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Abstract

Existing multi-person reconstruction methods require the human bodies in the input image to occupy a considerable portion of
the picture. However, low-resolution human objects are ubiquitous due to trade-off between the field of view and target distance
given a limited camera resolution. In this paper, we propose an end-to-end multi-task framework for multi-person inference from
a low-resolution image (MILI). To perceive more information from a low-resolution image, we use pair-wise images at high
resolution and low resolution for training, and design a restoration network with a simple loss for better feature extraction from the
low-resolution image. To address the occlusion problem in multi-person scenes, we propose an occlusion-aware mask prediction
network to estimate the mask of each person during 3D mesh regression. Experimental results on both small-scale scenes and
large-scale scenes demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively. The
code is available at http://cic.tju.edu.cn/faculty/likun/projects/MILI.

© 2011 Published by Elsevier Ltd.
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1. Introduction

Multi-person reconstruction from a single image is
of great importance in computer vision and computer
graphics, which aims at estimating the 3D poses and
shapes of all the people in an image. Existing methods
[3, 4, 5, 6, 1] perform well in constrained experimen-
tal settings. However, these methods ignore some chal-
lenging situations, especially for low-resolution images,
which are ubiquitous in the real world due to the limita-
tions of cameras and transmission bandwidth. Existing
methods tend to produce severely degraded results on
low-resolution images, as shown in Fig. 1.

There are two challenges to achieve accurate and ro-
bust multi-person reconstruction from a low-resolution
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image: the first challenge is how to model the occlu-
sions in multi-person scenes; the other challenge is how
to deal with low-resolution images with limited infor-
mation.

In this work, we propose MILI (Multi-person Infer-
ence from a Low-resolution Image), a two-stage frame-
work for multi-person inference from a low-resolution
image. To alleviate the occlusion problem in crowded
scenes, we propose an occlusion-aware mask prediction
network to estimate the mask of each person. With this
multi-task learning setting, MILI can estimate more rea-
sonable 3D meshes by leveraging the occlusion infor-
mation guided by our mask prediction network. To ex-
ploit the limited information in the low-resolution im-
age, we propose a restoration network by introducing
the constraint of high-resolution images during train-
ing, which helps to extract richer information. With
the restoration network, our model can learn how to
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Figure 1. Given a low-resolution image, our method can achieve more accurate multi-person reconstruction compared with state-of-the-art method
(SOTA) [1]. The inputs are captured by a mobile phone and downsampled from the PANDA dataset [2], respectively.

predict high-resolution information from low-resolution
images, in favor of regressing more accurate 3D meshes.
The code is available at http://cic.tju.edu.cn/

faculty/likun/projects/MILI.

To summarize, our main contributions are as follows:

• We propose MILI, an end-to-end framework for
multi-person reconstruction from a low-resolution im-
age. To the best of our knowledge, MILI is the first
framework that can regress accurate multi-person 3D
meshes from a low-resolution image.

• We propose an occlusion-aware mask prediction
network to estimate the mask of each person during
3D mesh regression, which helps alleviate the occlusion
problem existing in crowded scenes. With this multi-
task learning setting, our model can cope well with the
occlusion problem.

•We design a restoration network for better training
the low-resolution branch with the guidance of high-
resolution images. We design a simple but effective
loss to help perceive richer information from a low-
resolution image and generate more accurate results.

2. Related Work

Multi-person 3D Pose Estimation. Existing work
on 3D pose estimation can be categorized into two
classes: top-down methods and bottom-up methods.
Many approaches adopt the top-down framework due
to the generality of Faster-RCNN [7], such as LCR Net
[8], LCR Net++ [9] and 3DMPPE [10]. These methods
directly regress the 3D pose from the feature of anchor-
based proposals. To alleviate the ambiguity of directly
estimating the 3D pose from a single image, Dabral et
al. [11] decouple the reconstruction by regressing the
2D joints from the image and recovering 3D pose by
2D-to-3D lifting. Different from multi-stage methods,
bottom-up methods are one-stage methods that estimate
the poses of all persons in the image. Mehta et al. [12]
propose occlusion-robust pose-maps to achieve better
pose estimation results for the inputs with serious partial
occlusions. To handle the ambiguity of absolute depth
and scale in the scene, Zhen et al. [13] propose a depth-
aware part association algorithm that regresses absolute
3D pose based on 2.5D representations. Considering
many applications that require 3D pose estimation for
a large number of people in the real world, Benzine et
al. [14] present a novel method that handles different
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scales of people in an image. However, none of the
above methods can regress the shapes of persons, which
are important for many downstream applications.

Multi-person 3D Pose and Shape Estimation.
Multi-person reconstruction from a single image is chal-
lenging, and related work on this topic is rather limited.
Existing methods adopt a parametric model SMPL [15],
a low-dimensional vector, as the representation of the
human mesh. Zanfir et al. [3] propose the first frame-
work to estimate multiple persons by using 3D pose
estimation as an intermediate result. Follow-up work
[4] adds scene constraints to optimize the results. To
ensure the depth consistency of all the people in the
scene, CRMH [5] applies the interpenetration and depth
ordering-aware loss to deal with the occlusion problem.
Different from the top-down methods, BMP [6] pro-
poses a one-stage approach to estimate more accurate
depths by representing multiple persons as points in 3D
space, which is suitable for dealing with occlusion situ-
ations. ROMP [1] adopts the body center heatmap and a
mesh parameter map, and achieves state-of-the-art per-
formance compared with previous work. However, all
these methods use high-resolution images as inputs, and
cannot adapt well to low-resolution inputs.

Low-Resolution Image Reconstruction. Since low-
resolution images are ubiquitous in the real world, many
researchers focus on different tasks using low-resolution
images, e.g., 2D pose estimation [16] and single-person
reconstruction [17]. Neumann et al. [16] enhance 2D
pose estimation from low-resolution images with prob-
ability maps of Gaussian models, which is hard to ap-
ply to 3D pose estimation. Xu et al. [17] propose the
first method to regress a single-person mesh from a
low-resolution image, which improves the accuracy of
human reconstruction by applying self-supervision and
contrastive learning in the feature domain. However,
due to the occlusion in multi-person scenes, it is difficult
to use the single-person reconstruction method to ob-
tain reasonable multi-person reconstruction results, es-
pecially for crowded scenes.

In this paper, we propose an end-to-end multi-task
framework, which regresses 3D poses and shapes of
multiple persons from a real-world low-resolution im-
age. Different from existing multi-person reconstruc-
tion methods [3, 4, 5, 6, 1], we design an occlusion-
aware mask prediction network to alleviate the occlu-
sion problem in multi-person scenes. With this multi-
task setting, our model can cope well with the occlu-
sion problem. Besides, to make up for lack of informa-
tion, we propose a restoration network to improve the
feature extraction by introducing the constraint of high-
resolution images during training.

3. Method

We design MILI, an end-to-end multi-person infer-
ence framework from a low-resolution image, as shown
in Fig. 2. MILI is trained with pair-wise low-resolution
and high-resolution images, which detects all the per-
sons with the proposed restoration network and re-
gresses 3D poses and shapes of the detected persons
under the multi-task setting of the proposed occlusion-
aware mask prediction network (only for the low-
resolution branch) and the SMPL estimation network
[5]. Different from the existing work [5, 6, 1], MILI,
as an end-to-end network, encourages the multi-person
reconstruction from low-resolution images and signif-
icantly improves the robustness to occlusions with the
occlusion-aware mask prediction network by refining
the detection stage with segmentation. Meanwhile, to
perceive more information from low-resolution images,
the restoration network is proposed to guide the feature
extraction of low-resolution images with the constraint
of high-resolution images during training.

MILI consists of three aspects: a basic model (Sec.
3.1), an occlusion-aware mask prediction network (Sec.
3.2), and a restoration network (Sec. 3.3). To achieve
a preliminary reconstruction from a low-resolution im-
age, we use a two-branch architecture [17] to feed pair-
wise images of high and low resolutions and then ap-
ply spatial attention, contrastive learning, and MSE
(Mean Squared Error) loss to the network during train-
ing. To alleviate the occlusion problem, we design an
occlusion-aware mask prediction network to improve
the detection stage on the low-resolution image. The
proposed restoration network generates effective fea-
tures from low-resolution images under high-resolution
guidance.

3.1. Basic Model

Resolution-aware Network. Existing multi-person
reconstruction methods [5, 6, 1] usually fail to perform
well on low-resolution images due to the limited infor-
mation, as shown in Fig. 1. To perceive more infor-
mation from low-resolution images, we design a two-
branch network so that both low- and high-resolution
images of the same scene are fed into the network dur-
ing training, as shown in Fig. 2. To distinguish the fea-
tures of images from different resolutions, we use an at-
tention mechanism to extract the information from two
branches respectively before the backbone, encourag-
ing each branch to focus on the corresponding image
features sufficiently. Since the main difference of two-
resolution features is caused by spatial pixels, we em-
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Figure 2. Overview of the proposed MILI, a two-stage multi-person reconstruction method. MILI is trained using pair-wise images at high
resolution and low resolution from the same scene. Most of the two-branch network shares the parameters to better achieve the feature guidance
from the high-resolution images, except for the occlusion-aware mask prediction network and the restoration network.

ploy the attention module on space. The model is for-
mulated as follows:

yi = R(ϕ(xi) × xi), i ∈ {0, 1}, (1)

where R represents the backbone of ResNet50 network
[18], ϕ represents the spatial attention module [19],
xi represents the input, yi represents the feature rep-
resentation after backbone, and i is the branch index:
“0” for the high-resolution branch and “1” for the low-
resolution branch.

Contrastive Learning. Considering contrastive
learning is widely used in image recognition [17, 20, 21,
22, 23] to encourage the consistency of features from
the same scene, we use it to enforce the consistency of
features encoded by the network across the different res-
olutions. As shown in Fig. 2, while there are many in-
termediate features, we adopt the top-level feature of the
FPN (Feature Pyramid Network) [24] that consists of
the most concentrated information with minimum com-
putational complexity.

Constraint for Region of Interest (RoI). Through
FPN [24], the samplings and bounding boxes are ob-
tained, and thus each human mesh can be regressed via
an SMPL estimation network. The most straightforward
way is to restrain the features fed into the SMPL es-
timation network. However, the features consisting of
multi-person samplings are hard to compare because of
the complexity of person-person mapping between two
resolutions. Observing that the bounding boxes directly
affect the final parameter regression of human poses and

shapes, we simply implement the MSE constraint on the
bounding boxes that are in the form of RoI as a substi-
tute, as shown in Fig. 2.

3.2. Occlusion-aware Mask Prediction Network

Although we can get a preliminary prediction of hu-
man meshes by the basic model, the occlusion prob-
lems are still severe in multi-person situations at low
resolution. Compared with high-resolution images,
low-resolution ones are a little blurry and lack high-
frequency details, which is more difficult to estimate
occluded persons. For example, the samplings of low-
resolution images during the detection stage are inaccu-
rate. To improve the accuracy of human detection, we
design an occlusion-aware mask prediction network on
the low-resolution branch. As shown in Fig. 2, the fea-
tures obtained via the RoI module are fed into two net-
works: one is a 3D human reconstruction branch [5] to
reconstruct the 3D model with multi-person losses, and
the other is our proposed network to predict the image
mask via human instance segmentation.

Different from [5], the features from the detection
stage are better predicted with the human instance seg-
mentation instead of the only 3D human reconstruction
branch. Fig. 2 illustrates the network details. With
the predicted bounding boxes from the RoI module,
the occlusion-aware mask network finally obtains the
masks of all the people.
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Figure 3. The details of the restoration network. The input is the feature from the top-level of FPN [24] and the output is compared with high
resolution feature to calculate the loss.

3.3. Restoration Network

Although better features are obtained under the in-
fluence of high-resolution images in the basic network
by the MSE constraint, further improvement can be
achieved to get a more accurate human mesh by ex-
ploiting the high-resolution images during training. As
the two branches of high resolution and low resolution
share the parameters, and the high-resolution branch
is fixed (i.e., not back-propagated) during the training
of the low-resolution branch, the network tends to fo-
cus on the low-resolution images gradually. Thus the
prior features from the high-resolution branch are in-
creasingly limited. The lack of feature information
caused by the fewer pixels in low-resolution images fi-
nally leads to poor reconstruction. Inspired by the im-
age restoration work [25] that introduces the guidance
of high-resolution images with a skip connection net-
work, we design a restoration network to improve fea-
ture extraction from low-resolution images. To reduce
the computational complexity of the whole network,
we restrain the top-level feature of FPN [24] compared
to other levels. Fig. 3 illustrates the architecture of
the restoration network, which is an encoder-decoder-
like module. Through the convolution and pooling net-
work, the low-resolution features are effectively guided
by the high-resolution features, which greatly improves
the performance and is demonstrated in the experiments
(Sec. 4.4).

3.4. Loss Functions

In summary, the overall loss of the proposed network
consists of three parts: Lbase, Locc and Lres, which are
the losses of the basic model, the occlusion-aware mask
prediction network and the restoration network, respec-
tively.

Basic Loss. With the basic loss, the model achieves
the preliminary reconstruction at low resolution. Given
the general loss Lmul of multi-person reconstruction at
high resolution [5], contrastive learning loss Lcs, and
MSE constraint for RoI LRoI , Lbase is derived as:

Lbase = Lmul + λcs × Lcs + λRoI × LRoI , (2)

where λcs and λRoI are the weights that balance the con-
tributions of individual losses. Similar to [17], we define
the contrastive learning loss as

Lcs = − log
exp(cos(xh, xl)/γ)

exp(cos(xh, xl/)γ) +
∑

q∈Q exp(cos(q, xl)/γ)
, (3)

where x represents the feature of the top level, and the
subscripts h and l represent the high-resolution and low-
resolution branches, respectively. The distance between
the high-resolution and low-resolution image features is
measured by cosine of the angle between two vectors
instead of MSE, which is more suitable for low-level
features. Inspired by [17], xh represents the fixed fea-
tures of high resolution, and the gradients of the high-
resolution branch are not back-propagated. Only low-
resolution features xl are encouraged to be more sim-
ilar to high-resolution features xh. γ is a temperature
hyperparameter and Q is a queue of features of low-
resolution images from other scenes, which are updated
during training gradually. The main idea of this loss is
to reduce the distance between the images from differ-
ent scenes and make the low-resolution features closer
to the high-resolution features. With the same features
xh and xl, LRoI is formulated as

LRoI = ∥xh − xl∥
2
2 . (4)

Loss of Occlusion-aware Mask Prediction Net-
work. Occlusion-aware mask prediction network is de-
signed to address the serious occlusion problems in low-
resolution images, which is formulated as

Locc =

P∑
p=1

∥∥∥ν(xp) − τp

∥∥∥2
2 , (5)

where P represents the number of detection boxes,
ν(·) represents the occlusion-aware mask prediction net-
work, and xp is the feature at low resolution. The in-
stance segmentation of each person is predicted by ν(x),
and we restrain the final mask with the ground truth via
MSE. By restricting the segmentation of the recognized
person, the accuracy of the detection stage can be im-
proved to obtain a better human reconstruction result
finally.
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Loss of Restoration Network. To compensate for
the limited information at low resolution, the guidance
of high resolution is defined as

Lres = ∥xh − φ(xl)∥22 , (6)

where ϕ(·) represents the basic convolutional modules,
and xh represents the fixed feature of high-resolution
branch that is not back-propagated, consistent with our
basic model.

4. Experiments

In this section, we first introduce the datasets and
implement details in Sec. 4.1 and Sec. 4.2, respec-
tively, and then compare our method with state-of-the-
art methods quantitatively and qualitatively in Sec. 4.3
and perform ablation studies to analyze the effects of
different components of our approach in Sec. 4.4. Fi-
nally, we discuss the failure cases of our method in Sec.
4.5.

4.1. Datasets
PANDA [2]: It is the only large-scale human-centric

dataset which provides bounding boxes for the detec-
tion stage. Besides, we annotate 2D joints of hu-
man poses. We use 02 OCT Habour, 05 Basketball
Court and 07 University Campus as training set, and
10 Huaqiangbei as test set. Because the original images
have a gigapixel-level resolution, we crop the images
into blocks with adaptively different sizes as input.

Human3.6M [26]: It is an indoor dataset with a sin-
gle person in each frame, which provides 3D pose an-
notations. Following Protocol 1 of [27], ,we use S1, S5,
S6, S7 and S8 for training.

PII [28]: It is an in-the-wild dataset of multiple per-
sons with 2D pose annotations. We use the training set
for training.

MPI-INF-3DHP [29]: It is a single person dataset
with 3D pose annotations. We use S1 to S8 for training.

COCO [30]: It is an in-the-wild dataset with 2D
pose and instance segmentation annotations. We use
the 2D poses for training. Meanwhile, the segmentation
masks are adopted for the occlusion-aware prediction
and SMPL estimation networks. We use the training set
for training and the evaluation set for evaluation.

MuPoTS-3D [12]: It is a multi-person dataset with
3D joint annotations for all the people in the scene. We
use this dataset for evaluation.

Panoptic [31]: It is a dataset with multiple people
captured in a panoptic studio. We use this dataset for
evaluation.

4.2. Implement Details
Since PANDA [2] is the only large-scale dataset that

is closer to real-world outdoor scenes with a large num-
ber of people but without 3D joint annotations, we di-
vide the datasets into two groups: the large-scale dataset
(PANDA [2]) and the small-scale datasets (Human3.6M
[26], MPII [28], MPI-INF-3DHP [29], COCO [30]).
Our MILI is trained on two types of datasets, respec-
tively. Because PANDA [2] has no segmentation labels,
we add COCO [30] when training the SMPL estima-
tion network. The high-resolution branch is adopted
to guide the low-resolution branch during training,
while the multi-person meshes are recovered from the
low-resolution image only through the low-resolution
branch during evaluation.

Setting Details. Since existing datasets are all high-
resolution images, we downsample the inputs to low
resolution, following [17]. Specifically, we set the low-
resolution size at 286 × 176 and 208 × 128 for large-
scale and small-scale datasets, respectively. Then, we
uniformly resize the inputs to 832 × 512 by interpola-
tion, keeping the same aspect ratio and padding with
zero. For weight settings, γ is set to 0.01, and Q is
set to of length 400. Due to the large RoI value, λRoI

is set to 1e − 8 to balance the final result affected by
the loss. Similar to [13], we first fine-tune the model
at 832 × 512 as a result of the high-resolution branch,
and it is not back-propagated when guiding the low-
resolution branch during training. The final reconstruc-
tion is achieved by an SMPL estimation network [5].
The model is trained on a desktop with an NVIDIA RTX
3090 GPU with a batch size of 6 images.

Evaluation Metrics. To evaluate the reconstruc-
tion accuracy, we adopt mean per joint position error
(MPJPE) and percentage of correct keypoints (PCK) on
3D poses.

4.3. Comparison
To demonstrate the effectiveness of the proposed

model, we compare MILI with four state-of-the-art
multi-person reconstruction methods: Zanfir et al. [3],
CRMH [5], BMP [6] and ROMP [1]. For a fair com-
parison, we fine-tune both CRMH [5] and ROMP [1] on
PANDA [2] and small-scale datasets, respectively. Note
that the codes of Zanfir et al. [3] and BMP [6] are not
publicly available, and all the results of them in the ta-
bles are from the original papers.

Results on Large-scale Dataset. Fig. 1 illustrates
our reconstruction on an image from 10 Huaqiangbei of
PANDA [2], which demonstrates that our model can rec-
ognize the persons of different scales and recover rea-
sonable human meshes. To illustrate more details of the
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Figure 4. Qualitative results on low-resolution images of PANDA [2], compared with CRMH [5] and ROMP [1].
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results, we visualize the meshes generated from differ-
ent scales of blocks in Fig. 4. Compared with CRMH
[5] and ROMP [1], our model achieves more accurate
reconstructions from the low-resolution images with ap-
propriate bounding boxes in different scales. Due to the
lack of 3D annotations, no quantitative results are given
on PANDA [2].

Results on Small-scale Datasets. Fig. 5 shows
the qualitative results compared with the state-of-the-art
methods on small-scale datasets. MILI performs bet-
ter in complex in-the-wild scenes. Especially for very
low-resolution images where people are very blurry,
our model can detect the humans and predict the hu-
man poses and shapes that are more consistent with
real situations. As shown in Tab. 1 and Tab. 2,
our method achieves the state-of-the-art performance on
Panoptic [31] and MuPoTS-3D [12]. For a fair compar-
ison, we only compare with CRMH [5] and BMP [6] on
MuPoTS-3D [12] since ROMP [1] uses this dataset as
the training dataset. Tab. 2 illustrates that our method
improves reconstruction accuracy by 14% and 2%, re-
spectively.

We also visualize some meshes with bounding boxes
estimated from low-resolution images of COCO [30]
and MuPoTS-3D [12] in Fig. 6. The results suggest that
our model can recover accurate human meshes even in
blurry images with a large variation of person scales.

Method Haggling Mafia Ultim. Pizza Mean
Zanfir et al. [3] 141.4 152.3 145.0 162.5 150.3

CRMH [5] 127.38 136.02 154.47 156.37 143.56
BMP [6] 120.4 132.7 140.9 147.5 135.4

ROMP [1] 134.47 161.51 157.67 164.05 154.43
Ours 116.26 123.52 141.24 143.71 131.18

Table 1. Results on Panoptic [31]. We use MPJPE (Mean Per Joint
Position Error) as metric.

Method CRMH [5] BMP [6] Ours
3DPCK 66.34 73.83 75.42

Table 2. Results on MuPoTS-3D [12].

4.4. Ablation Study
To verify the validity of the proposed model, we con-

duct ablation experiments on COCO [30] and MuPoTS-
3D datasets [12] qualitatively, and on Panoptic [31]
qualitatively and quantitatively.

Occlusion-aware Mask Prediction Network. As
shown in Fig. 7, our full model can detect the humans of
different scales. Without the occlusion-aware mask pre-
diction network, the model tends to predict the bound-
ing boxes with poor accuracy, resulting in wrong detec-
tion results. Quantitative results on Panoptic [31] are

illustrated in Tab. 3. The full model achieves better per-
formance, which demonstrates the effectiveness of our
occlusion-aware mask prediction network.

Restoration Network. As shown in Fig. 8, the
model without high-resolution feature guidance gener-
ates much less accurate poses and shapes, . Compared
with that, the full model can regress the meshes with
more appropriate scales by the restoration network with
adequate access to feature information. As shown in
Tab. 3, The full model obtains more accurate results,
which demonstrates the effectiveness of our restoration
network.

Method w/o Occ. w/o Res. Full Model
MPJPE 133.13 142.01 131.18

Table 3. Ablation results on Panoptic [31]. Occ. is short for occlusion-
aware mask prediction network, and Res. is short for restoration net-
work, respectively.

4.5. Failure Cases

Although our model achieves promising reconstruc-
tion results, there are still two types of failure cases dur-
ing evaluation: false detection and wrong unified pose
for occlusion. As shown in Fig. 9 (left), MILI recog-
nizes the human-like area as a human but there are actu-
ally no people. One possible reason is that the distribu-
tion of features without people is similar to that of areas
containing people. As for occlusions, MILI tends to di-
rectly predict the reconstruction in a unified pose among
all reconstructions, resulting a wrong sit-down pose, as
shown in Fig. 9 (right). These problems will be further
solved in future work.

5. Conclusion

In this paper, we design an end-to-end multi-person
inference framework from a low-resolution image.
Firstly, we propose a basic model to achieve a bet-
ter reconstruction on low-resolution images. Then,
we improve the model via an occlusion-aware mask
prediction network and a restoration network. Our
method achieves state-of-the-art performance on multi-
ple benchmarks. Specifically, the bounding box results
are significantly improved with the occlusion-aware
mask prediction network. The low-resolution branch
can get more effective features to reconstruct an accu-
rate mesh by the restoration network, which encourages
the features of low-resolution images to be generated
under the effective guidance of a high-resolution branch
during training. Comparison results on the large-scale
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Input image CRMH OursROMP

Figure 5. Qualitative results of CRMH [5], ROMP [1] and ours on COCO [30] and MuPoTS-3D [12].

Figure 6. Qualitative results on COCO [30] and MuPoTS-3D [12]. We visualize the meshes with front and top viewpoints.
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Input images w/o Occlusion-aware network Full model

Figure 7. Qualitative results of the models without and with the
occlusion-aware mask prediction network on COCO [30], MuPoTS-
3D [12] and Panoptic [31] datasets (from top to bottom).

Input images w/o Restoration network Full model

Figure 8. Qualitative results of the models without and with restora-
tion network on COCO [30], MuPoTS-3D [12] and Panoptic [31]
datasets (from top to bottom).

Figure 9. Failure cases on PANDA [2]. The left is an example with
an extra person, and the right is a wrongly estimated pose caused by
large occlusion.

and small-scale datasets demonstrate that our method
is superior to the existing multi-person reconstruction
methods in both detection and reconstruction.
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