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                                              RESCUE

Figure 1. Our SDM-United Framework enables online simulation of personalized, physically realistic, and 3D-adaptive multi-agent
evacuation scenarios.

Abstract

Crowd evacuation simulation is critical for enhancing pub-
lic safety, and demanded for realistic virtual environments.
Current mainstream evacuation models overlook the com-
plex human behaviors that occur during evacuation, such as
pedestrian collisions, interpersonal interactions, and varia-
tions in behavior influenced by terrain types or individual
body shapes. This results in the failure to accurately sim-
ulate the escape of people in the real world. In this paper,
aligned with the sensory-decision-motor (SDM) flow of the
human brain, we propose a real-time 3D crowd evacuation
simulation framework that integrates a 3D-adaptive SFM
(Social Force Model) Decision Mechanism and a Person-
alized Gait Control Motor. This framework allows mul-
tiple agents to move in parallel and is suitable for vari-
ous scenarios, with dynamic crowd awareness. Addition-
ally, we introduce Part-level Force Visualization to assist
in evacuation analysis. Experimental results demonstrate
that our framework supports dynamic trajectory planning
and personalized behavior for each agent throughout the
evacuation process, and is compatible with uneven ter-
rain. Visually, our method generates evacuation results
that are more realistic and plausible, providing enhanced
insights for crowd simulation. The code is available at
http://cic.tju.edu.cn/faculty/likun/projects/RESCUE.

1. Introduction

Evacuation simulations serve as valuable tools for as-
sessing the likelihood of crowding and trampling incidents,
estimating evacuation times, and supporting virtual reality
escape training. However, no existing methods can simu-
late personalized and proxemics-aware 3D movements of
hundreds of people online. This paper aims to develop an
adaptive multi-agent 3D evacuation simulation framework.
As shown in Fig 1, our framework, called RESCUE (cRowd
Evacuation Simulation via Controlling SDM-United char-
actErs), is capable of achieving online physically realistic
simulations performing avoidance and personalized gait.

Traditional crowd simulation methods [6, 12, 22] have
explored various strategies in different scenarios. However,
due to their simplified representations, these methods fail
to integrate 3D motion with realistic behavior, resulting in
physically implausible actions. Most crowd simulation meth-
ods cannot make decisions based on scene changes and are
not designed for crowd evacuation simulation. Based on
physics engines [18], character control [4, 26, 29, 36, 37]
achieves autonomous 3D motion. However, these methods
face the lack of personalization motions and thus result in
falls and collisions in densely populated scenarios. Some mo-
tion generation methods [10, 31, 32, 43] based on diffusion
models can generate diverse 3D motions, but they still face
challenges in controllability and physical realism. Neither of



Table 1. Comparison with Related Methods

Related Work Traditional Crowd Sim-
ulation [3, 6, 7, 12, 22]

Path-Guided Motion
Generation [27, 39, 43]

Path-Guided Character
Control [29, 37, 41]

Our Method

Online Path Planning Partial ✘ ✘ ✔

3D Human Models ✘ ✔ ✔ ✔

Personalized Gait ✘ ✔ ✘ ✔

Collision Visualization ✘ ✘ ✘ ✔

Uneven Terrains ✘ ✘ ✔ ✔

these methods can directly produce realistic, personalized,
and online evacuation motions. The detailed availabilities of
the methods are summarized in Table 1.

The limitations of the existing methods are mainly due to
the significant behavioral and environmental complexities
inherent in evacuation scenarios: 1) 3D Proxemics-aware
Ability: Crowded pathways and frequent physical interac-
tions require the use of online 3D movement decision to
enable dynamic strategy adjustments, such as avoidance of
collisions and maintaining stability; 2) Personalized Gait: In-
dividuals with different attributes, such as older or disabled
persons, exhibit varying behaviors in identical situations,
adapting to the scene with different speed and performance.

Neuroscientific studies [17, 20, 35] demonstrate that hu-
mans employ a Sensory-Decision-Motor (SDM) loop [28],
integrating environmental cues through distributed neural
networks to evaluate and dynamically adjust behavior in
complex environments. In this paper, we propose an on-
line SDM-United 3D Evacuation Simulation Framework
that integrates personalized decision-making with charac-
ter control in a physics engine. This allows each agent to
perceive its surroundings and make online adjustments. To
handle congestion, we propose a 3D-Adaptive Social Force
Model for decision-making and obstacle avoidance in 3D
environments.

To achieve behavioral diversity, we introduce a
Proxemics-aware Personalization Method with a person-
alized gait controller and optimized SFM to generate indi-
vidualized behaviors for agents based on attributes such as
ages and physical conditions. Additionally, we introduce
Part-level Force Visualization, offering unprecedented in-
sights into contact forces. Our experiments demonstrate that
the proposed framework effectively adapts to uneven terrain,
maintains balance during collisions and crowd congestion,
and generates personalized behaviors. Although our experi-
ments have focused on evacuation scenarios, the framework
readily generalizes to a wide variety of multi agent environ-
ments, such as autonomous driving simulations in which
dynamic vehicles and diverse pedestrians coexist. Our con-
tributions can be summarized as follows:
• We propose the first online SDM-United 3D Evacuation

Simulation Framework, with online decision-making and
physics-based motion generation. This proxemics aware
framework can be seamlessly extended to arbitrary dy-
namic environments and supports real time parallel simu-
lation of hundreds of agents.

• We propose a 3D-adaptive Social Force Model, designing

optimized forces and personalized coefficients to enable
accurate decision-making in 3D environments. This ap-
proach ensures correct guidance for the speed of agents.

• We propose a Personalized Gait Controller, enabling
agents to generate personalized motions tailored to at-
tributes such as age and physical condition. Additionally,
a Part-level Forces Visualization is designed for analysis.

• We validate the framework in various evacuation scenarios,
demonstrating its ability to simulate diverse evacuation
events, including the effects of crowd density, corridor
width and terrain influence trampling incidents, as well as
crowd behaviors like collisions and falls.

2. Related Work
2.1. Crowd Simulation

Crowd simulation is a tool for analyzing and optimizing
crowd dynamics. The aim is to capture key phenomena
such as bottlenecks and panic-induced behaviors. Macro-
scopic models describe collective crowd movement using
fluid dynamics [5, 8, 11, 30], while providing detailed in-
sights through approaches. Social Force Models (SFM)
[14, 15, 34] are among the most widely used methods, treat-
ing pedestrians as Newtonian particles influenced by the
forces driving acceleration. Additional forces such as panic,
sliding friction, and body compression have been introduced
[6, 48]. However, these refinements often target specific
scenarios. With advances in computational power, Agent-
Based Models (ABM) have gained popularity [3, 7], simulat-
ing individuals as autonomous agents with unique decision-
making capabilities. Although the above mentioned methods
attempt to simulate the real-world escape, they rely on sim-
plified 2D representations, where force feedback can only
use unrealistic surrogate computations, leading to distorted
speed outputs. Although several attempts at physically plau-
sible 3D simulations have emerged [1, 9, 13, 46], these ap-
proaches still fall short in integrating personalized motion
control and decision-making mechanisms. Most methods
rely on generic movement patterns that overlook individual
variations and fail to construct comprehensive strategies for
handling crowd dynamics and escape scenarios.

2.2. Character Control
The practicable controllers for physics-based character

simulation remain a challenge in animation. Initial methods
predominantly rely on carefully designed control structures,
such as finite state machines and trajectory optimization, to
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Figure 2. The detailed architecture of RESCUE. Our framework simulates the neuroscience-validated paradigm (Sensory-Decision-Motor)
to achieve a realistic and personalized crowd evacuation simulation. Specifically, our framework includes: (a) Sensory: each agent senses
observations, including the fully observable self-state, the partially observable other-state, and the environment state; (b) Decision: each
agent uses Social Force Model with personalized SFM coefficients to decide its speed in the next timestep, which is then used to compute
path condition; and (c) Motor: the path condition and personal attribute of each agent are conditioned to simulate locomotion with a
personalized gait controller. The simulation then updates the states of all agents, allowing them to be sensed by the sensory module.

achieve specific motions. These approaches demonstrate the
feasibility of simulating a wide range of behaviors, but their
reliance on task-specific engineering makes them inflexi-
ble and time consuming to adapt to new tasks [4]. Recent
advances in deep reinforcement learning (DRL) greatly ex-
pand the capabilities of physics-based characters, enabling
them to perform diverse tasks, such as walking and running
[24, 44], and recovering from disturbances [16]. Designing
effective reward functions can produce natural motions, but
remains challenging. To address this, motion imitation meth-
ods [25, 38] gain popularity, where controllers learn from
reference data, either through direct tracking or adversarial
learning, to produce lifelike behaviors. Furthermore, hier-
archical control frameworks are proposed to combine low-
level imitation with high-level motion planning, enabling
characters to execute complex sequences of actions [29, 37].
However, existing methods struggle to generate realistic
behaviors in densely populated scenes, lack online decision-
making capabilities, and are insufficient in generating diverse
and personalized motions.

2.3. Motion Generation
Motion generation aims to synthesize realistic and varied

human motions. Recent advancements in diffusion models
have significantly improved the diversity and quality of mo-
tion synthesis [31, 32]. Key research directions include text-
driven motion generation, stylized motion synthesis [2, 50],
scene-aware motion generation [23, 40, 49], and human-
object interaction modeling [45]. Recent efforts [33, 47]
have also integrated physical constraints to enhance the real-
ism of generated motions. Trajectory-controlled [27, 39, 43]
and multi-person motion synthesis [42] have been explored.
However, challenges remain in generating long-duration,
physically plausible motions, particularly in multiperson and
contact-rich scenarios. Additionally, these methods usually
take time to run and are not available online.

In conclusion, all existing methods fail to accurately sim-
ulate 3D multi-agent with personalized behaviors in densely
populated escape scenarios. Therefore, we proposes the first
SDM-unified evacuation simulation framework to generate
realistic, personalized, and online 3D evacuation motions.

3. Method
3.1. Overview

The structure of our evacuation simulation framework is
shown in Figure 2. Our goal is to simulate realistic evac-
uation scenarios with diverse individuals. Given a scene
mesh, an exit location and initial positions, the framework
generates a personalized evacuation animation. Notably,
it is suitable for evacuation tasks by incorporating human-
like paradigm, while ensuring personalized decisions and
motions.

In Section 3.2, we introduce our SDM-United Framework,
comprising the Sensory, Decision, and Motor modules. The
Sensory module provides self-awareness, partial awareness
of others, and exit perception. Our 3D-adaptive SFM Mech-
anism (Section 3.3) enhances decision-making and obstacle
avoidance in 3D environments. Proxemics-aware Person-
alization is achieved through both the Decision and Motor
modules: the Decision module, with Personalized Optimiza-
tion for SDM Coefficients (Section 3.3), computes speeds
tailored to individual attributes (Section 3.3), while the Mo-
tor module, with the Personalized Gait Controller (Section
3.4), generates locomotion with personalized gaits. We also
introduce the Visualization of Part-Level Forces (Section
3.5) to aid analysis.

3.2. SDM-United Framework
The human brain follows a workflow involving sensory,

decision, and motor processes [28], and hence we develop
our framework. Each person in the evacuation process is ab-



stracted as an agent that operates in an online loop, where the
sensory module gathers observations, the decision module
computes speeds, and the motor module executes motions,
with the updated states feeding back into the sensory module
for continuous processing and making them available for the
next cycle.

Sensory. Each agent perceives its self-state sself , the
partially observable other-state sother, and the environment
state senvir. At time t, sselfi,t includes the agent’s position,
speed, and humanoid state hi,t. The other-state sotheri,t con-
tains other agents’ root positions relative to the agent, and
the environment state senviri,t . The form of hi,t and senviri,t

follows [29].
Decision. The Social Force Model (SFM) [14, 15] models

pedestrian behavior, including panic and crowd dynamics.
We propose a 3D-adaptive SFM Decision Mechanism to
compute the desired speed ṽi,t+1. The key points of the es-
cape path are found via A* search [12], and we use the SFM
to drive each agent toward the key points while avoiding
collisions, resulting in the computation of the agent’s speed
ṽi,t+1. SFM coefficients are optimized based on individual
attributes to enable personalized decisions.

Motor. We use Pacer [29] for path-following, which
computes the motion ai,t based on the speed ṽi,t+1. This
motion is non-personalized, so a Personality Gait Controller
assigns a personalized gait based on attributes. The resulting
motion is simulated in the physics engine and then sensed in
by each agent for continuous processing.

3.3. 3D-adaptive SFM Decision Mechanism
In 3D simulations, interaction dynamics differ signifi-

cantly from 2D point-based models due to physics engine
integration. While 3D collision handling prevents interpen-
etration, human-to-human interactions require substantial
adaptation—agents in 3D may stumble or fall under con-
gestion that would merely slow movement in 2D models.
Effective navigation requires detouring behavior rather than
waiting or collision. To address these challenges, we intro-
duce personalized SFM coefficient optimization and evasive
forces specifically for 3D environments. Our decision pro-
cess transforms agent i’s observations (position, speed, and
nearby agents) into desired speed ṽi,t+1 ∈ R3 for the next
timestep.

Base Forces. Our implementation enhances the basic
social force model [14] with two essential components. The
driving force guides agents efficiently toward destinations
by first employing A* pathfinding [12] to generate optimal
routes, then calculating acceleration based on the discrep-
ancy between desired and current speeds, smoothed by a
relaxation parameter. The complementary repulsive force
maintains safe inter-agent distances through exponential re-
pulsion that intensifies as proximity increases, with magni-
tude controlled by repulsion coefficient, spatial decay, and

interaction radius parameters.
Evasive Force. We propose the evasive force to evade

the front agents stopping or falling due to collisions. By
computing perpendicular directions to the desired path, the
agent can detour efficiently. The force is calculated by con-
sidering a 45° sector in front of the agent, representing the
perceived area. The evasive force Fevasive is defined as:

Fevasive = A · sgn(oi · pi) · pi, (1)

where A is a binary mask that equals 1 when there is an
obstacle in front of the agent and there is available space to
the side, and 0 otherwise. pi is the perpendicular vector to
the desired direction, and oi represents the average position
of nearby agents. This improvement aligns the SFM with
the requirements of 3D simulations.

Personalized Optimization for SDM Coefficients. In
crowd evacuation simulations, it seems not reasonable to use
uniform social force coefficients, as individuals have varying
escape abilities based on their attributes. Personalized coeffi-
cients better reflect these differences. Moreover, factors, for
example friction in the physics engine, can cause individuals
to move slower than the intended speed. To compensate
for these, we adjust the target speed setting to achieve the
desired speed in simulation. Specifically, vreal is the empiri-
cally obtained real-world escape speed from literature (see
Supplementary), vsim is the simulated speed, and vsetting is
the speed input to the engine. We run agents of different
attributes on a straight path in the physics engine and opti-
mize vsetting so that vsim approximates vreal. We categorize
agents into five groups, i.e. the young, middle-aged, elderly,
patients, and disabled1. Through this process, we determine
personalized coefficients with an accuracy of 0.005 m/s for
use in simulation.

Final Decision. The final desired speed ṽi,t+1 is deter-
mined by combining the forces:

ṽi,t+1 = vi +∆t · (Fdrive + Frepulsive + Fevasive), (2)

where ∆t is the timestep size, and vi is the current speed
of agent i. This framework ensures a smooth, collision-free,
and efficient movement toward the destination.

3.4. Personalized Gait Control
We propose a Personalized Gait Controller that generates

personalized escape gaits by transforming unpersonalized
actions to personalized actions based on agent attributes.
This section corresponds to the Motor process described
in Section 3.2. Pacer [29], a robust physics-based con-
troller, serves as our backbone for path-following. Its policy
πPACER tracks 2D trajectories τi,t, sampled based on the
desired speed. Given the state S (agent’s position, humanoid

1This classification is solely for scientific purposes, with no intention to
offend or make assumptions based on age or disability.



state, and environment state), the action ai,t is computed by
πPACER.

People with different attributes have different escape gaits.
We correspond these gaits to a finite number of personal-
ization styles in the 100style dataset [19]. This converter
is a diffusion-based generative model, taking personalized
gait labels, characterless action frames, and randomly sam-
pled Gaussian noise as inputs, and outputs personalized
action frames given to the characterless action frames corre-
sponding to the personalized gait labels. This requires the
characterless action frames as inputs and the personalized
action frames as ground-truths used during training should
be matched.

Gait Frame Matching. Inspired by [21], a gait cycle
can be fundamentally divided into 8 events [21]. We only
use 4 events which are Initial Contact, Mid Stance, Oppo-
site Initial Contact and Feet Adjacent. By calculating the
distance between the two ankles, the image can be obtained
similar to the sine-cosine function. We observe that the
four events are exactly at the peak, zero, trough, zero of the
wave. To ensure gait connectivity for gait frame matching,
we assign gait values for all gait frames. We identify the
keyframes of four events based on the above pattern and
assign gait values of 0, 0.3, 0.5, and 0.75, while linearly
interpolating the non-keyframes between them. We match
personalized gait frames (excluding neutral style data in
100STYLE [19]) and non personalized gait frames (neutral
style data in 100TYLE [19]) which have the same gait values
as data pairs. When forming multiple candidate data frames,
we select the two frames with the closest joint angles to
match. During training, we also perform data augmentation
by randomly assigning the same rotation to the root joints of
the data pair.

Figure 3. Personalized Gait Converter

Network of Personalized Gait Converter. We use the
CAMDM network [2] as backbone to implement the non-
personalized action frame ai,t to personalized action frame

ãi,t, see Figure 3. This network is a probability diffusion
model. At each denoising step, the model takes as input
a noisy motion sample at

i,t, diffusion step t, along with
personalized gait label c, then learns to predict the original
clean ã0

i,T (See Figure 3):

a0 = G(at, t; c). (3)

The gait converter only involves single frame action conver-
sion, and we use MSE loss Lsamp and 3D joint position loss
Lpos. The parameter λsamp and λpos are hyperparameters
that control the weights of Lsamp and Lpos in the total loss
function:

L = λsampLsamp + λposLpos. (4)

Lower body movement is affected by terrain, and upper
body movement is more flexible [41]. Hence, in the simula-
tion of the physics engine, we replace the upper body actions
of non-personalized action frames ai,t with the upper body
actions of personalized action frames ãi,t. The simulation
of actions in the physics engine can be sensed by the sensory
process for the decision and motor in the next timestep.

3.5. Visualization of Part-Level Forces
Each physical agent consists of 24 distinct body parts.

Each body part contributes to the overall motion of the phys-
ical character. The interactions between these characters, as
well as their contact with the environment, generate forces
that drive their movements. In evacuation scenarios, assess-
ing the forces acting on each individual is crucial for miti-
gating potential hazards in crowded situations. We integrate
force sensors into each body part of the characters, which are
capable of recording the magnitude of contact forces exerted
at every timestep. To visualize the forces acting on part-level,
we design a color-based mapping approach. Specifically, a
gradient is employed, with lighter colors indicating lower
forces and darker colors representing higher forces.

To validate the effectiveness of our force visualization
method, we conduct part-level collision simulations under
various scenarios. Some examples are shown in Figure 4.

Figure 4. Visualization of forces under multiple collisions.

4. Experimental Results
4.1. Comparison Methods

Since there is no personalized 3D evacuation simulation
method, we compare our approach with three related meth-
ods: Social Force Model [14, 15], OmniControl [43] and



Figure 5. Qualitative comparison.
MaskedMimic [37]. Among the methods considered, only
the Social Force model [14, 15] is originally designed for
crowd simulation, while OmniControl [43] is a motion gener-
ation method and MaskedMimic [37] is a Character Control
method. We adapts OmniControl [43] and MaskedMimic
[37] to accomplish the crowd evacuation task as well for a
fair comparison. The implementation details are as follows.
(1) Social Force Models [14, 15] : We first use A* [12]
to find waypoints to the exit, then the individual agents of
Social Force Model utilize strategies to reach each waypoint
step by step. (2) OmniControl [43] : we first use A* [12]
to find waypoints, calculate the path and interpolate the path
points into dense trajectories, which serve as root joint condi-
tions for generating escape motions. (3) MaskedMimic [37]
: we also first use A* [12] to find waypoints, compute the
escape trajectory, and the path-following task is employed
to control the character’s escape actions.

4.2. Quantitative Comparison

To validate the performance of our framework in evacu-
ation tasks, we compare it with OmniControl and Masked-
Mimic across four scenes. We evaluate the average escape
success rate and the average number of falls for 50 agents
over 1000 frames per scene, with each scene run 10 times.

Due to the OmniControl not having physical realism, it does
not produce falls, so the fallen Count is not calculated. As
shown in Table 2, our method outperforms OmniControl
and MaskedMimic in all scenes, with higher success rates
and fewer falls. The OmniControl has insufficient control-
lability for long-distance movements, resulting in agents
deviating from trajectories and stopping prematurely. Com-
pared to MaskMinic, in our method, agents demonstrate
better pathfinding, mutual avoidance, and balance abilities.

Table 2. Quantitative comparision.

Method Average Success Rate Average Fallen Count

OmniControl 0.48 —
MaskedMimic 0.60 18.55
Ours 0.84 12.26

4.3. Qualitative Comparison
To validate the superiority of our proposed framework,

we use the above-mentioned three methods for compari-
son. Figure 5 shows the evacuation processes and evacua-
tion motions executed by the three comparison models and
our framework on two classic evacuation scenarios and one
large-scale scenario. The Social Force Model is a 2D ap-
proach that can only depict the positional changes of people
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Figure 6. Ablation study results.
during evacuation, and it cannot represent 3D human move-
ment. It assumes that individuals will always reach their
desired position when making decisions, which make the
simulation distorted. OmniControl fails to correctly gener-
ate long-distance trajectory-constrained actions, leading to
motion distortion, trajectory confusion, and premature stop-
ping. MaskedMimic, due to the lack of a collision avoidance
mechanism, may cause collisions during linear movement,
leading to crowd accumulation. Furthermore, the actions
of all agents tend to be similar, failing to reflect individ-
ual variations. There is also no noticeable distinction in
speed personalization among any of the three methods. Our
approach achieves more rational evacuation processes and
simulates personalized evacuation motions tailored to indi-
viduals with different attributes. More details can be found
in demo video and supplementary document.

We also conduct a user study to evaluate our method,
along with OmniControl and MaskedMimic, in terms of
the plausibility of the evacuation process, the realism and
personalization of evacuation motions, and the effectiveness
of visualization part-level forces. For more details, please
refer to the supplementary document.

4.4. Ablation Study

Qualitative comparison. In qualitative comparison, we
compare the pipeline of our framework after removing the
3D-adaptive SFM Decision Mechanism, the Personalizing
Gait Control Motor, and both components together, which
degrades into the PACER[29] baseline. For all methods, we
first find waypoints. Figure 6 shows that, when it comes
to excluding 3D adaptive SFM while keeping personalized
gait control, the generated the agents fail to avoid each other,
leading to collisions and crowd accumulation. As a result,
some agents are unable to escape, and their escape speeds
are nearly identical. This indicates that the 3DA-SFM De-
cision Mechanism effectively prevents potential collisions
as much as possible and offers more rational escape pro-
cesses tailored to individual attributes. Moreover, although
removing the Personalized Gait Control Module allows most
agents to fully escape, their gaits and movements become
similar. While Personalized Gait Control Motor help to
generate personalized motions for agents based on their at-
tributes. In contrast, the complete pipeline can dynamically
adjust escape routes based on evacuation speed tailored to
each agent’s human attributes, minimizing collisions and
ensuring personalized escape gaits that reflect individual
characteristics. More details can be found in demo video



and supplementary document.
Speed Diversity. We conducted experiments across

six scenarios, including four small-scale scenarios with 50
agents each and two large-scale scenarios with 100 agents.
Agents were divided into five personalized groups—the
young, the middle-aged, the old, patients, and the disabled,
as well as a non-personalized group. Each category reflects
distinct attributes such as age and mobility style.

Figure 7 illustrates the speed distributions across all cate-
gories. The results reveal distinct patterns aligned with mo-
bility attributes. For instance, the young achieve the highest
median speeds and greater variability, reflecting their agility.
In contrast, the old and patients exhibit slower speeds with
narrower ranges, corresponding to their reduced mobility.
Similarly, the disabled show limited speeds due to physi-
cal constraints, while the non-personalized group displays
average speed distributions.

Figure 7. Boxplot of speed distributions across categories.

4.5. Illustrative Experiment
Our framework can reflect many real-life evacuation in

various scenarios. This is more helpful and meaningful for
evacuation analysis.

Analysis of Stampede Incidents. Stampede incidents
often occur in bottleneck areas. We analyze the impact of
evacuation density and corridor width on stampede occur-
rences at bottleneck locations. In a 2-meter-wide corridor,
we randomly place 120, 80, and 40 agents to simulate evacu-
ation scenarios, and the results are shown in Figure 8. Under
the same corridor width, the greater the number of evacuees,
the more severe the trampling. To prevent stampedes with
120 agents in the same location, we test corridor widths of 2
meters, 3 meters, and 4 meters, with the results displayed in
Figure 9. Our results indicate that, for the same evacuation
density, narrower corridors lead to more severe trampling.

By analyzing the entire evacuation process, it becomes
evident that stampede incidents occur when overcrowding
during evacuation causes individuals to fall and be unable to
recover in time due to unstable walking or standing, being
stepped on, or being crushed underfoot. This chaotic situa-
tion is exacerbated by bottlenecks, where large numbers of
people attempt to pass through narrow areas, significantly

increasing the risk of trampling. Such scenarios present se-
rious safety hazards. Please refer to the demo video for the
entire simulation process.

120 Agents 80 Agents 40 Agents

Simulation

Start

Simulation

End

Figure 8. Evacuation simulation results with the same corridor
width but different evacuation density.
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Figure 9. Evacuation simulation results with the same evacuation
density but different corridor widths.

Analysis of the impact of terrain on evacuation. Our
framework can simulate the impact of various terrains on
crowd evacuation. In the same scene, we incorporate normal
ground, uneven ground, ground with discrete obstacles, and
slippery ground (with reduced friction), and test 50 individu-
als starting from the same initial position to escape from the
same room. Results are presented in Figure 10.

Figure 10 illustrates the different escape processes of in-
dividuals within the same scene, using the same number of
participants and identical initial positions, but navigating
various types of terrain. This demonstrates that terrain fac-
tors signifcantly influence motor control and further impact
perception and decision-making in subsequent steps, Ad-
ditionally, uneven and slippery surfaces are more likely to
cause individuals to fall.
5. Conclusions

We propose a crowd evacuation simulation framework
that mimics the sensory-decision-motor flow of a brain-like
intelligence, enabling personalized simulations at the indi-
vidual level. Additionally, we design part-level force visual-
ization, which enhances evacuation analysis. Our framework
is capable of simulating the personalized and diverse evacua-
tion dynamics of individuals with varying attributes through-
out the evacuation process. The escape motions produced
by our method outperform existing methods. Through this
framework, we can also validate many common phenomena
observed during evacuation scenarios, offering new insights
into crowd evacuation and public safety.
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Figure 10. Evacuation simulations in various terrains.
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