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A person sits on a chair 

near a sink.

A person touches the wall 

between two chairs.

A person stands by a window 

and a bed.

A person sits on the sofa and 

puts right foot on the sofa.

Three persons stand near a bed. Many persons sit around the table.

(a)

(b)

(c)

A person sits on a chair and 

touches a table with head down.

A person stands and bends down 

to touch the table with right hand.

(d)

Figure 1: Given a textual description, our approach can naturally and controllably generate semantically consistent and phys-
ically plausible human-scene interactions for various cases: (a) interactions guided by spatial relationships, (b) interactions
guided by multiple actions, (c) multi-human scene interactions, and (d) human-scene interactions combining the above inter-
action types, which cannot be generated using prior works.

Abstract

Naturally controllable human-scene interaction (HSI)
generation has an important role in various fields, such as
VR/AR content creation and human-centered AI. However,
existing methods are unnatural and unintuitive in their con-
trollability, which heavily limits their application in prac-
tice. Therefore, we focus on a challenging task of natu-
rally and controllably generating realistic and diverse HSIs
from textual descriptions. From human cognition, the ideal
generative model should correctly reason about spatial re-
lationships and interactive actions. To that end, we pro-
pose Narrator, a novel relationship reasoning-based gen-
erative approach using a conditional variation autoencoder

for naturally controllable generation given a 3D scene and
a textual description. Also, we model global and local spa-
tial relationships in a 3D scene and a textual description
respectively based on the scene graph, and introduce a part-
level action mechanism to represent interactions as atomic
body part states. In particular, benefiting from our relation-
ship reasoning, we further propose a simple yet effective
multi-human generation strategy, which is the first explo-
ration for controllable multi-human scene interaction gen-
eration. Our extensive experiments and perceptual studies
show that Narrator can controllably generate diverse in-
teractions and significantly outperform existing works. The
code and dataset will be available for research purposes.
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1. Introduction
Throughout daily life, humans constantly interact with

their surroundings and these interactions establish their re-
lationships with the scenes. Naturally controllable human-
scene interaction (HSI) generation has significant value and
numerous applications in areas such as VR/AR content cre-
ation, human-centered AI, and generating training data for
other computer vision tasks. In this paper, we tackle a chal-
lenging task of generating realistic and plausible human-
scene interactions from natural language textual descrip-
tions, particularly exploring more liberal forms of HSIs with
complex spatial relationships, multiple actions, and multi-
ple persons, as shown in Fig. 1.

Prior HSI methods [36, 13, 31] mostly focus on the phys-
ical geometry between humans and scenes, but lacks the se-
mantic control of generation. Some works [30] further in-
corporate generative controls, but always coarsely describe
them as action labels, not sentences. A recent method,
COINS [37], specialises semantic control of interactions as
combinations of actions and objects. However, additional
manual effort is required to explicitly specify object in-
stances when faced with multiple objects of the same kind.
Moreover, binding actions to objects by force is not intuitive
or reasonable. For example, a natural case, “standing by the
window”, does not contain a direct and explicit interaction
object, and COINS cannot deal with it. These unnatural and
constrained control ways fall short of meeting the needs of
users and limit their applicability.

Humans usually naturally describe people who have di-
verse interactions in different places through spatial per-
ception and action recognition. Thus, an ideal generative
model should correctly reason about spatial relationships
to obtain the human position that respects textual descrip-
tions while exploring degrees of freedom about interactive
actions to generate natural interactions. Specifically, spa-
tial relationships can be represented as the interrelationship
among different objects in a scene or a local area, and inter-
active actions are specified by atomic body part states, such
as a person’s left feet treading, torso leaning, right hand tap-
ping, and head bowing. How to reason about these relation-
ships and utilize these powerful cues for naturally control-
lable generation is a pressing problem.

To address these issues, we propose Narrator, a novel
generative approach that incorporates a transformer-based
conditional variational auto-encoder (cVAE) framework
and leverages relationship reasoning to naturally produce
diverse and plausible HSIs given the scene and textual de-
scription. The diversity and complex interrelationship of
objects in scenes can lead to misjudgements of human po-
sition and unnatural interactions. Therefore, instead of un-
derstanding scenes or specific objects in isolation as pre-
vious works, we employ the scene graph to represent spa-
tial relationships and propose a Joint Global and Local

Scene Graph (JGLSG) mechanism to provide global per-
ception for subsequent localization, allowing for interac-
tion generations guided by spatial relationships (in Fig. 1
(a)). As body part states are key for modeling realistic
and text-faithful interactions, we introduce a Part-Level Ac-
tion (PLA) mechanism to establish the correspondence be-
tween human body parts and actions, allowing for interac-
tion generations guided by multiple actions (in Fig. 1 (b)).
Ultimately, we feed the multi-modal features extracted by
JGLSG, PLA and PointNet++ [24] as a joint conditional
embedding into cVAE, thus obtaining a unified latent space
of the human body. To train and evaluate our method, we
annotate multi-level text descriptions from coarse to fine for
each frame of the PROX dataset [12].

In real-world scenes, there are more situations where
multiple people are interacting independently or in a con-
nected way. Unfortunately, there is no work that solves this
problem in an automatic and controlled way, but rather re-
quires certain expertise and manual effort [18, 36]. Also, a
straightforward way by using a single-person method like
COINS [37], i.e., sequential per-person generation and op-
timization, does not properly understand multi-person text
descriptions, leading to unreasonable spatial distributions
and unnatural interactions of the generated results. In con-
trast, benefiting from the flexibility and reusability of our
JGLSG and PLA mechanisms, we propose a simple yet
effective multi-human generation strategy. We reason out
each person’s interaction information from the text and
globally update each generation to establish their relation-
ships, thus achieving a better spatial distribution than simple
multiple generation. To our knowledge, this is the first nat-
urally controllable and user-friendly generative model for
multi-human scene interaction (MHSI) (in Fig. 1 (c)).

In brief, our contributions can be summarized as:
• we present Narrator, a new generative method for nat-

urally controllable human scene interaction generation
given textual descriptions in natural language.

• we propose the JGLSG and PLA mechanisms for rela-
tionship reasoning considering narrator’s perspective.

• we propose the first naturally controllable MHSI gen-
eration strategy to approximate the real world.

2. Related work
Human-Scene Interaction (HSI). Human-scene inter-

action, a challenging task in computer vision, recently has
received increasing attention. Early HSI methods [16, 26,
28, 18, 7, 20] focused on scene affordance and function un-
derstanding, but the lack of relevant high-quality datasets
and valid human representations lead to low-fidelity inter-
action and poor results. PiGraphs [26] learns the proba-
bility distribution of each verb-object category from real-
world interactions to generate interaction snapshots, but the
simple representation of the 3D human as a skeleton pre-



vents reasoning about contact details. Aided by the para-
metric body model SMPL-X [21] and the dataset PROX
[12] recording human activities in 3D scenes, efforts in re-
cent years continually iterate and refine towards realism and
naturalism. Zhang et al. [36] trains a conditional varia-
tion autoencoder (cVAE) to predict semantically plausible
3D human poses with scene depth and semantics, and apply
geometric constraints for physical plausibility. POSA [13]
proposes a human-centric contact map that encodes con-
tact probability and semantic information for each vertex
on the body mesh, and uses these to guide the search for its
most likely position in the scene. Although these methods
[36, 35, 13, 15] model interactions with different represen-
tations, they cannot support controllable interaction synthe-
sis. Given the action sequence, Wang et al. [30] propose
a three-stage framework to place humans into scenes, pro-
duce feasible paths, and complete motion synthesis. COINS
[37] represents semantic control as combinations of actions
and objects, similar to PiGraph [26], and combine atomic
interactions into compositional interactions.

COINS is the SOTA HSI method, and the most relevant
work, but our work has the superiority in many aspects: 1)
The control way of COINS is not intuitive and requires ad-
ditional manual selections for object instances, while our
method is fully automatic conditioned on natural language
description; 2) Our method has more flexible spatial local-
ization ability and can handle non-direct interactions (e.g.,
standing by the window), while COINS fails; 3) COINS has
limited interaction types and combinations, whereas ours is
more diverse and we can simultaneously support more con-
straints (e.g., left/right hand lift, bend and crouch); 4) We
are the first to explore and achieve controllable MHSI gen-
erations via our relationship reasoning.

Text-guided Action & Object Grounding. Grounding
human actions and objects in scenes from textual descrip-
tions are important and meaningful tasks that have received
much exploration. For text-guided action grounding, re-
cent works explore advances in natural language with many
amazing results [2, 3, 34, 27, 14, 10, 22, 4, 11]. CLIP-Actor
[34] utilizes multi-modal perception and semantic match-
ing to synthesize the best matching action sequences from
a text-visual coupling perspective. Guo et al. [11] propose
a two-stage pipeline to implement the prediction from input
text to visual action length and then to motion generation.
On the other hand, 3D object grounding aims to locate the
most relevant target object in 3D point cloud scenes condi-
tioned on textual descriptions [6, 33, 9, 25, 19].

Different from the above-mentioned, our approach takes
more account of possible human interactions in the scene
and refines these into the body part states. Meanwhile, for
better localization and grounding, we unite position features
encoded from textual descriptions and 3D scenes into the
conditional embedding of the cVAE.

3. Overview
Our goal is to naturally generate human-scene interac-

tions that are semantically consistent with textual descrip-
tions and physically plausible with scenes. Fig. 2 shows the
framework of our approach. To this end, we propose a novel
generative approach, Narrator, with a transformer-based
conditional Variational Auto-Encoder (cVAE) network ar-
chitecture (Sec. 4.1). Specifically, in contrast to existing
works that consider scenes or objects in isolation, we design
a Joint Global and Local Scene Graph (JGLSG) mechanism
to reason about complex spatial relationships for global lo-
calization perception (Sec. 4.2). In addition, people simul-
taneously engage in diverse interaction activities with dif-
ferent body parts. This inspired us to introduce a Part-Level
Action (PLA) mechanism for realistic and diverse interac-
tions (Sec. 4.3). Meanwhile, we introduce an Interaction
Bisector Surface (IBS) loss to obtain better generation re-
sults during scene-aware optimization (Sec. 5). We further
broaden into multi-human fields and ultimately facilitate the
first step to MHSI (Sec. 6).

Here we give the representation of the scene, the body
mesh and the textual description. We denote the scene as
S = (Vs, Ss), where Vs and Ss stand for vertices and
per-vertex semantic labels, respectively. We represent the
3D human body mesh using a SMPL-X model [21] and a
POSA representation [13]. Specifically, the SMPL-X body
mesh MSMPL-X = (Vb, Fb) with vertices Vb ∈ R10475×3

and triangles Fb, is parameterized by a differentiable func-
tion F (t, r, β, p, h), where t ∈ R3 is the global translation,
r ∈ R6 is a continuous representation [39] of the global ori-
entation, β ∈ R10 is the body shape parameters, p ∈ R63

is the body pose parameters, and h ∈ R24 is the hand pose
parameters. We also extract contact labels Lb using POSA.
Overall, we define the body mesh as M = (Vb, Fb, Lb).
Besides, the textual description about HSI includes various
levels of interaction detail, defined as a sequence of words
W1:N = [w1, . . . , wN ] from the English vocabulary.

4. Method
4.1. Network Architecture

For naturally controllable HSI generation, we employ a
transformer-based cVAE architecture that can handle multi-
modal information including scenes and textual descrip-
tions, and model the probability p (M | S,W1:N ). We de-
scribe the details of each part as follows.
Condition Module. The condition module takes a 3D scene
and a textual description as input, and outputs a joint con-
ditional embedding. First, we employ PointNet++ [24] to
extract the scene S into 256-dimension scene features fs.
Then, to reason the spatial and structural relationships, the
scene and textual description are simultaneously input to the
JGLSG to obtain the scene graph including human nodes,
and the scene graph feature fsg is obtained by encoding it
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Figure 2: Overview of the proposed Narrator framework. Given a scene and a textual description, multi-modal features
including scene features, scene graph features, and action features are extracted (a), where the latter two are reasoned through
our Joint Global and Local Scene Graph (b) and Part-Level Action (c), respectively. These features are then concatenated as
a joint conditional embedding and fed into the transformer-based cVAE framework for human-scene interaction (d).

using a Graph Convolutional Network [17]. In addition, to
reason about the human-action relationship, the action com-
bination parsed from the textual description is fed into the
PLA for mapping to atomic body part states, and then the
Action Encoder encodes them as the action feature fa. Fi-
nally, these three features are concatenated as a joint condi-
tional embedding fce.
Transformer Encoder. We first utilize a fully-connected
layer (FC) to encode human body mesh M as a high-level
embedding and concatenate it with joint conditional embed-
ding fce as input. On top of the encoder, we apply aver-
age pooling to the output, followed by another FC to pre-
dict the Gaussian distribution Q (z | S,W1:N ,M). Finally,
we sample the latent code z from the distribution using the
reparameterization trick, as one of the decoder inputs.
Transformer Decoder. In the decoder, we use a SMPL-X
template body with person-dependent shape parameters as
the body token to improve the generalization of our model
and achieve finer-grained control. We concatenate the latent
code z with the joint conditional embedding fce as another
input for the decoder. The output body mesh is fed into the
SMPL-X regressor [37] to regress with consistent SMPL-X
body parameters for loss supervision.

4.2. Joint Global and Local Scene Graph
Reasoning about spatial relationships can provide scene-

specific clues to the model, which plays an important role
in achieving natural controllability for HSI. Therefore, we
design a Joint Global and Local Scene Graph mechanism,

which is implemented through the following three steps.

Global Scene Graph Generation: Given the scene, we
use a model [40] pre-trained on 3DSGG [29] to generate a
global scene graph, i.e., GSG = (V, E),V = {oi}ni=1 , E =
{(oi, rij , oj)k}mk=1, where oi, oj are the objects with cat-
egory labels, rij is the relationship between oi and oj , n is
the number of objects, and m is the number of relationships.

Local Scene Graph Generation: Our model adopts an off-
the-shelf semantic parsing toolkit [32] to recognise the syn-
tactic structure of the textual description and extract a set of
triplets {Tij}, where Tij = (si, pij , oj) defines a triplet of
subject-predicate-object. The output of the syntactic parser
is not sufficient to represent the human spatial location, es-
pecially the number of objects in the scene. Hence, we
build quantity checker for detecting its quantifier expres-
sion, and duplicating object nodes for the local scene graph
LSG (e.g., “three plants” in textual descriptions → three
“plant” nodes in LSG).

Scene Graph Matching: Then, we correspond the local
scene graph to the nodes in the global scene graph based on
same object semantic labels. During this process, two ob-
ject category concepts can be matched if there is an overlap
between their synsets, lemmas, or hypernyms (e.g., “arm-
chair” → “chair”). According to the corresponding result
of each object, we add a virtual human node by extending
the edge relationships for providing the generated position,
so we obtain a final scene graph SG that is consistent with
both the scene and the textual description.



Part Interaction

Head head up, head down, head left, head right
Torso sit, sit down, lean, lie, lie down
(L/R) Arm stretch, bend, straight, supported, raise, put
(L/R) Hand touch, use, hold, support, supported, type,

write, open
(L/R)
Lower body

stand, stand up, step, step up, step down,
step back, walk, run, move, crouch, turn
around, raise, put

Table 1: List of body part actions, where (L/R) indicates the
left and right of the part.

4.3. Part-Level Action

Human interactions in the scene are composed of atomic
body part states, and hence we propose a part-level ac-
tion mechanism to select the important parts and disregard
the irrelevant parts from the given interactions. Specif-
ically, we explore richer interactive actions than existing
works [30, 37] and correspond these possible actions to the
five main human body parts: head, torso, left/right arm,
left/right hand, and left/right lower body, as shown in Tab.
1. Also, we use the one hot vectors Ea and Ebp to represent
these actions and body parts, respectively. Then we con-
catenate them based on our proposed correspondence for
subsequent encoding.

For interaction generation guided by multiple actions,
the attention mechanism of the transformer network is em-
ployed to learn the different part states of the SMPL-X body
mesh. Given a combination of interactive actions, the at-
tention between its corresponding body part and all other
actions for each action, is automatically masked for each
action. Taking the example of “a person crouches on the
floor using a cabinet”, crouching corresponds to the state of
the lower body, and hence the attention of other parts tokens
will be masked to zero.

5. Scene-aware Optimization
We perform scene-aware optimization with geometric

and physics constraints to improve the generation results,
following [36, 13, 37]. Throughout the optimization pro-
cess, it ensures that the generated poses do not deviate while
encouraging contact with the scene and constraining the
body mesh to avoid interpenetration with the scene surface.
Given the scene mesh S and generated SMPL-X parame-
ters, the optimization loss is given by:

Lopt = Lcont + Lcoll + LIBS + Lreg, (1)

where Lcont encourages body vertices to contact with the
scene mesh, Lcoll is the signed-distance-based collision
term defined in [36], and the Lreg is a regularizer that penal-
izes SMPL-X parameters deviating from the initialization.

A further addition we make over existing HSI methods is
adopting the Interaction Bisector Surface (IBS) [38], which

is the set of points equidistant from two sets of points sam-
pled on the scene and the human, respectively. For our task,
we modify it as additional loss supervision LIBS:

LIBS =
∑
vp∈V

dps , (2)

where V denotes the set of all points in the IBS point set
that satisfies either penetration or corresponds to the body
vertices with contact labels, and dps indicates the distance
from point vp to the scene.

For more details regarding the training and optimization,
please refer to the Supp.Mat.

6. Multi-Human Scene Interaction
In real-world scenes, many situations are not just one

person interacting with the scene, but multiple people in-
teracting independently or in an associated way. However,
due to the lack of MHSI datasets, existing methods fail to
handle this task in a controlled and automatic manner, but
require additional manual effort. To this end, we propose a
simple but effective strategy for MHSI, using only existing
single human datasets.

Given a textual description about MHSIs, our model first
parses it into multiple local scene graphs LSGi and hu-
man interactive actions IAi. We define the candidate set as
Sc = {(LSGi, IAi)}li=1, where l is the number of people.
For each element of the candidate set Sc, we first feed it into
Narrator together with the scene S and the corresponding
global scene graph GSG, subsequently performing the op-
timization process. To handle collisions between humans,
we additionally introduce a loss LHH during the optimiza-
tion process as follows:

LHH =
∑
i

ΨH(vi), (3)

where ΨH(vi) denotes the signed distance of vertex vi of
the generated body mesh to other persons.

Then, when the optimization loss is below a threshold
determined by experimental experience, we accept this gen-
eration and simultaneously update GSG by adding the hu-
man node. Otherwise, we consider the generation result im-
plausible and update GSG by pruning the corresponding ob-
ject node. It is worth noting that this update way establishes
the relationship between each generation and the previous
results and avoids a certain degree of crowding, allowing
for a better spatial distribution and more realistic interac-
tion than simple multiple generation.

These procedures can be formulated as:
Ig = Narrator(S,GSGi,LSGi, IAi),

Ig = Opt(Ig),
GSGi+1 = Update(Ig).

(4)

With this design, our model can deal with multi-person
interaction generation trained on existing datasets.



7. Experiments
7.1. Datasets

As there is no existing dataset suitable for our task, we
annotate all video frames from PROX [12] with their corre-
sponding textual descriptions about interactions to evaluate
our natural and controllable HSI generation. Thus, simi-
lar to Sr3D [1], we design a combinatorial template to ac-
curately describe human interaction and location in natural
language descriptions:

< subject >< action >< object-class >
< spatial-relationship >< anchor-class(es) >,

(5)

where the action is taken from the motion labels in BABEL
[23] and can be described as multiple actions. Please refer
to the Supp.Mat. for details.

To demonstrate the generalisation capability of the pro-
posed framework, we further evaluate it on Matterport3D
[5] and ScanNet [8], which both provide large-scale recon-
structed 3D scenes. Please note that our framework does
not utilize Matterport3D and ScanNet for training.

7.2. Baselines
Currently available methods do not allow for naturally

controllable HSI generations directly from textual descrip-
tions. Thus, we modify three state-of-the-art HSI methods
and train their official models using the same dataset.
PiGraph-Text. PiGraph [26] generates scene placement
and human skeletons from interaction category specifica-
tions. We remove the scene placement step, represent the
body with SMPL-X model and replace verb-noun pairs with
textual descriptions. We denote this modified PiGraph vari-
ant as PiGraph-Text.
POSA-Text. POSA [13] populates 3D scenes with humans
guided by per-vertex contact features, but lacks effective
control. To incorporate semantic guidance, we first generate
body meshes that match textual descriptions and then place
them in the appropriate positions using POSA. We denote
this modified POSA variant as POSA-Text.
COINS-Text. COINS [37] synthesizes HSIs given inter-
action semantics as action-object pairs. However, COINS
only works for relatively limited interaction combinations
and cannot handle complex spatial relationships. Therefore,
we extend more interactions and modify it to a two-stage
process: first find the area of possible interactions based on
BERT and then run COINS as is within that area. We denote
this modified COINS variant as COINS-Text and present
fairness experiments for COINS in the Supp.Mat.

7.3. Evaluation Metrics
Physical Plausibility. From the physical perspective, we
evaluate the contact and non-collision scores between the
generated body and scene mesh. The former is calculated
as the proportion of actual contact vertices for all body ver-
tices with contact labels, while the latter is calculated as

(a) Binary Perceptual Study

(b) Scoring Perceptual Study
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Figure 3: Perceptual study results (anonymized and order-
randomized) comparing our approach against three base-
lines. In the binary perception study (a), the percentage
numbers indicate the proportion of respondents who pre-
ferred our approach compared to another baseline. In the
scoring perception study (b), the different colored bars in-
dicate the percentage of corresponding ratings.

the ratio of the number of body vertices with non-negative
scene SDF values and the number of all body vertices.
Diversity. We perform K-Means (K = 50) clustering on
the generated human-scene interactions and report: (1) the
entropy of the cluster ID histogram, and (2) the cluster size,
i.e., the average distance between the cluster center and the
samples belonging in it.
Perceptual Study. We evaluate the interaction realism and
the accuracy of generated results by conducting perceptual
studies, which consisted of two main parts: (1) we perform
a binary-choice perceptual study in which samples gener-
ated by different methods based on the same textual descrip-
tion are displayed, and the respondents are asked to select
the more realistic and natural sample; (2) the respondents
are also asked to rate the accuracy and the consistency be-
tween shown interaction samples and textual descriptions,
from 1 (strongly disagree) to 5 (strongly agree). Please note
that the order is randomly swapped in each display. For
more details regarding the perceptual studies, please refer
to the Supp.Mat.
7.4. Comparison
Perceptual study. Fig. 3 shows the results of the percep-
tion study in terms of accuracy (correspondence to the tex-
tual descriptions) and realism. Respondents perceive our
generated results as better matching the textual descriptions
compared to the three baselines, while our generations are
also clearly preferred in terms of realism.



Methods Perceptual Accuracy (↑) Physical Plausibility Diversity

Contact (↑) Non-Collision (↑) Entropy (↑) Cluster Size (↓)

PiGraph-Text 2.81±1.30 0.84 0.81 3.56 1.75
POSA-Text 3.14±1.43 0.72 0.96 3.73 1.96
COINS-Text 3.48±1.35 0.91 0.93 3.98 1.83

Ours 4.02±0.97 0.94 0.98 4.16 1.54

Table 2: Quantitative comparison with three baselines. Perceptual accuracy is used to evaluate the degree of consistency with
textual descriptions. Contact score and non-collision score are used to evaluate interaction realism and plausibility. Entropy
and cluster size are used to evaluate interaction diversity.
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Figure 4: Qualitative comparison of interactions generated with our approach and three baselines. We present different textual
queries in columns and different methods in rows. Overall, our interaction generations are semantically more consistent with
textual descriptions and physically more realistic with scene interactions.

Quantitative comparison. Tab. 2 shows the quantitative
results compared to the three baselines. It can be seen that
our approach has the highest accuracy and the best match to
the textual description. our approach achieves higher con-
tact and non-collision scores in terms of physical plausi-
bility, demonstrating our ability to to effectively alleviate
scene-body interpenetration and maintain plausible contact
relationships. As for the diversity metrics, our approach has
greater cluster entropy and smaller cluster size, achieving
diversity with guaranteed accuracy.

Qualitative comparison. We further provide qualitative
comparisons in Fig. 4 with the three baselines. PiGraph-
Text suffers from more severe penetration problems due to
the limitations of its own representation. POSA-Text re-
quires finding body placements and tends to fall into local
minimums during optimization, thus generating poor inter-
active contacts. COINS-Text binds actions to specific ob-

jects, making it difficult to handle complex spatial relation-
ships. In contrast, our approach can produce better results
by correctly reasoning about spatial relationships and pro-
filing the human body under multiple actions, from different
levels of textual descriptions. More results in the Supp.Mat.

7.5. Multi-Human Scene Interaction
Fig. 5 (a) shows a comparison with the per-person gen-

eration and optimization method using COINS, where hu-
man collision loss is also introduced for a fair comparison.
Our generation results are more natural, physically plausi-
ble, and semantically consistent, while the results of COINS
are often crowded together or in the wrong position. Ad-
ditionally, our more MHSI results in different scenes are
shown in Fig. 5 (b), (c), and (d), including multi-person
constraint, per-person constraint, and complex combination
of spatial relationships and interactive actions. We also con-
duct a perception study on this and receive approval from
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Figure 5: Qualitative comparisons with the per-person generation and optimization method using COINS [37] (a), and our
more generation results for MHSI on PROX [12] (b), Matterport3D [5] (c), and ScanNet [8] (d) datasets.

Methods Physical Plausibility Diversity

Contact Non-Collision Entropy Cluster Size

Full(BERT) 0.92 0.95 3.82 1.91
w/o PLA 0.91 0.89 3.73 1.66
w/o IBS 0.90 0.94 3.95 1.87

Full 0.94 0.98 4.16 1.54

Table 3: Quantitative results of ablation study.

the respondents: 84.69% of the respondents think that the
results match textual descriptions, while 74.80% think that
interactions are human-like and natural.

7.6. Ablation Study
In this section, we evaluate the effect of three compo-

nents of our framework. (1) JGLSG. We study the effect
of the JGLSG mechanism on interaction generation by re-
placing it with BERT, abbreviated as Full(BERT). From the
qualitative comparison in Fig. 6, we can see that the interac-
tion results obtained with the help of the JGLSG mechanism
for reasoning about spatial relationships, are more accurate
and more consistent with the textual description. Quanti-
tative results in terms of physical plausibility and diversity
are shown in Tab. 3, and again demonstrate that our ap-
proach is more effective. (2) PLA. Tab. 3 also shows the
impact of the PLA mechanism on interaction generation.
Our model can refine various types of interactive actions
to produce more reasonable results that are consistent with
textual veracity. (3) IBS loss. To better handle penetration
and contact issues, we additionally introduce LIBS. Tab. 3
and Fig. 7 show comparative results using LIBS and without
it, demonstrating that it can improve interaction plausibility.

8. Conclusion and Discussion
Conclusion. In this paper, we observe from a narrator’s per-
spective that humans describe human interactions in scenes
through spatial perception and action recognition. We pro-
pose, Narrator, a novel relationship reasoning-based gener-
ative approach for naturally controllable generation of hu-
man scene interactions from textual descriptions. We design
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A person sits on a chair next to the sofa. A person stands between a sofa, 

a chair and a cabinet.

Figure 6: Qualitative results of ablation study on JGLSG.

w/o Opt w/o IBS Full

A person sits on the chair.

A person stands at the shelf and touches the shelf.

Figure 7: Qualitative results of ablation study on LIBS.

a JGLSG mechanism to reason about spatial relationships,
and introduce a PLA mechanism for diverse interactive ac-
tions. In particular, benefiting from relationship reasoning,
we further propose the first naturally controllable genera-
tion strategy for multi-human scene interaction. Experi-
mental results demonstrate that our approach can control-
lably generate complex and diverse interactions and signif-
icantly outperform existing works.
Limitation. Our work is mainly limited to two aspects:
(1) there is still room for expansion in our interaction cate-
gories, which requires large-scale datasets; (2) our approach
focuses on static interactions, while dynamic interactions
are also interesting and meaningful. In further work, we
will explore richer datasets and extend the scene graph to
address more diverse situations, such as those involving the
properties of objects or human movements.
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