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Abstract. Recovering 3D human meshes from monocular images is an
inherently ambiguous and challenging task due to depth ambiguity, joint
occlusion and truncation. However, most recent works avoid modeling
uncertainty, typically obtaining a single reconstruction for a given input.
In contrast, this paper presents the ambiguity of reception reconstruc-
tion and considers the problem as an inverse problem for which multiple
feasible solutions exist. Our method, MHPro, first constructs a prob-
ability distribution and obtains a set of feasible recovery results (i.e.
multi-hypotheses), from monocular images. Intra-hypothesis refinement
is then performed to achieve independent feature enhancement. Finally,
the multi-hypothesis features are aggregated by inter-hypothesis com-
munication to recover the final 3D human mesh. The effectiveness of
our method is validated on two benchmark datasets, Human3.6M and
3DPW, where experimental results show that our method achieves state-
of-the-art performance and recovers more accurate human meshes. Our
results validate the importance of intra-hypothesis refinement and inter-
hypothesis communication in probabilistic modeling and show optimal
performance across a variety of settings. Our source code will be available
at http://cic.tju.edu.cn/faculty/likun/projects/MHPro.

Keywords: HumanMesh Recovery · Monocular Images · Multi-Hypothesis
· Probabilistic Modeling.

1 Introduction

3D human mesh recovery from a single color image is a widely-studied problem
in computer vision, as well as a vision task with a wide range of application
scenarios, such as action recognition [1], human-computer interaction [2] and
AR/VR [3]. However, human mesh recovery from a single image remains a chal-
lenging task and an inherently ill-posed problem due to depth ambiguity, joint
occlusion and truncation.

Given a single image, recent literature for 3D human mesh recovery typically
returns a single deterministic 3D mesh output [4, 13, 19, 21]. These efforts mainly
consider that systems returning a single deterministic output, tend to be suf-
ficiently convenient and make comparisons on benchmarks straightforward and
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fairly. But this often leads to unsatisfactory results, especially for challenging
input images. On the other hand, some scholars accept the ill-poseness from 2D
to 3D and the uncertainty from ambiguity and occlusion, and successively pro-
pose to estimate probability distributions or generate multi-hypotheses [26–29].
Although these works have shown interesting potentials, they often rely on one-
to-many mappings by adding multiple output heads to the existing architectures,
which leads to potentially unscalable and poorly expressive multi-hypothesis out-
put. Also, they suffer from an important shortcoming in failing to establish the
relationship between the different hypothesis features, because it is essential to
improve the expressiveness and performance of the model.
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Fig. 1. We propose a multi-hypothesis method to recovering 3D human meshes from
monocular images. Right: recovery results of the probabilistic method ProHMR [27],
SOTA method PARE [21] and our method for a challenging image.

Our method aims to generate multi-hypotheses from the input monocular
image and construct their relationships to enrich the diversity of features and
obtain more accurate final results. To achieve this, we propose MHPro, which
has many desirable properties missed in recent work. We first use a probabilistic
model based on normalizing flow to regress a feasible pose distribution and gen-
erate multiple initial human mesh hypotheses, as depicted in Fig. 1. Then, we
propose two transformer-based modules, the Intra-hypothesis refinement mod-
ule and the Inter-hypothesis communication module, to construct hypothetical
relationships and enhance feature representations. The former module focuses
on refining the features of each single hypothesis, which models each hypothesis
feature separately and enhances the information transfer within each hypothe-
sis. In addition, for all the hypotheses to share their respective enhancements,
a single fusion representation is converged from multi-hypotheses, and is then
divided into several divergent hypotheses. But the relationship between different
hypotheses is not sufficient. To address this, the latter module captures relation-
ships and passes information among hypotheses. Finally, multi-hypotheses are
aggregated to regress the final human mesh.

We conduct extensive experiments to demonstrate the validity of our pro-
posed MHPro and the importance of refining and communicating the hypotheses.
Experimental results demonstrate our ability to represent features and generate
more accurate human mesh recovery results, especially for monocular image
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inputs including depth ambiguity, joint occlusion and truncation. Our contribu-
tions can be summarized as follows:

– We propose MHPro for human mesh recovery from monocular images. Our
model can efficiently and adequately learn the feature representation of
multi-hypotheses.

– We achieve a better representation of image features and establish strong
relationships among hypotheses, using two transformer-based modules.

– Our MHPro achieves the best performance on the large-scale benchmark
Human3.6M and the challenging 3DPW dataset, even for the cases of depth
ambiguity, joint occlusion and truncation.

2 Related Work

In this section, we mainly discuss the human mesh recovery from monocular
images. Due to limited space, here we only discuss the most relevant methods
and suggest the interested readers refer to the recent surveys [5, 6]. Apart from
this, the recent multi-hypothesis methods that have been introduced into human
reconstruction, and transformer in computer vision, are presented here.

2.1 Human Mesh Recovery from Monocular Images

Recovering 3D human meshes from monocular images is quite challenging due
to the inherent ambiguity in lifting 2D observations into 3D space, flexible body
structures and insufficient annotated 3D data.

Previous methods proposed to use a parametric human model and estimate
the pose and shape coefficients for human mesh recovery. SMPL [7] is one of the
widely used parametric human models, which is also used in this work. Bogo et
al. [8] proposed SMPLify to estimate 3D human mesh by fitting the SMPL model
to the predicted 2D keypoints and minimizing the re-projection error. Lassner
et al. [9] used silhouettes and 2D keypoints in the optimization procedure to
capture the overall information from a simple 2D input. In turn, Song et al.
[10] utilized the learning gradient descent method in the optimization process.
These optimization-based methods are fragile and inefficient, require additional
data, and struggle with time-consuming inference on image inputs. In contrast,
regression-based methods [11–21] trained deep neural networks for regressing
SMPL parameters directly from pixels and enhanced the robustness and plau-
sibility of the results. For example, HMR [11], a regressor from 2D joints to
SMPL parameters, used a discriminator of unpaired 3D data to encourage plau-
sible poses. SPIN [13] revisited reconstruction methods that work with neural
networks and extended SMPLify [8] to provide more supervision in the training
loop. Unlike previous work, PARE [21] focused on predicting body-part-guided
attention masks and achieved a degree of robustness to occlusion.

Although these methods have produced encouraging results and the issue of
occlusion has been focused on, they are still not robust enough and produce only
approximate single reconstructions. In this work, we generate multiple plausible
hypotheses from monocular images with the help of probabilistic models, and
further improve the model’s recovery accuracy in cases of depth ambiguity, joint
occlusion and truncation through refinement and communication.
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2.2 Multi-Hypothesis Methods

Multiple hypothesis methods have been gradually introduced into 3D human
pose estimation and human mesh reconstruction, to deal with the inherent am-
biguities of the reconstructions described earlier, such as depth ambiguity, joint
occlusion or truncation. Several recent works generated different hypotheses for
this problem and demonstrated significant performance gains relative to a single
solution [22–29]. For example, Li et al. [22] proposed multi-modal hybrid den-
sity networks to generate multiple feasible 3D pose hypotheses. Oikarinen et al.
[27] followed conditional normalizing flows to model the conditional probability
distribution, which makes for a more powerful and expressive model. Li et al.
[29] proposed a multi-hypothesis transformer to learn the spatio-temporal rep-
resentation of multiple plausible pose hypotheses and modeled multi-hypothesis
features for accurate 3D human pose estimation from monocular videos. Unlike
their work, we attempt not just to generating plausible human pose and shape,
but to establish strong relationships between hypothesis features and achieve
effective modeling of different features through intra-hypothesis refinement and
inter-hypothesis communication.

2.3 Transformer in Computer Vision

Transformer [30], an encoder-decoder model, is first proposed in NLP field. In-
spired by its achievements, the transformer, equipped with a powerful multi-head
self-attention mechanism, has received increasing research attention in the com-
puter vision community. Vision Transformer (ViT) [31] considered an image as a
16x16 patch sequence, and trained a standard transformer architecture for image
classification. METRO [32] achieved progressive dimensionality reduction using
a multi-level transformer for pose estimation. In addition, transformer has also
achieved impressive results in many downstream tasks, including image genera-
tion [33], denoising [34], object detection [35], video inpainting [36], etc.

3 Method

Our aim is to achieve higher performance in human mesh recovery from monoc-
ular images. Fig. 2 shows the framework of our method. In our method, we
extract image features from a given input image, establish a pose distribution,
construct hypothetical relationships, enhance feature representations, and finally
output accurate recovery results. Our method consists of three steps: 1) proba-
bilistic modeling and initial hypothesis generation (Sec. 3.2); 2) Intra-hypothesis
Refinement (Sec. 3.3); 3) Inter-hypothesis Communication (Sec. 3.4).

3.1 Preliminary

SMPL Model. SMPL [7] provides a differentiable function M(θ, β) which
takes body pose parameters θ ∈ R72 and shape parameters β ∈ R10 as inputs
and outputs the body mesh M ∈ R6890×3. While θ represents the global body
rotation and the relative rotation of 23 joints in axis-angle format, β represents
the first 10 coefficients of a PCA shape space, controlling the shape of the body.
Given the mesh M , 3D joint locations can be obtained using a linear regressor,
J3D = JM , where J ∈ RL×6890 is a regression matrix for L joints.
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Fig. 2. Overview of the proposed method. Given an input monocular image I, we
perform probabilistic modeling (a) with normalizing flows to extract image features,
predict a pose distribution and generate multiple initial human mesh hypotheses (N
indicates the number of hypotheses), input these multi-hypotheses into Intra-hypothesis
refinement module (b) for independent refinement and feature enhancement, use Inter-
hypothesis communication module (c) to implement their mutual communication and
finally regress to obtain the recovered human mesh M.

Transformer. Our refinement and communication of multi-hypotheses are based
on the transformer architecture, as it performs well in feature representation and
information stabilisation in propagation. Here we briefly describe Multi-Head
Self-Attention (MHSA) and Multi-Layer Perceptron (MLP).

MHSA. In the MHSA, the inputs X ∈ Rn×d are linearly mapped to queries
Q ∈ Rn×d, keys K ∈ Rn×d, and values V ∈ Rn×d, where n is the sequence length
and d is the dimension. Then, Q,K, and V , are split into h different subspaces, so
that self-attention can be performed on them independently. Finally, the outputs
from the different subspaces are concatenated to form the final result Y ∈ Rn×d.
The scaled dot-product attention can be expressed as:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V. (1)

MLP. The MLP consists of two linear layers, which are used for non-linearity
and feature transformation:

MLP(X) = σ (XW1 + b1)W2 + b2, (2)

where σ is activation function, W1 ∈ Rd×dm and W2 ∈ Rdm×d are the weights of
the two linear layers respectively, and b1 ∈ Rdm and b2 ∈ Rd are the bias terms.

3.2 Probabilistic Modeling

Given a monocular RGB image I as input, we attempt to learn a distribution of
plausible poses conditional on I to obtain initial multiple plausible hypotheses.
Inspired by ProHMR [27], we first encode the input image I using a CNN g to
obtain image features fI. Subsequently, the probability distribution of the human
pose pΘ|I(θ | fI = g(I)) is modeled using Conditional Normalizing Flows. Unlike
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ProHMR, we adopt probabilistic modeling only to obtain feasible initial multiple
hypotheses, rather than focusing on one-to-many mappings.

Normalizing Flow models are used to transform arbitrary complex distribu-
tions into a simple base distribution pZ(z) by constructing a series of reversible
transformations. Each building block fi consists of 3 basic transformations:

fi = fAC ◦ fLT ◦ fIN, (3)

where fIN(z) = a ⊙ z + b (Instance Normalization), fLT(z) = Wz + b (Linear
Transformation) and fAC = [z1:k, zk+1:d + t (z1:d, c)] (Additive Coupling). In
addition, we combined four building blocks as above to obtain our flow model.

Meanwhile, the flow model allows not only for fast computation of probability
distributions, but also for fast sampling from the distributions to obtain multip-
hypotheses. In order not to lose generality, we consider the case where no other
additional information is available, so instead of taking a direct mode computa-
tion from the output probability distribution with θ∗I = argmaxθpΘ|fI(θ | fI), we
sample the distribution to select the larger probability N hypotheses. Therefore,
the samples θi, i ∈ [1, 2, ..., N ] drawn from the output distribution are:

θi ∼ pΘ|I(θ | fI). (4)

Then, we use MLP to estimate the SMPL shape βi and camera parameters
πi using image features fI and pose θi as input:

[βi, πi] = MLP (fI , θi) . (5)

To summarize, we use probabilistic models to obtain a conditional probability
distribution of poses, as well as sampling and estimation to obtain the initial
human mesh hypotheses Mi(θi, βi, πi). However, these hypotheses are discrepant
and insufficient for feature representation and need further enhancement.

3.3 Intra-hypothesis Refinement

After obtaining multiple human mesh recovery hypotheses Mi(θi, βi, πi), we first
maintain its mesh information via a learnable positional embedding and encode
its features Xi, i ∈ [1, 2, ..., N ] as subsequent inputs, for each hypothesis. To
refine single-hypothesis features and enhance those coarse representations inde-
pendently, the Intra-hypothesis refinement module feeds the encoded hypothesis
features Xi into several parallel MHSA blocks, which can be represented as:

X̃ l
i = X l−1

i +MHSA
(
LN

(
X l−1

i

))
, (6)

where l ∈ [1, 2, ..., L1] is the index of Intra-hypothesis refinement module.
However it is not enough to process each hypothesis independently, the re-

spective feature enhancements need to be shared. Thus, the hypothesis features
are concatenated and fed into the MLP to mix themselves and forming refined
hypothesis representations. The procedure can be represented as:

X̃ l
concat = Concat

(
X̃ l

1, X̃
l
2, . . . , X̃

l
N

)
,

Concat
(
X̃ l

1, X̃
l
2, . . . , X̃

l
N

)
= X̃ l

concat +MLP
(
LN

(
X̃ l

concat

))
,

(7)

where Concat(·) is the concatenation operation.
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3.4 Inter-hypothesis Communication

To capture multi-hypothesis relationships mutually, we inherit the cross-attention
mechanism from [38–40] and apply the Multi-Head Cross-Attention (MHCA) to
model inter-hypothesis relationships.

Specifically, the multiple hypotheses feature X l
i are alternately regarded as

queries and keys, and fed into the MHCA:

X l
i = X l−1

i +MHCA
(
LN

(
X l−1

1

)
, . . . ,LN

(
X l−1

i

)
, . . .

)
, (8)

where l ∈ [1, 2, ..., L2] is the index of Inter-hypothesis communication module,

X0
i = X̃L1

i . As a result, MHCA passes information crosswise among hypotheses
to significantly enhance feature representation and modelling capabilities.

Similarly, here we proceed to mix the hypothesis features obtained, as well
as forming hypothesis representations after communication:

X l
concat = Concat

(
X l

1, X
l
2, . . . , X

l
N

)
,

Concat
(
X l

1, X
l
2, . . . , X

l
N

)
= X l

concat +MLP
(
LN

(
X l

concat

))
,

(9)

where Concat(·) is the concatenation operation. Considering that the final sin-
gle estimation result is obtained, the hypothesis features can be optionally not
divided in the last MLP. Note that you can likewise choose to divide and thus
obtain multiple reasonable results.

Finally, a regressor is applied to the output feature XL2 to produce the 3D
human mesh M(θi, βi, πi).

3.5 Loss Function

We introduce multiple losses as supervision for the probability distribution and
mesh recovery hypotheses, respectively.

NLL loss. As with typical probabilistic models, we use NLL loss to minimize
the negative log-likelihood: Lnll = − ln pΘ|I (θgt | fI) .

2D joint loss. A squared error reprojection loss is applied between the
ground truth J2D and estimated 2D joints Ĵ2D: L2D(θ, β, π) = ∥J2D − Ĵ2D∥2.

3D loss. When 3D annotations (3D joints and/or SMPL parameters) are
available, 3D loss is applied to reduce the errors between the ground truth and
estimated values: L3D(θ, β) = ∥J3D − Ĵ3D∥2 + ∥β − β̂∥2 + ∥θ − θ̂∥2.

Orth loss. The 6D representation proposed in [37] is used in our model to
estimate the rotations. Since the absence of any constraint on the 6D represen-
tation leads to large differences between examples with partial 3D and or 2D
annotations, we use Lorth to force the 6D representation of the samples drawn
from the distribution to be close to the orthogonal 6D representation.

Overall: In total, the objective function of our model is:

L = λnllLnll + λ2DL2D + λ3DL3D + λorthLorth, (10)

where λnll, λ2D, λ3D and λorth represent the weights of the corresponding losses.
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4 Experimental Results

4.1 Datasets

Following the settings of previous work [11, 13], our method is trained on a
mixture of data from several datasets with 3D and 2D annotations, including
Human3.6M [41], MPI-INF-3DHP [42], 3DPW [43], COCO [44], and MPII [45].
In addition, we report experimental results on the evaluation sets of Human3.6M
[41] and 3DPW [43], and apply widely used evaluation metrics, including Mean
Per Joint Position Error (MPJPE) and Procrustes-Aligned Mean Per Joint Po-
sition Error (PA-MPJPE).

4.2 Comparison

We compare our method with the previous state-of-the-art temporal and frame-
based methods on Human3.6M and 3DPW datasets. As shown in Tab. 1, our
method achieves state-of-the-art performance in terms of accuracy in both the
indoor dataset Human3.6M and the challenging field dataset 3DPW. It is worth
noting that, our method outperforms the state-of-the-art temporal method MAED
[20], whereas our method is a frame-based approach.

Fig. 3 shows the qualitative results of our method on LSP dataset. We observe
that our method can better extract and represent the image features, and achieve
more accurate mesh recovery. Moreover, we show the recovery results of our
model for challenging monocular image inputs including depth ambiguity, joint
occlusion and truncation, in Fig. 4. It can be seen that our model is able to
handle them well by refining and communicating multi-hypotheses. We refer to
the project website for more qualitative results.

Table 1. Quantitative evaluation of state-of-the-art temporal and frame-based meth-
ods on Human3.6M and 3DPW datasets. The best results are highlighted in bold and
“-” shows the results that are not available.

Method Human3.6M 3DPW
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

Temporal
VIBE [16] 65.9 41.5 93.5 56.5
Lee et al. [18] 58.4 38.4 92.8 52.2
MAED [20] 56.3 38.7 88.8 50.7

Frame-based
SPIN [13] 62.5 41.1 96.9 59.2
I2L-MeshNet [15] 55.7 41.1 93.2 57.7
ProHMR [27] - 41.2 - 59.8
PyMAF [19] 57.7 40.5 92.8 58.9
PARE [21] - - 84.3 51.2

Ours 54.8 38.1 83.7 50.5
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PyMAFImage ProHMR PARE Ours

Fig. 3. Qualitative results on LSP dataset. From left to right: Input images, ProHMR
[27] results, PyMAF [19] results, PARE [21] results, Our results.

(a) depth ambiguity (c) truncation(b) joint occlusion

Fig. 4. Plausible human mesh recovery results generated by our method, especially for
ambiguous parts with depth ambiguity, joint occlusion and truncation.
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4.3 Ablation Study

We further conduct extensive ablation experiments on the effect of each key
component and design in the proposed model. In the top part of Tab. 2, we
report the results with different numbers of initial human mesh hypotheses. Ex-
periments show that generating more hypotheses from the probabilistic model
improves performance with a small increase in parameters, but becomes worse
instead when N > 8. In the middle and bottom parts of Tab. 2, we report how
the different parameters L1 and L2 impact the performance of our model, respec-
tively. The validity and importance of our proposed modules for the experiment
can be known from the results when L1 = 0 or L2 = 0, and the best performance
of the model at L1 = 2 and L2 = 2.

Table 2. Ablation study on different parameters of our model, evaluated on Hu-
man3.6M. N is the hypothesis number, L1 is the number of Intra-hypothesis refinement
module and L2 is the number of Inter-hypothesis communication module.

N L1 L2 MPJPE↓ PA-MPJPE↓
6 2 2 60.1 44.3
8 2 2 55.3 38.1
12 2 2 58.7 40.2
20 2 2 61.6 42.1

8 2 0 70.2 50.8
8 2 1 65.9 46.4
8 2 2 55.3 38.1
8 2 3 59.5 43.7

8 0 2 65.3 47.1
8 1 2 58.3 40.2
8 2 2 55.3 38.1
8 3 2 60.7 42.5

5 Conclusion

In this paper, we present a multi-hypothesis and probabilistic model-based method,
MHPro, for human mesh recovery from monocular images. Unlike most proba-
bilistic modeling and multi-hypothesis methods, we propose to refine and com-
municate multi-hypothesis for a better image feature representation. Extensive
experiments show that our method achieves state-of-the-art performance on two
benchmark datasets and can better handle challenging images. Future work could
consider continually extending our method to better exploit the ability of multi-
hypotheses and promote recovery accuracy considering various ambiguities.

Acknowledgements. This work was supported in part by the National Natural
Science Foundation of China (62171317 and 62122058).
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