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Abstract Novel view synthesis, especially from

sparse view images, is very challenging due to large

view shifting and occlusions. Existing image-based

methods fail to generate reasonable results for invisible

regions, while geometry-based methods have difficulties

synthesizing detailed textures. In this paper, we

propose STATE, an end-to-end deep neural network,

for sparse view synthesis by learning STructure And

TExture representations. The structure is encoded as

a hybrid feature field to predict reasonable structures

for invisible regions and maintain original structures

for visible regions, and the texture is encoded as a

deformed feature map to preserve detailed textures.

We propose a hierarchical fusion scheme with intra-

branch and inter-branch aggregation, in which spatio-

view attention is designed for multi-view fusion at the

feature level to adaptively select important information

by regressing pixel-wise or voxel-wise confidence maps.

Through decoding the aggregated features, STATE

is able to generate realistic images with reasonable

structures and detailed textures. Experimental

results demonstrate that our method achieves better

performance than state-of-the-art methods in both

qualitative and quantitative evaluations. Our method

also enables texture and structure editing applications

benefitting from implicit disentanglement of structures

and textures. The code will be available online.
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Fig. 1 Our STATE model is able to generate realistic images

from sparse view images or even a single image.
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1 Introduction

Novel view synthesis aims to generate a new image

for an object at a new viewpoint from a single image

or multi-view images, which has a wide range of

applications in virtual reality, education and movie

production. It is a very challenging problem for sparse

view cases due to large view variation and occlusions.

Existing methods on novel view synthesis can

be classified into image-based and geometry-based

methods. Image-based methods warp the source image

from the source viewpoint to the target viewpoint

by estimating an affine transformation [1, 2] or an

appearance flow field [3–5]. Flow-based methods

are more flexible to deal with complex deformations

than affine transformation methods. However, due to

lack of geometry information, image-based methods

tend to generate unsatisfactory results for invisible

regions, especially for sophisticated objects or sparse

views. Geometry-based methods first estimate the 3D

structure of the object in an explicit [6–8] or implicit

[9–11] manner, and then generate the target image by

rotation and projection. Explicit representations use

discrete volumes while implicit methods use continuous
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implicit functions. Along with neural rendering based

methods [12], the latter can be trained without 3D

supervision. Although geometry-based methods can

keep the consistency of the structure and predict

reasonable shapes for the invisible regions, they would

deteriorate with sparse views and lose texture details

due to the limited representation resolution.

It is very important to find an effective way to make

better use of the multi-view information, especially for

sparse views. Most works [10, 13–16] directly average

the representations of all inputs, where all locations

of inputs are taken as valid values. However, not all

locations of inputs have positive impacts on the target

image. To solve this problem, Sun et al. [4] propose

a self-learned confidence method to fuse the resulting

images generated by each input at the pixel level.

However, this fusion scheme requires large memory

and cannot deal with the unavoidable misalignment

problem.

The aforementioned methods encounter three

challenges to synthesize satisfactory images: 1) the

coupling of the shape and the texture in the input

images, 2) potential uncertainties in invisible regions,

and 3) difficulty to achieve color, texture and shape

consistency.

To address these problems, in this paper, we propose

an end-to-end deep neural network, STATE, for sparse

view synthesis by disentangling the input images

into STructure And TExture representations to ensure

both shape and texture consistency. Although our

method does not explicitly control disentanglement,

the two branches with proper design achieve effective

disentanglement of structures and textures as verified

by experimental results (in Section 4.2 and 4.5). In

the structure-aware encoder, we represent structure as

a hybrid feature field, which can predict reasonable

structure for invisible regions. In the texture-aware

encoder, we estimate an appearance flow field and warp

the source image feature from the source viewpoint

to the target viewpoint at the feature level. To

make the best use of multi-view images, we also

propose spatio-view attention aggregation to adaptively

fuse multi-view information at the feature level by

regressing pixel-wise or voxel-wise confidence maps.

The final image is delivered by decoding the aggregated

feature of structure-aware representation and texture-

aware representation. Our model works well for both

single view and multi-view inputs. Experimental

results demonstrate that our method achieves better

performance than state-of-the-art methods. We

also verify our hypothesis by comprehensive ablation

studies. Figure 1 gives some examples of our results.

We will make the code available online to promote

academic development.

The main contributions are summarized as follows:

• We propose STATE, an end-to-end deep neural

network, to disentangle the sparse input images

into two embedding neural representations:

structure and texture representations, which

helps to predict reasonable regions invisible in

the source image, while also recovering detailed

textures.

• We propose a hierarchical fusion scheme with

intra-branch and inter-branch aggregation. Spatio-

view attention is designed for multi-view fusion

at the feature level to adaptively select important

information by regressing pixel-wise or voxel-wise

confidence maps.

• Our model can realize texture or structure

swapping without training in stages due to effective

disentanglement of structures and textures. Our

model is easy and robust to train with a hybrid

loss including cosine loss to achieve color, texture

and shape consistency, leading to state-of-the-art

performance.

2 Related work

In this section, we review the existing work on novel

view synthesis for objects or humans from a single

image or multiple images, which can be classified into

image-based and geometry-based novel view synthesis

methods. Image-based methods can maintain the

appearance consistency by transferring the pixels in

the source images to the target image, while geometry-

based methods can maintain the structure consistency

by reconstructing the 3D structure of the object before

rendering the novel view image.

2.1 Image-based Novel View Synthesis

Image-based novel view synthesis methods directly

generate pixels or move pixels from the source images

to the target image. Tatarchenko et al. [1] and Yang

et al. [2] generate pixels with affine transformation.

Instead of learning to synthesize pixels from scratch,

Zhou et al. [5] prove that the visual appearance of the

same instance from different views is highly correlated,

and such correlation can be explicitly learned to predict

appearance flow [3, 4, 17], i.e., 2D coordinate vectors

specifying which pixels in the input view can be used

to reconstruct the target view. To use features at

different scales, Yin et al. [18] estimate appearance

flows with different resolutions to warp the source view
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Fig. 2 Overview of our STATE model.

to the target view. According to the appearance flow,

bilinear sampling is used to move pixels from the source

images to the target image [4, 5, 17, 19]. To avoid the

poor gradient propagation of the bilinear sampling, Ren

et al. [3] propose a content-aware sampling method

by adopting a local attention mechanism. Most flow-

based methods [4, 5] warp the input images pixel-

wisely, which prevents the network from generating new

content for invisible pixels. Warping the input images

at the feature level can solve this problem [3, 17, 20].

There are also some methods synthesizing invisible

pixels without warping the input features. Park et al.

[21] use a completion network to hallucinate the empty

parts. In summary, image-based methods can generate

detailed textures by moving pixels from the source

images to the target image, but the results generated by

the above methods lack a consistent shape and hence

may have some artifacts along the silhouette.

2.2 Geometry-based Novel View Synthesis

Geometry-based novel view synthesis methods

estimate the 3D structure of the instance in an

explicit or implicit manner, and then generate the

target image by rotation and projection. Two

strategies are adopted: depth maps and 3D models

(textured occupancy volumes, colored point clouds

or neural scene representations). The depth-map-

based approaches [6, 22, 23] typically estimate the

depth map of each input view as a 2.5D intermediate

representation which captures hidden surfaces from

one or multiple viewpoints. The point-cloud-based

methods [8] estimate a point cloud to be transformed

into the target view. In addition, several recent

methods [7, 24–26] reconstruct an explicit occupancy

volume from the input images, and render it using

traditional rendering techniques. To overcome the

memory limitation of volume representations, some

methods leverage signed distance field encoded volumes

[27, 28] or RGB� -encoded volumes [29, 30] and

achieve good performance. Since explicit volumes

are discrete, several methods [10, 31–33] based on

implicit volume representations are proposed without

any 3D supervision. In order to have a more accurate

understanding of the structure of objects, Galama et al.

[34] propose IterGANs to learn an implicit 3D model

of the object in an iterative manner. Implicit volume

representation has gained popularity due to continuous

shape and texture representation. Some methods [9, 11,

35, 36] predict continuous neural scene representations,

and then render them to the novel view image through

neural rendering. Geometry-based methods can keep

consistent structure and predict reasonable shapes for

invisible regions, but the generated textures tend to lose

fine details.

In this paper, we propose an end-to-end deep neural

network for sparse view synthesis by learning structure

and texture representations. Structure is encoded

as a hybrid feature field while texture is encoded

as a deformed feature map. Each representation

is generated by spatio-view attention aggregation

for multi-view cases. The results generated by

3



4 X. Jing, Q. Feng, Y.-K. Lai, et al.

our approach have consistent structures and detailed

textures.

3 Method

3.1 Overview

The inputs of novel view synthesis from N images

are a target camera pose pt and N pairs of source

images and camera poses (I 1
s ; p1s); (I

2
s ; p2s); :::; (I N

s ; pN
s ).

Our goal is to synthesize the target image Î t in the

target camera pose pt . Denote by I t and Î t the

ground truth and synthesized target images. In order

to generate the result with reasonable structure and

fine texture, we propose a new network STATE that

aggregates information from both structure and texture

representations. As shown in Figure 2, STATE consists

of a two-branch encoder and a fusion decoder.

1. The two-branch encoder E (�), consisting of

a structure-aware branch and a texture-aware

branch, encodes the inputs into a structure feature

volume f str and a texture feature map f tex . It can

be written as:

(f str ; f tex ) = E (pt ; (I
1
s ; p1s); (I

2
s ; p2s); :::; (I N

s ; pN
s )):

(1)

The structure-aware branch estimates a hybrid

feature field for each view, and then rotates and

adaptively aggregates them to a single feature

volume f str containing structure information.

The texture-aware branch estimates a single

feature map f tex containing texture information

by adaptively fusing the flow-warped features of

N views.

2. The fusion decoder D (�) takes the feature volume

f str and the feature map f tex as input and

generates the target image by

Î t = D (f str ; f tex ): (2)

The adaptive fusion of multi-view inputs will be

introduced in detail in Section 3.3. Please note that

our model is able to extend to an arbitrary number of

inputs for both training and testing without modifying

the encoder or decoder.

3.2 Two-Branch Encoder

We design a two-branch encoder to disentangle

texture and structure from the sparse input images,

which includes a texture-aware branch and a structure-

aware branch. For both branches, to cope with

occlusion and large view difference, pixels in the input

images should not have the same contributions. So we

design a spatio-view attention by calculating confidence

maps for multi-view images to obtain the final texture
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Fig. 3 Detailed structures of spatio-view attention aggregation

in texture-aware branch (left) and structure-aware branch

(right).

representation f tex and structure representation f str ,

which will be presented in Section 3.3 in detail.

In the texture-aware branch, as shown in Figure 2,

We use an hourglass network Fwarp to predict a warping

field wi and a confidence map ci
tex for each input view

i , which takes the target pose pt , the i -th source image

I i
s and the i -th source pose pi

s as inputs:

(wi ; ci
tex ) = Fwarp (pt ; I i

s; pi
s); (3)

where the warping field wi is represented by

displacements between the source image and the target

image. Camera poses pt and pi
s are represented

by quaternions. We expand the dimensions of the

quaternion to match the dimensions of the image,

and then concatenate them to form the input. The

confidence map ci
tex is used to fuse the feature maps

from different views. ci
tex and wi share all weights of

Fwarp except for their output layers. We use a fully

convolutional network Ftex to extract features f̃ i
tex from

the source images, and then warp the features to get the

target features f i
tex , which can be formulated as

f̃ i
tex = Ftex (I

i
s); (4)

f i
tex = W (wi ; f̃ i

tex ); (5)

where W (�) is the warping function, and bilinear

sampling is used in our network.

In the structure-aware branch, we use an encoder Fstr

[10] consisting of a series of 2D convolutions, reshaping,

and 3D convolutions to extract a hybrid feature field

represented as a structure feature volume for each

image:

f̃ i
str = Fstr (I

i
s); (6)

where f̃ i
str is the structure feature volume in the

corresponding pose pi
s. Then, we rotate f̃ i

str from the

source pose pi
s to the target pose pt :

f i
str = R (f̃ i

str ; pi
s; pt ); ci

str = 3DConv(f i
str ); (7)

where R (�) is the rotation operation with trilinear

sampling, f i
str is the transformed feature volume having

the same shape as f̃ i
str , and 3DConv(�) represents 3D

4
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Tab. 1 Quantitative comparison with four alternative designs.

Dataset Method
1 view 2 views 3 views 4 views

LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓

Car

w/o Tex. 0.139 79.143 0.104 57.997 0.096 54.261 0.092 52.961

w/o Str. 0.127 64.788 0.098 44.501 0.089 39.765 0.084 37.901

w/o SVA 0.118 62.619 0.090 42.023 0.081 38.642 0.078 37.258

w/o Cos. 0.136 82.208 0.104 57.810 0.096 53.844 0.092 52.462

Full 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Chair

w/o Tex. 0.250 64.584 0.113 21.622 0.096 19.488 0.092 18.898

w/o Str. 0.166 33.330 0.141 26.628 0.133 25.145 0.129 24.443

w/o SVA 0.209 48.731 0.100 19.228 0.086 17.336 0.081 16.730

w/o Cos. 0.246 62.418 0.109 20.006 0.093 17.998 0.088 17.461

Full 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Human

w/o Tex. 0.118 70.431 0.087 64.174 0.082 64.860 0.081 65.550

w/o Str. 0.106 82.642 0.088 76.567 0.081 75.137 0.078 75.357

w/o SVA 0.102 61.274 0.078 57.386 0.072 57.710 0.069 58.330

w/o Cos. 0.110 62.791 0.082 56.604 0.077 56.487 0.076 56.525

Full 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055

convolution. The confidence map ci
str is used to fuse

the feature maps from different views.

The texture representation f tex and the structure

representation f str are decoded by a fusion decoder

described in Section 3.4.

3.3 Spatio-View Attention Aggregation

Due to occlusions and large view variation, the

texture representation f i
tex of view i may be incomplete.

The missing regions should not have the same weighting

as the other regions. Moreover, the visible view

should have more impact on the final result. Similarly,

the structure-aware branch requires different weights

for different regions of f i
str and different views.

Therefore, instead of simply averaging the encoded

feature maps, we design an adaptive aggregation with

spatio-view attention for the texture-aware encoder and

the structure-aware encoder by calculating a confidence

map for each view, as shown in Figure 3. The pixel-

wise or voxel-wise confidence maps f ci
tex g1≤i≤N and

f ci
str g1≤i≤N are used to fuse the texture features and

structure features of all the views by

f tex =
NX

i=1

f i
tex � Softmax i (c

1
tex ; :::; cN

tex ): (8)

f str =
NX

i=1

f i
str � Softmax i (c

1
str ; :::; cN

str ): (9)

We normalize the predicted confidence maps

f ci
tex g1≤i≤N and f ci

str g1≤i≤N by applying Softmax (�)
across them. The normalized confidence maps can

then be used as the weights to aggregate the feature

maps. This mechanism enables the weights to be

automatically adjusted for any number of input views,

which is very flexible. Moreover, the fusion at the

feature level costs less memory but is able to produce

a more continuous result.

3.4 Fusion Decoder

The fusion decoder fuses the texture feature map

and the structure feature volume, and then generates

the final image. After several 3D convolutions, the

structure feature volume is turned into a structure

feature map by merging the depth dimension into

the channel dimension. We concatenate the structure

feature map and the texture feature map, and then get

the final image after a U-Net decoder. Instead of fusion

at the pixel level, we fuse the structure representation

and the texture representation at the feature level.

This has three reasons: 1) it is difficult to ensure

the alignment of two-branch results; 2) the features

before the decoder contain more information than the

decoded images; 3) fusion at the feature level enables

the network to generate new contents, especially for the

invisible regions.

3.5 Loss Functions

Because our STATE is an end-to-end trainable

network, we directly define several losses in the image

space to train our network. Our full training loss

consists of a reconstruction term, a structural term, a

5
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Fig. 5 Disentanglement of textures and structures.

perceptual term, a cosine term and an adversarial term.
The full loss is formulated as

L = � r L R + � sL S + � pL P + � cL C + � aL A ; (10)

where � r , � s, � p, � c and � a indicate the weights of �ve
loss terms.
Reconstruction Loss. The reconstruction loss
directly guides the similarity between the generated
image Î t and the ground-truth image I t at the pixel
level, which can accelerate the convergence process.L R

is de�ned as the `1 distance:

L R =





 Î t � I t








1
: (11)

Structural Loss. We also use the structural similarity
(SSIM) loss L S [37] with the window size of 11� 11
to improve the structural similarity, which is more
consistent with human perception. We compute the
structural dissimilarity between the generated imageÎ t

and the ground-truth image I t by

L S = 1 � SSIM (Î t ; I t ): (12)

Perceptual Loss. In addition to the low-level
constraints at the pixel level, we adopt the perceptual
loss [38] to compute the di�erence between the deep
features of the generated imagêI t and the ground-truth
image I t in perceptual level, which is formulated as

L P =
X

i






 � i (Î t ) � � i (I t )








2
; (13)

where � i is the output of the i -th layer of the VGG-19
[39] which is pre-trained on ImageNet [40]. We use [1,
6, 11, 16]-th layers to supervise our network.
Cosine Loss. To ensure the color consistency, we
calculate the cosine similarity between the generated
image Î t and the ground-truth image I t . Cosine
similarity measures the similarity between two vectors
by measuring the cosine of the angle between them:

L C = 1 � cos(Î t ; I t ): (14)

Discriminator Loss. We adopt the discriminator
from generative adversarial networks [41], which has
achieved great progress in image synthesis. It
constrains the distance between the distributions of
the generated imageÎ t and the ground-truth image I t ,
which is de�ned as

L A = E[log(1 � D (Î t ))] + E[logD(I t )]; (15)

where D(�) is a patch discriminator, log(�) is the
logarithm of base 2 andE[�] is the expectation.

Fig. 6 Con�dence map of di�erent views.

3.6 Implementation Details

Our framework is implemented in PyTorch. The
hyper-parameters [� r , � s, � p, � c, � a ] are set to be
[1; 10; 0:5; 1; 1] in our training. Adam optimizer [42]
is used to optimize our network with the default
parameters (� 1 = 0.9 and � 2 = 0.999) and the
learning rate is 2e � 4. We trained our model with
four source view images until convergence on the
training data, which takes approximately 7 days using
a single GeForce GTX 2080 Ti GPU. At the test time,
generating an image takes about 90 milliseconds using
a single GeForce GTX 2080 Ti GPU.

4 Experiments

4.1 Setup

Datasets. To evaluate the performance of our
view synthesis approach, we conduct experiments on
ShapeNet (Chair and Car ) [43], in which the camera
poses are represented by the rotation components
around the object's central axis. We use the same
training and testing splits used in [4, 5, 10, 21] (80% of
models for training and the remaining 20% for testing).
Each model is rendered as 256� 256 RGB images at
18 azimuth angles sampled at 20-degree intervals and
3 elevations (0, 10 and 20 degrees), for a total of 54
viewpoints per model.

We also synthesize a datasetHuman from 496 real
scanned 3D human models1. Each model is rendered
as 256� 256 RGB images at 18 azimuth angles sampled
at 20-degree intervals and 3 elevations (0, 10 and 20
degrees), for a total of 54 viewpoints per model. We
use 80% of the models for training and the remaining
20% for testing.

Note that the models in the test images are not
included in the training set.
Metrics. We use two popular metrics, Learned
Perceptual Image Patch Similarity (LPIPS) [44] and
Fr�echet Inception Distance (FID) [45], which are
generally considered to be closer to human perception,
to calculate the reconstruction errors. LPIPS computes
the distance between the generated image and the
ground-truth image in the perceptual domain. FID

1 https://web.twindom.com
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Tab. 2 Quantitative comparison on Chair , Car and Human datasets.

Dataset Method
1 view 2 views 3 views 4 views

LPIPS # FID # LPIPS # FID # LPIPS # FID # LPIPS # FID #

Chair

TBN [10] 0.182 38.446 0.109 21.159 0.093 18.891 0.086 18.051

pixelNeRF [11] 0.183 40.515 0.181 71.560 0.095 28.588 0.068 18.118

Ours 0.159 30.936 0.096 18.486 0.080 16.547 0.074 15.881

Car

TBN [10] 0.112 46.401 0.091 40.404 0.084 38.841 0.080 38.129

pixelNeRF [11] 0.155 91.252 0.145 89.553 0.101 55.887 0.083 41.496

Ours 0.117 60.387 0.089 39.052 0.080 34.472 0.075 32.290

Human

TBN [10] 0.187 92.368 0.093 51.535 0.083 51.573 0.080 52.262

pixelNeRF [11] 0.137 84.211 0.102 67.718 0.078 60.250 0.068 61.453

Ours 0.105 60.056 0.076 55.802 0.070 56.469 0.068 57.055

Average

TBN [10] 0.160 59.072 0.098 37.699 0.087 36.435 0.082 36.147

pixelNeRF [11] 0.158 71.993 0.143 76.277 0.091 48.242 0.073 40.256

Ours 0.127 50.460 0.087 37.780 0.077 35.829 0.072 35.075

calculates the Wasserstein-2 distance between the
distributions of the generated images and the ground-
truth images, which measures the realism of the
generated images.

4.2 Ablation Study

In this section, we evaluate our method with four
alternative models to assess the factors that contribute
to achieving reasonable view synthesis from sparse
input images. These models use the same setup,
training schedule, and sequence of input images as
STATE. We use the same training and test scheme as
that in state-of-the-art methods [4, 10] on Chair, Car
and Human datasets: training with 4 views and testing
with 1-4 views.
The Model without Texture-Aware Branch
(w/o Tex.). The model, deleting the texture-
aware branch but retaining the multi-view adaptive
weighting, is designed to assess the importance of the
texture-aware branch, and to verify the necessity of
the combination of both texture representation and
structure representation.
The Model without Structure-Aware Branch
(w/o Str.). The model, deleting the structure-
aware branch but retaining the multi-view adaptive
weighting, is designed to assess the importance of the
structure-aware branch, and to verify the necessity of
the combination of both texture representation and
structure representation.
The Model without Spatio-View Attention
(w/o SVA). The model is trained with multi-view
averaging fusion, to assess the importance of spatio-
view attention.

The Model without Cosine Loss (w/o Cos.). The
model with cosine loss removed is designed to assess the
importance of cosine loss.
Full Model (Full). Our full model includes the two-
branch encoder and the multi-view fusion at the feature
level with adaptive weighting.

Table 1 gives quantitative results compared with four
alternatives on Chair, Car and Human datasets. Our
full model outperforms all the alternatives on Chair
and Car datasets in terms of LPIPS and FID that are
the most recently used metrics to measure the results
from perception and realism. Note that spatio-view
attention aggregation is not used when the test input
is single view. Therefore, the LPIPS values of the
w/o SVA model and the Full model are similar on
Human dataset. On the other hand, all the models in
ablation study are trained on the input of four views,
and di�erent con�dences are assigned to di�erent views
due to the SVA module of full model. However, when
the test input is single view that has low con�dence,
the results may be a�ected. Besides, the clothed posed
human has complex color and is asymmetric, which
in
uences the learning of structures. Therefore, the
FID of the Full model is slightly worse than that of
w/o Cos. model for the input of four views on Human
dataset.

Some visual results are shown in Figure 4. It can
be seen that the w/o Tex. model can generate correct
structures, but the textures in the source images cannot
be well maintained, e.g., the head of car. The w/o Str.
model can recover the detailed textures, especially on
Car and Human datasets, but fails to keep the shape
consistency. The w/o SVA model fails to e�ectively
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Fig. 7 Qualitative comparison on Chair dataset.

Fig. 8 Qualitative comparison on Car dataset.
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