. 3.1.3) and introduce a novel con-
trastive motion learning method, allowing us to transform
audio signals into motion representations while promoting
diversity in body and hand motions. In contrast, speech
content, especially phonetic information, is closely related
to face motion, notably lip motion, thus the face generator
is designed using an encoder-decoder architecture and is
responsible for generating deterministic results.

3.1 Body Generator

For the body generator, we aim to generate natural and
diverse motion sequences for the body and hands given an
audio input. Previous approaches [3], [8] adopt keypoints
for motion representation, limiting their ability to fully
reconstruct or animate a 3D body. TalkShow [1] utilizes
SMPL-X model parameters, resulting in discontinuous mo-
tion sequences. To generate more realistic and continuous
results, we propose a hybrid point representation with a
generator, which can generate continuous results efficiently
and deliver the SMPL-X model accurately. Besides, because
the input and the output are one-to-one mappings, previous
methods struggle to generate natural yet diverse results
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Fig. 2: The detailed architecture of SpeechAct. To generate whole-body motion, our model includes a two-stage body
generator to generate diverse motions for the body and hands and a face generator to output deterministic results.
Specifically, our model includes: (a) a VQ-VAE based on our proposed hybrid point representation to learn a motion
codebook, (b) a translation model with a contrastive motion learning method to generate diverse motion codes from the
learned motion codebook, and (c) an encoder-decoder architecture to generate deterministic face motion. The red lines
indicate these modules are used for training, and the purple lines mean that these modules are applied for both training
and inference.

due to the challenges of balancing constraints between
precision and diversity. To alleviate this problem, we de-
sign a two-stage model and introduce a novel contrastive
motion learning method to boost the diversity of generated
results. Fig. 2 shows the framework of our body generator.
Specifically, we first learn a motion codebook by encoding
motion sequences into quantized codes. To synthesize more
natural hand motion, we model the body and hands sep-
arately using three different codebooks. Subsequently, our
translation model autoregressively transforms audio signals
into motion sequences. With the contrastive motion learning
method, the translation model can generate more distinctive
motion representations, which helps to generate diverse
results.

3.1.1 Hybrid Point Representation
As shown in Fig. 3, our hybrid points representation consists
of two vital components: surface points vs (the points in
light blue) and keypoints vk (the points in dark blue).
Surface points are extracted from the SMPL-X body mesh
using mesh sampling operation [53], serving as a global
constraint to the freedom of the body. On the other hand,
keypoints, which are defined by SMPL-X body mesh and
can be obtained using the joint regressor from SMPL-X [54],
capture fine-grained details, particularly in areas like the
hands, enriching the representation. In practice, we adopt

Keypoints Surface Points Our representation

Fig. 3: The overview of our hybrid representation

all keypoints, i.e., 55 keypoints, of SMPL-X body mesh, and
use 431 points sampled from the surface. As both keypoints
and surface points are defined in Euclidean space, the final
representation v ∈ R486×3, results from the concatenation
of vs and vk, with each element representing a 3D loca-
tion. This combined representation facilitates the capture of
both global constraints and local details. This representation
is employed to represent a motion sequence, denoted as
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V = {vt}Tt=0, where T represents the number of frames in a
motion sequence. It encapsulates the dynamic evolution of
the hybrid point-based representation over time, enabling
comprehensive modeling and analysis of human body mo-
tion.

Inspired by [11], to eliminate the gap between the SMPL-
X body mesh and our representation, we design a simple
generator GP , where the input is vt and the output is the
parameters of the SMPL-X body mesh. This generator GP

consists of a series of neural network layers, specifically a
stack of three residual blocks, each with varying input and
output channels. These layers are responsible for transform-
ing the input point representation into a more meaningful
intermediate feature representation. Subsequently, a final
convolutional layer is employed to produce the desired
output, which represents the parameters of the SMPL-X
body mesh. By doing so, even training the body and face
separately, our model can ensure consistency between body
and face to generate seamless and continuous results. This
generator is trained with our body generator, which is
represented in Sec. 3.1.2.
Discussion. Our hybrid point representation has two ad-
vantages compared with previous approaches:

• Compared to the keypoint representation, our hybrid
representation can eliminate the ambiguities when
recovering the shape and pose of the whole-body.
Besides, with the generator GP , our representation
can be transformed to SMPL-X body mesh easily, and
this process is differentiable.

• Our representation is defined in the Euclidean space.
This choice not only facilitates the generation of con-
tinuous motion, e.g., avoiding foot skating, but also
enhances the model’s learning process compared to
parameter-based representations.

3.1.2 Quantized Motion Modeling

As shown in Fig. 2 (a), the first stage of our body generator
is quantized motion modeling. Given a set of motion se-
quences M = {Mk}Kk=0, where K is the number of motion
sequences, we first extract our hybrid point representation
V = {Vk}Kk=0. With a sample V from V , we adopt a
Vector Quantized-VAE (VQ-VAE) [55] to learn a meaningful
and compact motion space. We first obtain motion features
Z ∈ R

T
wm

×nz from the input motion sequence, where T is
the number of frames in V , nz is the channel dimension of
quantized features and wm is the temporal window size.

Denote the learneable motion codebook as C = {ci}Ni=1,
where N is the length of the codebook. Then, we quantize
the motion features by replacing them with the nearest
codes in the codebook. Specifically, for each row zt in Z ,
the quantized feature can be obtained by:

ct = arg min
ci∈C

||zt − ci||2. (1)

Therefore, the quantized features Zq = {ct}
T

wm
t=0 . Afterward,

the reconstructed motion V̂ is delivered by a decoder. To
output the SMPL-X body mesh, we cooperate with the
generator GP in the motion decoder, which can transform
our hybrid point representation into SMPL-X body mesh.

We train this VQ-VAE with the reconstruction loss and
the vector quantization loss to obtain a meaningful motion
space. The reconstruction loss is used to recover the mo-
tion sequence accurately. Following [56], we recover the
locations, velocities, and accelerations of the movements,
mathematically:

Lrec = ||V̂ − V ||1 + α1||V̂
′
− V

′
||1 + α2||V̂

′′
− V

′′
||1, (2)

where V
′

and V
′′

are the first-order and second-order
partial derivatives of motion representations V , and α1 and
α2 are the balancing weights of the corresponding items.

The vector quantization loss can be written as:

Lvq = ||sg[Z]− Zq||2 + β||Z− sg[Zq]||2, (3)

where sg[·] is the stop gradient function [57], the first item
is the codebook loss and the second item is the commitment
loss with the weight β. The codebook loss and the commit-
ment loss are used to align the vector space of the codebook
and the outputs of the encoder. The codebook loss lets the
quantized features from the codebook close to the outputs
of the encoder, and the commitment loss brings the outputs
of the encoder close to the codes in the codebook.

In practice, we adopt three codebooks, i.e., left-hand
codebook, right-hand codebook, and body codebook, to
model more detailed motions for the body and hands,
respectively. Therefore, the encoded feature Z can be split
into three parts Zlh, Zrh, Zb according to different body
parts of our hybrid representation before quantization, and
these three features can be quantized using Eq. 1. The quan-
tized feature Zq is the concatenation of left-hand quantized
feature Zlh

q , right-hand quantized feature Zrh
q , and body

quantized feature Zb
q . Therefore, though we adopt three

codebooks, they can be optimized using Eq. 2 and Eq. 3
simultaneously.

To train the generator GP simultaneously, we adopt the
L1 distance to regress the parameters of SMPL-X body mesh,
mathematically:

Lsx = ||GP (V̂ )− θ||1, (4)

where θ is the ground-truth parameters of SMPL-X body
mesh.

3.1.3 Translation Model
With the learned motion codebook, as shown in Fig. 2
(b), we aim to translate the audio signal into the motion
representation from the motion codebook, and then output
the motion sequence using the learned motion decoder
in the second stage. Speech content, especially phonetic
information, is closely related to face motion, notably lip
motion, while its link to body/hand motion is weaker. Com-
pared with phonetic information in the audio signal, speech
rhythm and beat are more related to body and hand motion.
Therefore, given the input audio signal A = {at}Tt=0, we
first transform it to 64-dimensional Mel-Frequency Cepstral
Coefficients (MFCC) features Fa containing rhythm and
beat information. To regress the motion representation with
speaker information, we design a translation model T to
translate the input audio signal into the motion codes.
Specifically, we concatenate the speaker embedding, i.e., a
one-shot embedding, with Fa, and employ several retention
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more distinctive representations.

blocks [58] to extract the regressed features Fr ∈ R
T

wm
×N ,

where wm is the temporal window size and N is the length
of the motion codebook. Subsequently, we adopt a SoftMax
layer to obtain the regressed logits, and select the highest
score at each temporal window as the index of the quantized
feature. Thus, we can obtain the generated features Fg by
selecting features according to the selected indexes from
the learned motion codebook. With the learned motion
decoder, we can obtain natural results in harmony with
the input audio. To regress natural results, we adopt cross-
entropy loss Lce to optimize the translation model. As an
auto-regressive model, the translation model can generate
motions of arbitrary length by adjusting the input sequence
of previously predicted tokens. Besides, during inference,
we randomly initialize the first token using the index of the
codebook to generate diverse results.
Contrastive Motion Learning. Because the input audio and
the output motion are one-to-one mappings in training
pairs, the diversity of the generated results is still limited.
An intuitive idea is that, given a speech recording, the
motion for a specific speaker can be different from other
speakers, and can be different from the motions driven by
other speech recordings. To achieve this, we introduce a
novel contrastive motion learning method, which can dis-
tinguish the current generated motion from other motions
driven by different audios or generated by other speakers.
As shown in Fig. 4, different from previous works [9], [42]
using contrastive loss to align multi-modal information, e.g.,
text and motion, we take the early generated quantized fea-
tures from other speakers and other speech recordings as the
negative samples, and the ground-truth quantized features
as the positive sample to boost the diversity of generated
results. Specifically, we adopt global average pooling along
time dimension to obtain motion codes as the negative or
positive samples. Evidently, the positive sample is high-
quality and in harmony with the input audio signal, while

the negative samples are low-quality and have no connec-
tion with the input audio signal. Let p denote the current
generated features Fg , p+ that of groud-truth quantized
feature from V , and {p−t }Lt=1 the generated features from
L negative samples. To boost the diversity of the generated
results, our goal is to ensure that the generated features
are different from the negative samples, i.e., minimizing
mutual information. Therefore, the contrastive loss can be
formulated as:

Lcm = − log
exp(p

T p+

τ )

exp(p
T p+

τ ) +
∑L

j=1 exp(
pT p−

j

τ )
, (5)

where τ is set to 0.7 and L is set to 1024 in our experiments.
By doing so, our model can produce more realistic and
diverse motions while maintaining fidelity to ground-truth
motions.

3.2 Face Generator
In this work, our goal is to generate whole-body motion
from speech audio, and the most important part is body gen-
eration due to its diverse character. To support the overall
whole-body motion synthesis, we include a face generator
to generate facial motion from speech audio. Because the
face is closely related to the input signal, especially phonetic
information, as shown in Fig. 2 (c), we adopt an encoder-
decoder architecture to regress the facial movement. Specif-
ically, we first encode the audio signal A = {ai}Ti=0 using a
pre-trained WavLM model [59], where the feature extrac-
tion is adapted to generate a representation suitable for
downstream tasks. This representation is concatenated with
speaker embedding to obtain speaker information, and then
refined by an adaptive module to extract and aggregate the
audio features adaptively. The adaptive module consists of
a residual block, followed by an attention block, and then
two more residual blocks. This hierarchical arrangement of
convolutional and attention mechanisms aims to robustly
capture and understand the speaker-specific characteristics
and the speech content to generate more reliable results.
Subsequently, a series of residual blocks with attention
mechanisms are used to decode the audio representation,
transforming it into a deterministic face motion sequence.
The detailed architecture can be found in the supplemental
document. It should be noted that the face generator serves
as a complementary aspect and can be replaced by state-
of-the-art facial motion synthesis models [60]–[63]. The face
generator is trained with face reconstruction loss: L1 dis-
tance for expressions and L1 distance for the first order of
the face motion representations.

3.3 Implemention Details
We conduct our experiments on a desktop with a GeForce
RTX 3090 GPU. For the face generator, we adopt the para-
metric representation for deterministic results, and the pa-
rameters of WavLM are frozen. For the body generator, we
adopt our proposed hybrid points representation. We first
train the VQ-VAE to learn the motion codebook, and the
generator from our representations to obtain parameters of
SMPL-X. The weights α1, α2, β of different losses are set
to 0.5, 0.5, 0.25. We set the channel dimensions of quantized
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features Zlh
q , Zrh

q , Zb
q as 128, 128, 512. The length of the tem-

poral window size is set to 1
30 s for each input audio. Then,

we train the translation model and freeze the parameters
of the motion decoder. For all training models, we adopt
the Adam [64] optimizer with coefficients 0.9 and 0.999 for
computing running averages of gradients and their squares.
The learning rates for different stages are all set to 1e-4.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setting

Dataset. To train and evaluate our model, we adopt BEAT2
dataset [46] as the benchmark to conduct experiments. The
BEAT2 dataset contains 60 hours captured from 25 speakers
in English, which is split into BEAT2-Standard (27 hours)
and BEAT2-Additional (33 hours) based on the type of
speech and conversation sections. We split BEAT2-Standard
into 80%, 10%, and 10% split for the train/val/test set.
Baselines. To validate the performance of our model, We
first compare with TalkShow [1], which is the most related
work that generates whole-body motion from speech. Be-
sides, we also compare with three state-of-the-art methods:
Audio2Gesture [36], DiffStyle [2] and EMAGE [46]. Because
Audio2Gesture and TalkShow are trained using other part
body dataset, we re-train them on BEAT2 dataset using
the public codes. Besides, we implement two baselines for
generating body and hand motions to validate the effective-
ness of our model. All the experiments are conducted on
the same training and testing set. It should be noted that
DiffStyle and EMAGE are tested on 1 speaker. Therefore,
we adopt the same speaker to evaluate their performance
additionally for a fair comparison with them.

• Audio Enc-Dec. Given a speech recording, this
model first encodes the input and then decodes the
features to deliver the motion, which is the same as
[45].

• Motion VAE. In this model, we first train a VAE
using motion sequences to learn a latent space. Then,
given a speech audio, we encode the audio signal
and concatenate it with a sampling latent code from
latent space to output the generated motion using a
decoder.

Metric. For the body and hands, we aim to generate nat-
ural and diverse results in harmony with the input audio.
Therefore, we adopt several evaluation metrics to validate
the diversity and realism of generated results.

• FID: We calculate Fréchet Inception Distances (FID)
[65] using kinetic features [66] (FID-k) and geometric
features (FID-g) to measure the quality of generated
results. Kinetic features are defined by motion ve-
locities and energies, while geometric features are
defined by joint angles and relative joint positions.

• BeatAlign: As used in [56], we employ chamfer
distance between beats of the input audio and move-
ments of the body and hands to measure the har-
mony between them, which indicates the quality of
generated results.

• Div-in: Following [67], we evaluate the diversity
of motions corresponding to an individual speech

TABLE 1: Quantitative comparison of body motion on
BEAT2 dataset with several baselines. Ours∗ means we eval-
uate our method on the single speaker for a fair comparison
with DiffStyle and EMAGE. Note that we report FSR ×10−2.

Model FID-k ↓ FID-g ↓ BeatAlign ↑ Div-in ↑ Div-out ↑ FSR ↓
Audio Enc-Dec 10.36 8.907 0.5504 0.8632 0 2.99

Motion VAE 10.73 8.722 0.5363 0.8733 0.0571 6.78
Audio2Gesture 20.43 4.826 0.5572 0.3893 1.312 1.26

TalkShow 14.37 4.535 0.5479 0.8966 1.744 0.61
Ours 3.839 4.359 0.5603 0.9700 2.264 0.38

DiffStyle 44.91 6.576 0.5811 1.539 0.3340 1.69
EMAGE 6.620 10.12 0.5487 2.817 0 2.28

Ours∗ 5.979 5.505 0.5704 3.335 7.840 1.19

TABLE 2: Quantitative comparison of face motion on BEAT2
dataset. We report LVD×10−2 and LD ×10−2.

Model LVD ↓ LD ↓
TalkShow [1] 4.158 0.8731
EMAGE [46] 4.359 0.9546

Ours 3.829 0.7896

audio through variations in body poses across the
temporal sequence, which is denoted as Div-in.

• Div-out: Given a specific speech audio, diverse
results for the same speaker are expected. To evaluate
this, for all audio clips in our test set, we calculate the
average L2 distance between the two motion clips
generated from an audio clip, denoted as Div-out.

• FSR: With our hybrid representation, our model can
generate smooth results alleviating foot skating. To
validate this character, following [44], [68], we iden-
tify frames where the foot slides beyond a certain
distance while in contact with the ground (i.e., foot
height < 5 cm) as foot-skating frames. We report
the Foot Skating Ratio (FSR), which measures the
proportion of such frames.

Besides, to evaluate the deterministic results, we use two
metrics to measure the quality of the generated results.

• LVD: Landmark Velocity Difference evaluates the
speed difference between the ground-truth and gen-
erated facial landmarks, assessing the alignment be-
tween the spoken input and the corresponding face
motion.

• LD: Landmark Distance is used to measure the
difference between the ground-truth and generated
facial landmarks, including jaw joints and lip shape.
In our evaluation, we adopt L2 distance as the mea-
surement.

4.2 Comparison Results
Quantative Evaluation. For body and hand motion gen-
eration, Table 1 presents the quantitative comparison on
BEAT2 dataset with several baselines. It can be seen that our
method outperforms other methods in most metrics. Specifi-
cally, our method significantly improves the performance on
FID (both FID-k and FID-g), which indicates that our model
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TalkShow

Ours

Emage

...after all......it’s my...

v

v

v

…about 20 years ago, I took a class.However, first aid and cpr training has changed…
…if I could be at the beach every day, I would be in the water doing distance swimming…

Fig. 5: Qualitative results compared with TalkShow [1] and EMAGE [46]. The left subfigure shows the continuity and the
smoothness of the generated motions, and the right subfigure presents the diversity of the results. In the left subfigure,
the first row shows the two different audio inputs, the second row presents the related text, and the other rows show the
generated results by different methods. Each sample consists of five frames extracted at intervals of 2/15 seconds from a
generated motion clip. Lighter colors represent past frames.

Fig. 6: Comparison of generated facial movements.

generates more realistic body and hand motion sequences.
The metric FID-k focuses on the speed and acceleration of
movement, reflecting the physical realism of the generated
motions. Results generated by previous often contain foot-
skating frames and disharmony contacts between ground
and feet, which causes unnatural speed and acceleration
of the movements. While our method can generate more
natural and smooth motion sequences due to our hybrid
representation, which leads to the high improvements on
FID-K. Besides, the comparison on FSR demonstrates that
our model can generate more smooth motions and can
alleviate foot skating in generated motions, which suggests
the effectiveness of our hybrid representation. Also, our
method achieves the best performance on BeatAlign score.
This denotes that the motion sequences generated by our
method are more rhythm-consistent with the input audio.
Moreover, the diversity of our results outperforms other
baselines, which indicates our contrastive motion learning
method can generate more distinctive motion representa-
tions. The diffusion-based models, i.e., DiffStyle, requires a
large number of diffusion steps, leading to 7 times longer
than our method to generate a 4-second motion sequence
(5.80s vs. 0.78s). The detailed comparison on inference time

can be found in the supplemental document.
Table 2 shows the quantitative comparison on BEAT2

dataset for face motion generation. According to the com-
parison, our face generator can synthesize more accurate re-
sults aligned with the input audio. This proves the superior
performance of our face generator.
Qualitative Evaluation. Fig. 5 shows the qualitative com-
parison compared with TalkShow [1] and EMAGE [46].
In the left subfigure, each sample consists of five frames
extracted at intervals of 2/15 seconds from a generated
motion clip. It can be seen that the foot movements gen-
erated by TalkShow and EMAGE change rapidly in a short
time, leading to foot skating. In contrast, due to our hybrid
point representation, our model can generate continuous
and smooth motion movements. Besides, our method gener-
ates realistic movements corresponding to the audio input,
e.g., hands down when emphasizing “after all”. The right
subfigure in Fig. 5 presents two generated results given
two audio inputs. It can be seen that our method can
generate more diverse body and hand motions for a single
sentence, which benefits from our contrastive motion learn-
ing method. Fig. 6 presents the comparison of generated
facial movements. The results show that our method can
generate more accurate motions for both open-mouth and
closed-mouth sounds. More dynamic results and analyses
of different methods can be found in the supplementary
material. We also provide some long generation samples
(over 3 minutes) in the supplemental video.

To boost the diversity of the generated results, we de-
sign a contrastive motion learning method according to an
intuitive idea that the generated motion of specific audio
should be different from the generated motions of other
speakers and other audios. To verify the performance of our
model, we visualize generated results using tSNE method
to present the diversity of different speakers with different
speech audios and the diversity of a single speaker with
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OursEMAGE

DiffuseStyleGesture TalkShow

OursEMAGE

DiffuseStyleGesture TalkShow

(a) The diversity of different speakers with different speeches (b) The diversity of a single speaker with different speeches

s=12.8

s=11.4

s=23.5

s=25.1

s=6.0

s=9.0

s=12.0

s=18.5

Fig. 7: Visualization of the diversity of different speakers with different speech audios and the diversity of a single speaker
with different speech audios compared with three state-of-the-art methods. The inter-class distance of each method is
shown in the top right corner of each figure. Different colors in (a) indicate the visualization of the generated results
conditioned on different speakers, and each speaker in the same method has a specific speech audio. Different colors in (b)
show the visualization of different speech audios talked by the same speaker.

TABLE 3: Ablation studies on BEAT2 dataset for different
motion representations. Note that we report LD×102 for
vertices.

Representation
Keypoints Vertices

Param.
LVD ↓ LD ↓ LVD ↓ LD ↓

3D (TalkShow) 0.4409 14.42 26.71 10.87 82.4 M

6D 0.4514 15.76 26.98 11.86 82.7 M

Surface Points 0.3095 10.85 21.68 7.896 88.5 M

Keypoints 0.2836 10.68 19.39 8.595 84.0 M

Ours 0.2744 7.936 16.68 6.050 89.4 M

different speech audios. Fig. 7 illustrates the visualization of
the generated results. We also give the inter-class distance
(s) to present the diversity between the different clusters.
The inter-class distance refers to the measure of separation
between different groups. Fig. 7 (a) is obtained from 8 speak-
ers with different speech audios, which indicates that the
generated motions should be different. It can be seen that
our model has better performance, which can generate more
distinctive motions different from other speakers. On the
contrary, the other methods struggle to generate distinctive
motions, leading to similar motions even among different
speakers with different sentences. This is also the reason
that the inter-class distance of TalkShow (23.5) is closer to
our method (25.1). Fig. 7 (b) illustrates the diversity of a
single speaker with different speech audios. We can see that
with different speech audios, our method achieves better
cluster performance and gets the best inter-class distance,
which indicates that our method can generate more diverse
results for a single speaker.

4.3 Ablation Study

We conduct extensive experiments to validate the effective-
ness of our representation and our model.
Effectiveness of hybrid point representation. To validate
the effectiveness of our hybrid point representation, instead
of conducting experiments on the motion generation task,
we compare different representations on the motion recon-
struction task. Specifically, we replace our representation
with different representations for the first stage of our body
generator, i.e., quantized motion modeling (Sec. 3.1.2). We
employ the 3D representation, 6D representation, surface
points of SMPL-X body mesh, and keypoints of SMPL-X
body mesh. Note that aside from the dimensions of the input
and output layers, all other layer configurations, such as the
number of layers and hidden dimensions, are identical. It
should be noted that the model with 3D representation has
the same representation as TalkShow.

We adopt landmark velocity difference (LVD) and land-
mark distance (LD) to evaluate the quality of reconstructed
motion. To evaluate different representations, we extract
keypoints and vertices of reconstructed SMPL-X body
meshes to compute LVD and LD metrics. In addition, we
report the number of parameters (Param.) for different
representations. Table 3 presents the quantitative results on
BEAT2 dataset for different motion representations. It can
be seen that compared with the surface point representa-
tion, the parametric representation can generate inaccurate
results (high LD score) with jitters (high LVD score). It
is interesting that the performance of 6D representation
is lower than 3D representation. The main reason is that
speech motion, involves a lot of local rotations, which
typically involve small angle changes. Therefore, the 3D
axis-angle representation might more easily capture these
local characteristics, leading to better performance in the re-
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Fig. 8: Visualization of reconstructed motion errors. The errors between the reconstructed motions and the ground-truths
are color-coded on the reconstructed models for visual inspection. Each row shows reconstructed error for each case.

construction task. Comparing surface points representation
and keypoints representation, our hybrid representation can
achieve more accurate and smoother results, which indicates
that our representation is suitable as a motion representa-
tion. This is also the reason that our model achieves better
results in Table 1 compared with other methods.

Fig. 8 shows the qualitative results. It can be seen that the
models based on 3D and 6D representations can produce
errors for local body parts, such as hands and legs. The
keypoint-based model has better performance, however,
the arms are difficult to recover due to a lack of global
constraints of the pose rotation. The point-based model can
recover more accurate arms, but it struggles to reconstruct
the head and legs accurately due to redundant information
for some body parts. Compared with these traditional rep-
resentations, our hybrid point representation can recover
the body accurately, which indicates its strong capacity for
motion reconstruction. With this powerful representation,
we can learn a good motion codebook to further help
generate natural motions from speech audios.
Effectiveness of contrastive motion learning. We introduce
a novel contrastive motion learning to boost the diversity
of generated results. To validate the effectiveness of this
method, we train a body generator without the contrastive

TABLE 4: Ablation studies on BEAT2 dataset for contrastive
motion learning.

Model FID-k ↓ FID-g ↓ BeatAlign ↑ Div-in ↑ Div-out ↑
w/o CM 3.865 5.972 0.5767 0.8511 2.122

Full 3.839 4.359 0.5603 0.9700 2.264

motion learning method (w/o CM) as a comparison. The
other settings are the same as our full model.

Table 4 presents the quantitative comparison of BEAT2
dataset. By comparing the model without the contrastive
motion learning method and our full model, it can be seen
that the contrastive motion learning method can improve
the diversity of generated results. It is worth noting that the
quality-related scores of the model without the contrastive
motion learning method still outperform the scores of Talk-
Show and Audio2Gesture, which suggests the effectiveness
of our hybrid point representation. However, the BeatAlign
score of our full model is slightly lower than that of the
model without the contrastive motion learning method,
which is possibly due to the increase in diversity.

Fig. 9 shows the visualization of motions generated by
our model. Compared with w/o CM and our full model, it
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(a) The diversity of different speakers with different speeches

(b) The diversity of a single speaker with different speeches

Fig. 9: Visualization of the diversity of different speakers
with different speech audios (a) and the diversity of a single
speaker with different speech audios (b). The inter-class
distance is shown at the top left corner of each figure.

TABLE 5: Ablation studies on BEAT2 dataset for different
numbers of codebooks. Note that we report LD×102 for
vertices.

Number
Keypoints Vertices

LVD ↓ LD ↓ LVD ↓ LD ↓
1 0.2776 8.098 16.78 6.226

2 0.2683 8.002 16.71 6.179

3 0.2744 7.936 16.68 6.050

can be seen that the contrastive learning method can help
the model to generate more distinctive motions for different
speakers and different speech audios. The increase in the
inter-class distances of our full model also verifies this.
Effectiveness of separate codebooks. We use three code-
books, i.e., the body codebook, the left-hand codebook, and
the right-hand codebook, to model more detailed motions
for the body and hands, respectively. To validate the effec-
tiveness of this design, we conduct experiments using dif-
ferent numbers of codebooks. Specifically, we train motion
reconstruction models using one codebook, two codebooks
(hand and body codebooks), and three codebooks (our
current design). Table 5 illustrates the quantitative results.
As shown, increasing the number of codebooks improves
the performance of motion reconstruction. Although the
landmark velocity distance (LVD) for joints is better with
two codebooks, the other metrics are lower compared to
the model with three codebooks. Therefore, we adopt three
separate codebooks in our model.

4.4 User Study

To better evaluate the proposed method qualitatively, we
conduct user studies to analyze the performance of gener-
ated motions. Our questionnaire consists of 10 cases, with
each case comprising three questions. The motions for each
case in the video are generated based on the same audio
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Fig. 10: The percentage of each method considered to be
ranked first in different perspectives.

input using Audio2Gesture [36], TalkShow [1], and our
method. Users are required to rank the results of differ-
ent methods from the following three perspectives: 1) the
realism of the generated motion; 2) the matching degree
between the generated motion and the input audio; and 3)
the diversity of the generated motion. We have collected
answers from 153 participants, including 85 males and 68
females with different ages (3 users below 18, 105 users
between 18 and 40, 44 users between 40 and 60, and 1 user
beyond 60).

We evaluate the percentage of each method considered
to be ranked first in different perspectives. Fig. 10 shows the
statistical results. it is evident that more than 70% of users
believe that our method generates more realistic results,
which indicates that our hybrid point representation can
produce more smooth and natural results. Besides, com-
pared to other methods, more than 70% of users think that
our method produces results more in line with the audio
rhythm, and 68% of users believe that our method can gen-
erate more diverse motion. We also conducted a significance
test between our method and the other two methods, which
indicates that our method shows statistically significant dif-
ferences compared to the other two methods. These results
demonstrate that our method surpasses other methods in
terms of diversity and alignment with audio signals, which
suggests the effectiveness of our hybrid point representation
and our contrastive motion learning method. Details of the
user study and the significance test can be found in the
supplemental document.

4.5 Generalization
Our model generates natural and diverse motions from only
audio signals. Therefore, even with training with English
data of BEAT2 dataset [46], our model can be generalized
to other languages. Fig. 11 shows the qualitative results.
We can see that with the specific rhythm, our model can
generate corresponding motions.

4.6 Application
Thanks to our hybrid point representation, our model can
output SMPLX parameters to support many applications.
In this section, we obtain an avatar reconstructed from
[69], and animate it using the outputs of our model. By
doing so, we can get animated avatars directly using speech,
which can be used in VR/AR, virtual live, and human-
computer interaction. Since the expression basis of the facial
model, i.e., ARKit, used in AvatarRex differs from ours,
i.e., SMPLX, we retrained our model using the expression
format of ARKit [70]. As a result, with the output motions
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Fig. 11: Visualization of generalization across different lan-
guages and sentences. The first sequence is in Chinese, and
the second sequence is in Spanish.

Fig. 12: Avatar animation results. Given a speech audio,
the generated motion can be used to animate reconstructed
avatars.

generated by our method, we can directly animate the
avatar reconstructed using AvatarRex. To showcase addi-
tional results, we adopt the recent avatar reconstruction
method ExAvatar [71] to produce animation results based
on our generated motion sequence. Notably, we can directly
use the first 50 dimensions of our expression parameters
as the expression parameters for ExAvatar, which ensures
compatibility with our method without the need for retrain-
ing a new model. Fig. 12 presents the avatar animation
results reconstructed from AvatarRex (the first row) and
ExAvatar (the second row). It can be seen that the generated
motion can be applied to avatar animation, and can obtain
promising results. The dynamic results can be found in the
supplementary video.

5 CONCLUSIONS AND DISCUSSIONS

Conclusion. In this paper, we propose a novel framework,
named SpeechAct, with a face generator and a body gener-
ator for whole-body motion generation from speech audio.
The face generator is used to generate deterministic results

using an encode-decoder architecture. For the body genera-
tor, we propose a hybrid point representation for body and
hand to constrain the global surface and capture local details
for 3D body, which can achieve accurate yet continuous
results. Based on our representation, we design a two-stage
model with a novel contrastive motion learning method
to achieve diverse body and hand motions. Experimental
results demonstrate that our model can generate natural and
diverse human motion. We give some promising results for
generalization across other languages. Moreover, an appli-
cation of speech-driven avatar animation is given to show
the potential of VR/AR and human-computer interaction.
Limitation and Future Work. To achieve natural results,
we estimate the global position using a residual estimation
manner. Specifically, we estimate position residuals and add
previous residuals to obtain the current position, which can
help to generate smooth results. However, for long motion
generation, the position error will be added and lead to a
sliding effect for some specific cases. The visualization and
discussion of some samples can be found in the supplemen-
tal document. In the future, we will consider more temporal
constraints to generate more smooth results. Besides, our
model can generate diverse results with distinctive styles.
However, we only use the speaker embedding as the style
condition, which limits the effectiveness of controllability.
In the future, we will add more control inputs, e.g., text, as
conditional inputs, and leverage the speaker information to
achieve more controllable human motion synthesis.
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