
Supplementary Document for
“Learning Semantic-Aware Disentangled Representation

for Flexible 3D Human Body Editing”

In this document, we provide the following supplemen-
tary content:

• Implementation Details.

• Definition of Our Body Parts and Joints.

• More Experiment Details and Results.

• User Study.

• Limitations and Failure Cases.

1. Implementation Details

Hyper-Parameters. For the spiral convolution encoder
and decoder, we follow the hyper-parameters of the spi-
ral convolution (e.g., filter size and dilation ratio) in [2].
For DFAUST [1] and SPRING [10] datasets, the sampling
factor lists are [2, 2, 2, 2] and [4, 2, 2, 2], respectively. The
hyper-parameters λedge, λdis shape, λedit shape and λnorm

are set as 1 × 10−2, (αmin, αmax) is set as (0.8, 1.2), and
σ is set as 72 degrees. Specifically, we do not use volume
loss when training on the SPRING dataset, because there
are almost no pose changes in the meshes.
Relative Error. We calculate λdis shape, λedit shape and
λnorm in a relative sense for better reconstruction of lo-
cal details following [4]. In particular, for the ground-truth
T and predicted values P , we compute the relative error
∥(T − P )/T∥1 instead of ∥T − P∥1, which can improve
the quality of the editing results.

2. Definition of Our Body Parts and Joints

We define body parts and their joints based on SMPL
[8], and Fig. 1 shows the differences between SMPL and
ours. Tab. 1 gives specific correspondences. Specifically,
we merge the labels of some parts and remove some redun-
dant joints to simplify the structure of the human body. Be-
sides, we define additional joints for feet, hands, and faces
to better represent their pose.

Part iourspart ismpl
part ioursjoint ismpl

joint

head 10 15 16,17,18,19 15,-,-,-
neck 9 12 15,16 12,15
chest 6 6,9,13,14 14,15 9,12
waist 3 3 0,5 0,6
hip 0 0 0,1,2 0,1,2

left thigh 1 1 1,3 1,4
left shank 4 4 3,6 4,7
left feet 7 7,10 6,8,10,12 7,-,-,10

right thigh 2 2 2,4 2,5
right shank 5 5 4,7 5,8
right feet 8 8,11 7,9,11,13 8,-,-,11

left upperarm 11 16 20,22 16,18
left forearm 13 18 22,24 18,20

left hand 15 20,22 24,26,28,30 20,-,-,22
right upperarm 12 17 21,23 17,19
right forearm 14 19 23,25 19,21

right hand 16 21,23 25,27,29,31 21,-,-,23

Table 1. Correspondences between parts and joints of SMPL [8]
and our parts and joints. ipart and ijoint denote the indices of
parts and joints, respectively. -: no corresponding joints.

3. More Experiment Details and Results

Reconstruction Experiments. we use the official imple-
mentation of the compared methods [2, 3, 5, 6, 9, 12] with
the same sampling factor list, latent space dimension, train-
ing strategy and reconstruction loss for a fair comparison.
Since DHNN [7] only releases the decoder code, we com-
pare the reconstructed human bodies on their dataset [7] by
optimizing our hidden variables like them. Please refer to
DHNN [7] for more optimization details. Since the author
lost the test list, we randomly split the DHNN dataset into
a test set of 320 meshes and a training set of 5274 meshes
following its setting. It is worth noting that this is extremely
unfair to our approach because most of the test meshes exist
in the training set of DHNN. Fig. 2 shows some reconstruc-
tion results and error maps on the DHNN dataset [7].
Editing Experiments. For editing bone length and part
shape size, we uniformly sample a scalar α in (0.8, 1.2) for



Figure1 人体分析图

0

2

5

8

11 10

7

4

1

3
6

9
14 13

16 18
20

22
17

21

23

15

12
19

0
2

5

8

11 10

7

4

1

3
6
9

14 13

16 18 20

22

1721

23

15

1219

0
2

4

7
109

6

3

1

5
14

20 22 24

28

2125

29

16

15
23

0

2

5

8 7

4

1

3

6 11 13
15

12
16

10

9
14

11 8
1213

17

19

18

2627
3031

(b)(a)

(c) (d)

Figure 1. The definition of body parts and joints: (a) SMPL [8] and (b) ours.

Method Ejoint Ecirc

Ours 3.75 15.89
DHNN 41.40 10.17

Ours 11.33 20.35
LIMP 33.90 48.96

Table 2. Quantitative comparison with DHNN [7] and LIMP [4]
(in mm).

each component xk, and then set α · l(xk) or α · circ(xk)
as the editing target, where l(·) and circ(·) are the functions
measuring length and circumference of parts, respectively.
In experiments of editing bone orientation, since Unsup [12]
cannot work without target meshes, to allow comparison,
we randomly select target meshes from the test set, and cal-
culate joint positions after pose changes to obtain meshes.
More visual editing results are shown in Figs. 3 to 5.
Advantages over Statistical Models. First, our method has
a better representation ability. Our reconstruction error on
DFAUST [1] is significantly less than SMPL [8] by an or-
der of magnitude (4.70 mm vs. 25.36 mm). An example is
given in Fig. 6. Second, our method has more fine-grained
semantics, which enables flexible human body editing un-
supported by statistical models.
Comparison with Other Disentangled Works. Because
DHNN [7] and LIMP [4] do not support real (direct) body
editing, we only compare the performance of pose/shape
transfer with them. As shown in Fig. 7 and Tab. 2, our
method achieves excellent results in pose/shape transfer
without the data constraints required by DHNN [7] and
LIMP [4].

4. User Study
To better evaluate the editing capacity of the proposed

representation, we perform a perceptual evaluation with a
user study that consists of 3 group tests. The first group
shows the results of Unsup [12] and our method on 4 cases
of editing bone orientation. The last two groups show the
results of HBR [11] and our method on 3 cases of editing

bone lengths and part shape sizes, respectively. The users
need to evaluate the editing capability of the methods from
two aspects: whether the edited attributes are changed to
the target value in a natural, reasonable and accurate way
and whether the other unedited attributes are left intact. We
have collected answers from 102 participants, including 28
females and 74 males of different ages (2 users below 18,
96 users between 18 and 40, and 4 users between 40 and
60). We evaluate the percentage of each method considered
to have better performance in changing attributes Pcha and
preserving attributes Ppre. The statistical results of 3 group
tests are given in Tab. 3, which demonstrates that our ap-
proach has a more flexible and accurate editing capability.

5. Limitations and Failure Cases
Editing bone orientation with our method may fail when

the target orientation is uncommon in the training data, as
illustrated in Fig. 8. In further work, we will dig deeper into
the prior knowledge about the human body to improve the
generalization capability of our representation.
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Method Bone Orientation Bone Length Shape Size
Pcha Ppre Pcha Ppre Pcha Ppre

Unsup [12] 27.95% 36.27% - - - -
HBR [11] - - 27.43% 34.63% 40.20% 40.16%

Ours 72.05% 63.73% 72.57% 65.37% 59.80% 59.84%

Table 3. The percentage of each method considered to have better editing performance in three editing tasks. - : not supported for this task.

Figure2 重建实验定性图
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Figure 2. Qualitative reconstruction results on the DHNN dataset [7]. Eavd denotes the average point-wise Euclidean distance (in millime-
ters) between corresponding vertices in the input and its reconstruction.
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Figure 3. Qualitative results of editing bone orientation.
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Figure 4. Qualitative results of editing bone lengths.
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Figure 5. Qualitative results of editing part shape sizes.
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Figure 6. Qualitative reconstruction results on DFAUST [1].
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Figure 7. Qualitative pose/shape transfer results.
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Figure 8. Some examples of failure cases. We show the reconstructed and edited bodies in the second and third columns.


