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 A B S T R A C T

Avatar reconstruction from monocular videos plays a pivotal role in various virtual and augmented reality 
applications. Recent methods have utilized 3D Gaussian Splatting (GS) to model human avatars, achieving 
fast rendering speeds with high visual quality. However, due to the independent nature of GS primitives, 
existing approaches often struggle to capture high-fidelity details and lack the ability to edit the reconstructed 
avatars effectively. To address these limitations, we propose Local Gaussian Splatting Avatar (LoGAvatar), a 
novel framework designed to enhance both geometry and texture modeling of human avatars. Specifically, 
we introduce a hierarchical Gaussian splatting framework, where local GS primitives are predicted based on 
sampled points from a human template model, such as SMPL. For texture modeling, we design a convolution-
based texture atlas that preserves spatial continuity and enriches fine details. By aggregating local information 
for both geometry and texture, our approach reconstructs high-fidelity avatars while maintaining real-time 
rendering efficiency. Experimental results on two public datasets demonstrate the superior performance of our 
method in terms of avatar fidelity and rendering quality. Moreover, based on our LoGAvatar, we can edit the 
shape and texture of the reconstructed avatar, which inspires more customized avatar applications. The code 
is available at http://cic.tju.edu.cn/faculty/likun/projects/LoGAvatar.
1. Introduction

Human avatar reconstruction has emerged as a foundational tech-
nology in immersive telepresence [1–3], virtual try-on [4–7], and enter-
tainment [8–10]. While existing methods achieve high-quality recon-
structions using multi-view camera systems [11–13], their high cost 
and complexity make them impractical for consumer-level applica-
tions. In this work, we address a more accessible yet challenging task:
photorealistic human avatar reconstruction from monocular videos.

Neural Radiance Fields (NeRFs) [14] have demonstrated remark-
able results in novel view synthesis and pose-driven avatar generation 
from monocular videos. However, NeRF-based methods require query-
ing densities and colors at numerous spatial locations, resulting in 
slow volume rendering [15–17]. Despite acceleration techniques such 
as plenoptic voxels [18] and hash encoding [19], the computational 
overhead remains a significant barrier to real-time deployment.

The advent of 3D Gaussian Splatting (3DGS) [20] has enabled high-
quality, real-time rendering, sparking interest in its adoption for human 
avatar reconstruction from monocular videos. Existing methods [21–
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25] leverage 3DGS as a canonical representation while incorporat-
ing parametric human models, such as SMPL [26] or SMPL-X [27], 
for deformation priors through linear blend skinning. Although these 
approaches achieve impressive real-time rendering, they optimize indi-
vidual Gaussian primitives independently, neglecting local correspon-
dences in the 3D human body. This limitation leads to blurry textures 
and the loss of fine-grained details in reconstructed avatars. Besides, it 
is also difficult to edit the shape and texture of the reconstructed avatar.

Prior works have struggled to model high-fidelity avatars from 
monocular videos and to edit reconstructed avatars due to the lack 
of local information inherent in the discrete properties of Gaussian 
avatars. To address these challenges, we introduce LoGAvatar, a novel 
framework that integrates local geometric and textural information 
into 3DGS for high-fidelity human avatar modeling. Our key insights 
are twofold: (1) Human deformations exhibit local coherence gov-
erned by musculoskeletal structures, suggesting that each Gaussian 
should be influenced by its neighboring Gaussians. (2) Texture ap-
pearance follows spatial continuity, which should be preserved across 
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Fig. 1. Given a monocular video (a), our LoGAvatar can reconstruct an animatable avatar (b), which enables texture editing (c) and shape editing (d) applications.
adjacent Gaussian primitives. However, aggregating local information 
for point-wise GS representation is non-trivial. To enforce these prin-
ciples, we propose a hierarchical Gaussian prediction scheme that 
anchors Gaussians to sampled SMPL surface points, ensuring deforma-
tion consistency through learnable local coordinate transformations. 
Additionally, we introduce a convolutional texture atlas that encodes 
appearance features in a coordinate-aligned canonical space, facilitat-
ing detail-preserving texture transfer. This explicit design also enables 
texture editing of reconstructed avatars, a feature highly beneficial for 
many avatar applications.

Extensive experiments on the widely used People-Snapshot [28] and 
ZJU-MoCap datasets [29] demonstrate that our method achieves state-
of-the-art performance, surpassing previous GS-based approaches while 
maintaining real-time rendering speeds. Ablation studies confirm that 
our local Gaussian binding reduces positional drift in extreme poses, 
resulting in more stable and visually consistent avatars. Fig.  1 shows 
some results and applications of LoGAvatar.

Our main contributions can be summarized as follows:

• We propose a local Gaussian splatting framework that enhances 
high-fidelity avatar reconstruction and editing from monocular 
video.

• We develop a local geometry prediction module that derives geo-
metric attributes for each Gaussian from the vertices of a human 
parametric model, which supports shape editing and improves 
avatar reconstruction quality.

• We introduce a convolution-based texture atlas that preserves 
spatial consistency and enhances appearance modeling, yielding 
detailed and editable avatars.

• We conduct extensive experiments demonstrating superior ren-
dering quality and editing applications of the proposed method.

The structure of this paper is organized as follows: In Section 2, 
we review related works on human avatar reconstruction, covering 
various representations such as meshes, neural radiance fields, and 
point-based methods. Section 3 provides preliminaries on the human 
parametric model used in our work and introduces the fundamentals of 
3D Gaussian splatting. In Section 4, we present the proposed LoGAvatar 
framework in detail, including its loss functions and training strategy. 
Section 5 describes the experimental setup, including datasets, baseline 
methods, and evaluation metrics. We then analyze the comparative 
results to demonstrate the effectiveness of our approach and show-
case several applications, such as avatar animation, texture editing, 
and shape editing. Finally, we conclude our work and discuss future 
directions in Section 6.

2. Related work

Human avatar reconstruction has been extensively studied using 
various 3D representations. In this section, we categorize existing ap-
proaches into three main groups: mesh-based methods, neural radiance 
field-based methods, and 3D Gaussian splatting-based methods.
2 
2.1. Meshes

Mesh-based methods [28,30] utilize parametric human models such 
as Skinned Multi-Person Linear (SMPL) [26] and Skinned Multi-Person 
Linear eXpressive (SMPL-X) [27] to estimate body shape and pose from 
images or videos. These models provide explicit surface representa-
tions, enabling precise geometry reconstruction. Traditional approaches 
rely on optimization techniques [31,32] to fit the parametric model 
to image observations, while learning-based methods [33–36] improve 
reconstruction accuracy by leveraging deep neural networks. However, 
these methods focus solely on body pose estimation while ignoring 
texture information, making them unsuitable for rendering realistic 
human images. To address this limitation, some methods incorporate 
SMPL-based texture maps to jointly model geometry and appearance 
for avatar reconstruction.

Alldieck et al. [28] proposed an optimization framework using a vi-
sual hull approach to refine SMPL geometry from monocular videos, en-
abling the creation of personalized blend shape models. Zhao et al. [37] 
introduced a dynamic surface network to reconstruct pose-dependent 
geometry and coarse textures, which were subsequently refined using 
a reference-based neural rendering network for enhanced details. To 
reduce the number of required input images, Alldieck et al. [38] 
estimated geometry with vertex displacements directly from monocular 
images and applied a graph-cut optimization technique over eight 
frames to construct texture maps. While mesh-based methods pro-
vide structured surface representations, they often struggle to capture 
high-frequency details, leading to artifacts and blurry results.

2.2. Neural Radiance Fields

Neural Radiance Fields (NeRF) [14] have revolutionized novel view 
synthesis by learning a continuous volumetric representation from 
images, effectively capturing fine details and complex lighting effects. 
Due to their ability to model high-frequency textures and global scene 
properties, NeRF-based approaches have been widely adopted for hu-
man avatar reconstruction, particularly for photorealistic novel view 
generation and pose-dependent appearance synthesis.

Early NeRF-based human modeling primarily focused on static rep-
resentations. However, modeling dynamic humans presents challenges 
related to temporal consistency and pose generalization. To address 
these issues, Neural Body [29] introduced an explicit deformation field 
that aligns NeRF with the SMPL body model, improving temporal co-
herence in motion sequences [17]. HumanNeRF [39] conditioned NeRF 
on articulated human poses, enabling more realistic pose-dependent 
rendering. Similarly, AnimatableNeRF [40] incorporated a deformation 
network to model pose-dependent shape and appearance variations. To 
further improve pose generalization, AniNeRF [41] employed skeleton-
driven deformation fields to better capture human motion dynamics. 
ARAH [42] introduced an articulated neural field that disentangles 
shape and pose information, facilitating high-quality synthesis of un-
seen poses. Liu et al. [43] adopt local coordinate for each query point 
based on SMPL body model to learn better dynamic geometry from 
multi-camera inputs. Despite these advances, Gao et al. [44] propose 
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to learn a generalizable avatar representation from multi-view inputs 
to predict the results of unseen identities. However, some of these 
works [43,44] rely on multi-camera inputs, which is different from our 
monocular video setup. Besides,  NeRF-based approaches suffer from 
significant computational bottlenecks. The need to query densities and 
colors at numerous spatial locations along each ray results in slow in-
ference speeds, making real-time applications impractical. To mitigate 
this, various acceleration techniques have been proposed. Plenoptic 
voxels [18] and sparse voxel grids [45] reduce the number of sampled 
points, while hash encoding [19] drastically improves efficiency by 
compactly storing NeRF features in a learnable hash table. Although 
these techniques enhance rendering speeds, they still fall short of real-
time performance, particularly for applications requiring interactive 
avatar control.

In summary, NeRF-based approaches deliver exceptional rendering 
quality but remain constrained by slow inference speeds and high 
computational costs. These limitations have driven the exploration 
of alternative representations, such as 3D Gaussian Splatting, which 
achieves high-quality rendering with significantly improved efficiency.

2.3. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [20] has recently emerged as an 
efficient alternative to traditional volumetric representations, enabling 
real-time rendering with high visual fidelity. Unlike Neural Radiance 
Fields (NeRF) [14], which rely on volumetric ray sampling and require 
costly Monte Carlo integration, 3DGS represents a scene as a set of 
anisotropic 3D Gaussians that are directly projected and rasterized 
into 2D space. This formulation facilitates efficient forward rendering, 
significantly accelerating novel view synthesis.

Several methods integrate 3DGS with human parametric models 
to achieve efficient and high-quality rendering. For instance, Mono-
GaussianAvatar [46] and SplattingAvatar [47] leverage SMPL priors to 
guide Gaussian placements and transformations, improving temporal 
stability. However, these approaches lack local information for each 
Gaussian, resulting in discontinuities in the rendered outputs. Fur-
ther advancements in 3DGS explore hierarchical structures and hybrid 
representations to enhance rendering quality. For example, Dongye 
et al. [48] introduced a hierarchical Gaussian structure to enable adap-
tive levels of detail, though the primary focus is efficiency rather than 
rendering fidelity. Hybrid methods such as GoMAvatar [24] propose a 
Gaussian-on-Mesh representation, binding each Gaussian to the faces 
of a mesh to improve animation robustness. Similarly, iHuman [49] 
and ExAvatar [50] attach Gaussians to the faces of SMPL/SMPL-X 
body meshes, yielding promising results. However, as each Gaussian’s 
properties are learned independently without considering local spatial 
correlations, these methods still suffer from suboptimal reconstruction 
quality.

Despite these advancements, existing 3DGS-based methods treat 
each Gaussian independently, neglecting spatial correlations that could 
improve geometric coherence and texture fidelity. Consequently, ar-
tifacts such as blurry textures, ghosting effects, and loss of fine de-
tails remain significant challenges. To address this, Animatable Gaus-
sian [12], LayGA [51], and PhysAvatar [13] employ convolutional 
neural networks to aggregate local information, enhancing rendering 
fidelity. However, these methods require explicit geometry prepro-
cessing to extract query Gaussians from Gaussian maps, introducing 
additional computational overhead. Besides, SC-GS [52] proposes a 
hierarchical approach to obtain a compact transformation by inter-
polating attributes from some anchor Gaussians, which can introduce 
local information. However, it fails to achieve shape editing or texture 
editing.

In this paper, we build upon the advantages of 3DGS and propose an 
improved method that enhances both the texture and geometry repre-
sentation of human avatars, which can be used to edit the reconstructed 
avatars.
3 
3. Preliminaries

In this section, we first introduce the human parametric model, i.e., 
the Skinned Multi-Person Linear (SMPL) model (3.1), and then provide 
a brief introduction to 3D Gaussian Splatting (GS) (3.2).

3.1. Skinned Multi-Person Linear model

The Skinned Multi-Person Linear (SMPL) model [26] is a skinned, 
vertex-based human body model initially designed to accurately repre-
sent a wide range of body shapes and natural human poses. Based on 
a mesh representation, SMPL consists of 𝑁 = 6890 vertices and 𝐾 = 23
joints. The model can be formulated as a function that maps a shape 
parameter 𝛽 and a pose parameter 𝜃 to a mesh with 𝑁 vertices.

Starting from a template shape 𝐓 ∈ R3𝑁 , which represents a 
canonical human body in a predefined rest pose 𝜃∗, SMPL deforms the 
shape using both shape-dependent and pose-dependent blend shapes.

Shape blend shapes. The shape-dependent deformation is represented 
by a linear blend shape function 𝐵𝑆 , which models variations in body 
shape using a set of principal components: 

𝐵𝑆 (𝛽) =
10
∑

𝑛=1
𝛽𝑛𝐒𝑛, (1)

where 𝛽 = [𝛽1,… , 𝛽10]𝑇  is a 10-dimensional shape coefficient vec-
tor, and 𝐒𝑛 ∈ R3𝑁  are orthonormal principal components of shape 
displacements.

Pose blend shapes. To account for pose-dependent deformations, SMPL 
employs a pose blend shape function 𝐵𝑃 : 

𝐵𝑃 (𝜃) =
𝐾
∑

𝑛=1
(𝑅𝑛(𝜃) − 𝑅𝑛(𝜃∗))𝐏𝑛, (2)

where 𝑅(𝜃) maps the pose vector 𝜃 to a vector of concatenated part-
relative rotation matrices, and 𝐏𝑛 ∈ R3𝑁  represents vertex displace-
ments induced by pose changes.

Using the template shape 𝐓 and the two deformation functions, the 
final posed body shape 𝑇𝑃  can be expressed as: 

𝑇𝑃 (𝛽, 𝜃) = 𝐓 + 𝐵𝑆 (𝛽) + 𝐵𝑃 (𝜃). (3)

Joint regression. The body joints are obtained as a function of the shape 
parameters 𝛽: 

𝐽 (𝛽) =  (𝐓 + 𝐵𝑆 (𝛽)), (4)

where   is a precomputed regression matrix that maps the rest-pose 
vertices to corresponding joint locations.

Linear blend skinning (LBS). The final deformed mesh 𝑀(𝛽, 𝜃) is ob-
tained using a linear blend skinning function 𝑊 : 

𝑀(𝛽, 𝜃) = 𝑊
(

𝑇𝑃 (𝛽, 𝜃), 𝐽 (𝛽), 𝜃,
)

, (5)

where  ∈ R𝑁×𝐾 represents the skinning weights that define how each 
vertex is influenced by the skeletal joints.

3.2. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [20] represents a 3D scene as an 
explicit radiance field composed of a set of learnable 3D Gaussians. 
It combines the advantages of neural implicit fields and point-based 
rendering methods, achieving the high-fidelity rendering quality of 
the former while maintaining the real-time rendering capability of the 
latter.
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Fig. 2. The overall framework of our LoGAvatar. We predict the geometric attributes from the surface points of the canonical SMPL model to obtain local 
geometric information. Then, we query the color from the predicted front and back texture Gaussian map predicted from learnable tensors using convolutional 
neural network. Afterwards, we animate the canonical avatar using pose parameters and render the final image.
Gaussian representation. In 3DGS, a 3D point is represented as an 
anisotropic 3D Gaussian ellipsoid, which is defined as: 

𝐺(𝑥) = exp
(

−1
2
𝑥𝑇𝛴−1𝑥

)

, (6)

where 𝛴 is the 3D covariance matrix defined in world space, and 𝑥
represents the position relative to the Gaussian mean 𝜇.

To ensure that 𝛴 remains a positive semi-definite matrix with 
physical meaning, it is reparameterized using a rotation matrix 𝑅 and 
a scaling matrix 𝑆: 
𝛴 = 𝑅𝑆𝑆𝑇𝑅𝑇 . (7)

Here, 𝑆 is a diagonal scaling matrix that can be parameterized by a 3D 
vector 𝑠, while 𝑅 is derived from a learnable quaternion 𝑞, ensuring a 
valid rotation.

In addition to geometric parameters, each Gaussian is associated 
with an opacity value 𝜎 and a set of learnable Spherical Harmonics (SH) 
coefficients 𝑠ℎ to model view-dependent appearance. Consequently, a 
scene is parameterized as a set of Gaussians: 
 = {𝐺𝑖 ∶ 𝜇𝑖, 𝑠𝑖, 𝑞𝑖, 𝜎𝑖, 𝑠ℎ𝑖}𝑖=1. (8)

Rendering process. To render an image from a given viewpoint, the 
covariance matrix 𝛴′ in the camera coordinate system is obtained by 
projecting Gaussians from 3D space onto the 2D image plane: 
𝛴′ = 𝐽𝑊 𝛴𝑊 𝑇 𝐽𝑇 , (9)

where 𝑊  represents the viewing transformation, and 𝐽 is the Jacobian 
matrix of the affine approximation of the projective transformation.

Finally, the pixel color 𝐶 for a given image location is computed by 
alpha compositing over the set of ordered Gaussians that overlap the 
pixel: 

𝐶 =
∑

𝑖∈
𝑐𝑖𝛼𝑖

𝑖−1
∏

𝑗=1
(1 − 𝛼𝑗 ), (10)

where 𝑐𝑖 denotes the color of the 𝑖th Gaussian, and 𝛼𝑖 is computed by 
multiplying the projected covariance 𝛴′ with the corresponding learned 
per-point opacity 𝜎𝑖.

4. Methods

Given a monocular video capturing a clothed human in motion, our 
objective is to reconstruct a high-fidelity, animatable human avatar. Re-
cent approaches leveraging 3D Gaussian Splatting (3DGS) have demon-
strated promising results in monocular avatar reconstruction. However, 
these methods often neglect the intrinsic local connectivity in human 
geometry and appearance, resulting in suboptimal detail preservation. 
4 
To address this limitation, we propose LoGAvatar (Local Gaussian 
Avatar), a novel framework that enhances local detail reconstruction by 
aggregating information from neighboring Gaussians. Our approach in-
troduces local geometry and texture prediction mechanisms to improve 
spatial coherence and appearance fidelity.

In the following sections, we first define the representation of 
LoGAvatar in canonical space (4.1), then describe its rendering process 
(4.2). Finally, we detail the loss functions (4.3) and training procedures 
(4.4) of our model.

4.1. Canonical representation

To represent human avatars using 3D Gaussian Splatting (3DGS), 
we construct a canonical avatar as a set of Gaussians 𝐺𝑖 =
{𝜇𝑖, 𝑠𝑖, 𝑞𝑖, 𝛼𝑖, 𝑐𝑖}𝑁𝑖=1, where 𝜇𝑖 ∈ R3 represents the position, 𝑠𝑖 ∈ R3

denotes the scale, 𝑞𝑖 ∈ S3 is the quaternion rotation, 𝛼𝑖 ∈ [0, 1]
corresponds to opacity, and 𝑐𝑖 ∈ 𝑅3 encodes the color parameters, i.e., 
Spherical Harmonics (SH) coefficients, of each Gaussian. As illustrated 
in Fig.  2, the proposed LoGAvatar framework incorporates two key 
components: local geometry prediction and local texture prediction, 
which together ensure both spatial coherence and high-fidelity 
appearance modeling.

4.1.1. Local geometry prediction
To better capture local geometric correlations, a hierarchical predic-

tion module is designed to estimate the geometric attributes of Gaussian 
primitives. The process begins by upsampling the canonical SMPL 
model [26] and sampling 𝐿 anchor vertices from the mesh surface, 
forming a set of geometrically meaningful initialization points denoted 
as 𝑉𝑎 = {𝑣𝑖𝑎}

𝐿
𝑖=1. The anchor vertices are initialized through a two-step 

process. First, we subdivide the SMPL body mesh to create a dense 
surface representation. Then, we apply farthest point sampling (FPS) 
algorithm to select 10,000 geometrically meaningful anchor points that 
optimally cover the mesh surface while maintaining uniform spatial dis-
tribution. This number was determined empirically to provide sufficient 
surface coverage while remaining computationally efficient. The FPS 
algorithm ensures that the selected anchors capture key geometric fea-
tures of the body shape.  For each anchor 𝑣𝑖𝑎, a trainable displacement 
tensor 𝐷𝑖 ∈ R𝑀×3 is introduced to learn position offsets, where the final 
Gaussian positions are computed as 
𝜇𝑖 = 𝑣𝑖𝑎 + 𝑑𝑚𝑖 , (11)

with 𝑑𝑚𝑖 ∈ 𝐷𝑖 being the 𝑚th displacement corresponding to the 𝑖th 
anchor, which is used only in prediction pipeline, and not used in 
rendering. Rather than predicting individual Gaussian positions inde-
pendently, the model learns 𝑀 position offsets for each anchor, thereby 
generating a group of locally coherent Gaussians. 
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Beyond position estimation, the model predicts other geometric 
attributes by leveraging a multiresolution hash encoding [53], which 
extracts geometric features 𝑓𝑖 from the base Gaussian point 𝐺𝑖. The 
input of the multiresolution hash encoding is the anchor point, and 
the channel dimension of 𝑓𝑖 is 16. These features are then fed into a 
geometry decoder that infers scale, rotation, and opacity. The decoding 
process employs three parallel branches, each transforming the encoded 
geometric feature through a sequence of linear layers with ReLU activa-
tions. Taking the scale prediction as an example, the output is computed 
as 
𝑠𝑖 = 𝑊3𝜎(𝑊2𝜎(𝑊1𝑓𝑖 + 𝐛1) + 𝐛2) + 𝐛3, (12)

where 𝑊𝑘 and 𝐛𝑘 denote the weights and biases of the 𝑘th linear 
layer, while 𝜎(⋅) represents the ReLU activation function. By employing 
independent branches for different geometric attributes, the model 
ensures that feature interference is minimized, allowing each attribute 
to be learned in a manner that respects its inherent constraints.

The local geometry prediction process is hierarchically structured, 
meaning that position estimates generated at an earlier stage serve 
as inputs for subsequent stages. At each stage, we refine the model’s 
predictions, improving the accuracy of the geometric attributes. In 
particular, the position refinement at stage 𝑡 can be expressed as 
𝜇𝑡+1
𝑖 = 𝜇𝑡

𝑖 + 𝛿𝑡𝑖 , (13)

where 𝜇𝑡
𝑖 is the position of the 𝑖th Gaussian at stage 𝑡, and 𝛿𝑡𝑖 represents 

the predicted offset at stage 𝑡. In the next stage, we take the position 
of generated Gaussian 𝜇𝑡

𝑖 as the input of the local geometry predic-
tion module to predict anther group of Gauusians. Note that all the 
predicted Gaussians are used for rendering process.

Rather than treating Gaussian estimation as an isolated process, the 
proposed approach enforces local geometric consistency by associating 
Gaussians originating from the same anchor point while maintaining 
flexibility through per-Gaussian displacements. Each anchor generates 
multiple Gaussians (e.g., 𝑀 = 4) via parameter expansion, with the 
decoder producing 𝑀 parallel predictions for each geometric attribute. 
Besides, the hierarchical nature of this prediction process allows for 
iterative refinement, where positions estimated at an earlier stage serve 
as inputs for subsequent levels. This progressive modeling strategy 
enables a coarse-to-fine reconstruction of the avatar, capturing intricate 
geometric details through multiple stages of prediction.

4.1.2. Local texture prediction
Building upon the local geometry prediction module, the geometric 

attributes of the Gaussians can effectively incorporate local informa-
tion. However, directly applying a similar approach to texture estima-
tion presents challenges, as texture attributes are not inherently linked 
to the anchor points in the SMPL model. While geometric attributes 
can be easily modified through the SMPL shape parameters, texture 
attributes require a more flexible representation. To address this, we 
introduce a dedicated local texture prediction module that aggregates 
local texture information and improves the flexibility of texture editing.

In this approach, a learnable neural texture 𝑇𝑛 is defined with a 
resolution of 512 × 512, which is optimized end-to-end during training. 
To extract and encode texture information, we design a convolution-
based texture encoder that estimates the texture atlas 𝑇𝑎. The texture 
encoder follows a sequential structure of convolutional layers inter-
leaved with Rectified Linear Unit (ReLU) activation functions [54]. 
Specifically, the encoder begins with an initial convolutional layer 
to extract fundamental spatial features from 𝑇𝑛, followed by a ReLU 
activation that introduces non-linearity. As the data progresses through 
subsequent convolutional layers, the encoder progressively refines the 
extracted features, effectively aggregating local texture information. 
The output of the texture encoder is a texture atlas, which represents 
the spherical harmonics coefficients corresponding to different spatial 
locations. These coefficients are encoded as spherical harmonics, and 
5 
the first three harmonics are used to generate RGB colors. This enables 
texture editing by directly modifying the texture atlas.

To accurately map the texture atlas to each Gaussian in the human 
avatar, we introduce a color query operation. This operation retrieves 
spherical harmonics coefficients based on the position of each Gaussian. 
Given the set of Gaussian positions {𝜇𝑖}𝐿𝑖=1, we first normalize the 
positions to the range [−1, 1]. Then, we compute the mean value of the 
z-coordinate to distinguish between front-facing and back-facing points. 
Subsequently, the x- and y-coordinates are used as UV coordinates 
for bilinear sampling to obtain the corresponding spherical harmonics 
coefficients.

The overall texture mapping process can be expressed as: 

𝑇𝑎(𝜇𝑖) = BilinearSample
(( 𝑥𝑖

𝑊
,
𝑦𝑖
𝐻

)

, 𝑇𝑎
)

, (14)

where 𝑥𝑖 and 𝑦𝑖 are the normalized coordinates of the 𝑖th Gaussian, 
and 𝑊  and 𝐻 represent the width and height of the texture atlas. 
The bilinear sampling operation interpolates between the texture atlas 
values based on these UV coordinates.

Once the spherical harmonics coefficients are retrieved for each 
Gaussian, we combine them with the outputs from the local geometry 
prediction module to construct the final canonical Gaussian avatar 
𝐺𝑐 . By first predicting a UV color map and then querying colors for 
each Gaussian, we achieve two key benefits: (1) maintaining global 
color consistency through the unified texture representation, and (2) 
enabling intuitive texture editing capabilities that would be impossible 
with anchor-predicted colors alone. This avatar enables both shape 
and texture modifications, allowing for high-fidelity appearance and 
flexible editing of the human avatar.
Discussions. Compared with the hierarchical approach introduced by 
SC-GS [52], our local geometry and texture prediction has three main 
differences.

First, in terms of motivation, our anchor-based approach uniquely 
binds to SMPL model surfaces to provide comprehensive local ge-
ometric information (including transformations, positions, and opac-
ity) while enabling avatar shape editing. However, SC-GS focus on 
compact transformation bases other than local geometric information 
aggregation or avatar editing.

Second, our implementation differs fundamentally through a hierar-
chical prediction framework that iteratively generates new Gaussians, 
as opposed to SC-GS’s KNN-based interpolation of existing Gaussian 
properties. This direct prediction approach better preserves geometric 
details during editing operations.

Most importantly, our method achieves superior avatar reconstruc-
tion quality while enabling both shape and texture editing. To the 
best of our knowledge, these capabilities not demonstrated by previous 
GS-based approaches on avatar reconstruction from monocular video.

4.2. Deformation

Given the pose parameters 𝜃 of the SMPL model, our goal is to 
deform the canonical avatar into the observation space, i.e., the posed 
avatar. To capture the dynamic details of the human body, we adopt a 
learnable forward skinning approach, where we learn a skinning correc-
tion that adjusts the canonical model based on the human parametric 
model.

For each Gaussian 𝐺𝑖, the skinning weight (𝜇𝑖) is adjusted by 
adding a learnable correction term 𝑤𝑖, which yields the corrected 
skinning weight ̂(𝜇𝑖): 
̂(𝜇𝑖) = (𝜇𝑖) +𝑤𝑖, (15)

where (𝜇𝑖) represents the skinning weights queried at position 𝜇𝑖 in 
canonical space, obtained by diffusing the mesh skinning weights, and 
𝑤𝑖 represents the learnable skinning correction for the 𝑖th Gaussian 𝐺𝑖. 
This correction term allows for more accurate deformation, ensuring 
that the transformation is dynamically adjusted based on the pose.
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After obtaining the corrected skinning weights ̂(𝜇𝑖), we replace 
the skinning weight in Eq.  (5) with the estimated ̂ . This substitution 
enables the deformation of the canonical avatar to generate the posed 
avatar.

Once the posed avatar is obtained, the rasterization process follows 
the standard procedure of 3D Gaussian Splatting (3DGS), as described 
in Section 3.2. This process involves projecting the posed avatar onto 
the image plane and performing point-based rendering to produce the 
final output.

4.3. Optimization

To optimize the entire model along with the learnable pose param-
eters, we employ multiple loss functions to minimize the discrepancy 
between the rendered and ground-truth images. Our loss formulation 
includes the standard RGB loss 1, the SSIM loss ssim, and the LPIPS 
loss lpips, each serving a specific role. The RGB loss enforces pixel-wise 
consistency, SSIM loss preserves structural similarity, and LPIPS loss en-
sures perceptual quality by aligning high-level feature representations. 
Additionally, to enhance fine details in the reconstructed images, we 
introduce a sharpening loss inspired by [37]. This loss helps capture 
high-frequency information, improving the clarity of rendered textures 
and edges.

Given a rendered image 𝐼 and a ground-truth image 𝐼𝑟, the overall 
image loss is defined as: 
img = 𝛼1(𝐼𝑟, 𝐼) + (1 − 𝛼)ssim(𝐼𝑟, 𝐼) + 𝛽lpips + 𝛾sh, (16)

where 𝛼, 𝛽, 𝛾 are weighting factors that balance the contributions of 
different losses.

To compute the sharpening loss, we employ the unsharp masking 
(USM) method [55], which derives a sharpening kernel by subtracting 
a Gaussian filter kernel from the identity kernel. This allows us to 
effectively extract high-frequency details, further enhancing the visual 
fidelity of the reconstructed images. Denote the sharpening kernel is 
𝑓𝑠, the sharpening loss between rendered image 𝐼 and a ground-truth 
image 𝐼𝑟 is computed by: 
sh = |𝑓𝑠(𝐼) − 𝑓𝑠(𝐼𝑟)|1. (17)

We adopt MLP to predict geometric attributes, which can prove the 
smoothness similar with the NeRF-based methods when 2D observa-
tions are sparse. To further enhance the animation robustness, inspired 
by previous works [21,23], we adopt a regularization term, which 
constrain the local smooth for the geometric attributes of Gaussians. 
Specifically, we constrain the standard deviation of attributes in local 
Gaussians that computed by KNN neighborhood of current Gaussian,
i.e., 𝐺𝑖, which can be written as: 

reg =
∑

𝑎𝑡𝑡∈{𝑠𝑖 ,𝑞𝑖 ,𝑜𝑖 ,𝑐𝑖}𝐿𝑖=1

STD(𝑎𝑡𝑡𝑘), (18)

where 𝑐𝑖 is the spherical harmonics of 𝐺𝑖, and STD is the standard 
deviation, and 𝑎𝑡𝑡𝑘 is the attribute of 𝑘th Gaussian, and 𝑘 ∈ 𝐾𝑁𝑁(𝐺𝑖)
denotes the neighbor of 𝐺𝑖.

Therefore, the full loss functions can be written as: 
 = img + reg. (19)

4.4. Implemented details

We implemented the model using PyTorch on a desktop with a 
NVIDIA 2080Ti with 12G GPU memory. The weights [𝛼, 𝛽, 𝛾] are set to 
[0.8, 0.2, 1]. For training, we employ the Adam optimizer to optimize all 
model parameters. During inference, all the attributes predicted by the 
geometry and texture decoders are explicitly stored for each Gaussian. 
As a result, during inference, we no longer require the neural network 
to predict these attributes. Instead, we simply deform and render the 
6 
canonical avatar using the proposed pose parameters, enabling fast 
inference speeds. Specifically, the model achieves a frame rate of 
110 FPS. Following GART [21], we adopt pose optimization during 
training to correct the inaccurate pose parameters. Besides, we use 
order-2 spherical harmonics (SH) coefficients for color representation. 
The RGB values are converted to SH coefficients as the firs-order SH 
coefficients through an SH-to-RGB transformation during training. We 
first optimize the first-order SH coefficients to obtain a stable texture 
map, then progressively increase the SH orders in later iterations.

5. Experimental results

In this section, we first introduce the experimental settings, in-
cluding the evaluation datasets and metrics. Then, we present both 
quantitative and qualitative results, comparing our method with several 
state-of-the-art approaches. Finally, we provide ablation studies to 
validate the effectiveness of our proposed contributions.

5.1. Experimental settings

For monocular avatar reconstruction, our model design follows the 
dominant paradigm in the field—unlike generalized models capable 
of inferring unseen subjects directly, our approach adopts an identity-
specific optimization framework. Specifically, the model is trained 
using image data of a single identity, and the reconstructed avatar 
corresponds exclusively to the target subject in the training set. This 
avatar supports subsequent tasks such as novel view synthesis, novel 
pose generation, and avatar editing for the specific subject. Therefore, 
to validate the effectiveness of the proposed method, we conduct exper-
iments on two widely-used public datasets: the ZJU-MoCap dataset [29] 
and the People-Snapshot dataset [28]. We evaluate our results using 
three different metrics.
ZJU-MoCap dataset. The ZJU-MoCap dataset consists of multi-view 
videos of humans performing diverse poses from multiple camera an-
gles. The pose parameters of this dataset are obtained from EasyMo-
Cap [61]. Following the protocols established in previous works [21,
60], we evaluate six distinct identities, using the same data splits for 
consistency in benchmarking. For each identity, one camera view is 
designated as the training data, and the remaining views are reserved 
for testing. This setup ensures a fair comparison with existing meth-
ods. To evaluate the efficacy of our approach, we compare it against 
three state-of-the-art methods: MonoHuman [59], Instant-NVR [60], 
GART [21], and GauHuman [22]. We reproduce their results using 
publicly available implementations and the same training/testing data 
splits to ensure a consistent comparison. We adopt black background 
for both quantitative results and qualitative results following GART.
People-Snapshot dataset. The People-Snapshot dataset contains videos 
of humans performing rotations in an A-pose in front of a static camera. 
The pose parameters of People-Snapshot are obtained from AnimN-
eRF [62]. Following prior works [19,21], we evaluate our method on 
four selected identities and use the same training-testing data splits to 
ensure fair comparisons. As noted, many recent avatar reconstruction 
approaches (including Instant-NVR and GauHuman) are not evaluated 
on People-Snapshot in their original publications, nor do their release 
implementations support this dataset. To ensure fair and meaningful 
comparisons, we follow the established practice in GART of organizing 
results by dataset availability. We benchmark our approach against 
InstantAvatar [19], 3DGS-Avatar [23], and GART [21]. To ensure 
reproducibility, we utilize the publicly available codebases and default 
hyperparameters provided by these methods during training. Notably, 
for 3DGS-Avatar, we incorporate pose refinement during testing, which 
enhances the reconstruction quality beyond the results reported in 
the original paper. Note that we adopt white background for both 
quantitative results and qualitative results following GART, which is 
different with 3DGS-Avatar.
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Table 1
Comparison on ZJU-MoCap dataset [29]. Note that all metrics are computed with images in black background following GART [21].
 377 386 387

 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
 NB [29] 29.50 0.970 28.3 31.05 0.970 39.9 27.14 0.955 47.6  
 AN [56] 29.91 0.971 32.9 31.69 0.970 44.5 27.03 0.957 54.0  
 NHP [57] 27.67 0.957 60.1 30.62 0.965 55.8 26.23 0.952 69.7  
 InstantAvatar [58] 29.65 0.973 19.2 28.0 0.965 34.6 27.90 0.972 24.9  
 MonoHuman [59] 29.12 0.973 26.6 32.94 0.970 36.0 27.93 0.960 41.8  
 Instant-nvr [60] 31.36 0.979 26.0 33.53 0.977 33.0 28.11 0.963 47.0  
 GART [21] 31.90 0.975 18.8 33.50 0.967 29.9 27.74 0.952 40.3  
 GauHuman [22] 32.24 0.976 18.9 33.72 0.969 29.0 28.19 0.956 39.3  
 Ours 34.30 0.989 12.5 34.73 0.982 24.2 29.53 0.972 29.2  
 392 393 394

 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
 NB [29] 28.38 0.965 44.4 28.38 0.958 49.6 29.37 0.963 45.1  
 AN [56] 31.18 0.968 47.7 28.55 0.959 52.9 30.28 0.964 49.5  
 NHP [57] 29.30 0.956 66.6 27.13 0.949 70.5 28.53 0.951 65.7  
 InstantAvatar [58] 29.65 0.973 19.2 27.97 0.965 34.6 27.90 0.972 24.9  
 MonoHuman [59] 29.50 0.964 39.5 27.64 0.957 43.2 29.15 0.960 38.1  
 Instant-nvr [60] 32.03 0.973 39.3 29.55 0.964 46.3 31.46 0.969 39.1  
 GART [21] 31.92 0.964 32.6 29.34 0.954 37.9 31.08 0.958 31.5  
 GauHuman [22] 32.27 0.967 30.2 30.24 0.958 35.2 31.42 0.961 30.6  
 Ours 33.16 0.980 26.0 30.32 0.971 30.6 32.72 0.977 25.1  
Table 2
Comparison on People-Snapshot [28]. Note that all metrics are computed with images in white background following GART [21].
 Male-3-casual Male-4-casual Female-3-casual Female-4-casual

 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
 NB [29] 24.94 0.9428 32.6 24.71 0.9469 42.3 23.87 0.9504 34.6 24.37 0.9451 38.2  
 InstantAvatar [58] 29.65 0.9730 19.2 27.97 0.9649 34.6 27.90 0.9722 24.9 28.92 0.9692 18.0  
 3DGS-Avatar [23] 28.01 0.9657 33.5 27.25 0.9614 47.4 27.09 0.9679 29.0 27.62 0.9631 31.3  
 GART [21] 30.40 0.9769 37.7 27.57 0.9657 60.7 26.26 0.9656 49.8 29.23 0.9720 37.8  
 Ours 30.56 0.9791 16.3 28.31 0.9701 29.4 27.60 0.9700 22.3 29.99 0.9763 16.4  
Metrics. To evaluate reconstruction quality, we employ three metrics: 
PSNR, SSIM, and LPIPS. PSNR measures pixel-wise fidelity by com-
puting the mean squared error, with higher values indicating better 
quality. SSIM assesses structural similarity by considering luminance, 
contrast, and texture, providing a more perceptual measure of image 
similarity [63,64]. LPIPS captures perceptual differences by utilizing 
deep feature representations, with lower values signifying higher per-
ceptual fidelity [65]. We report the LPIPS scores scaled by a factor of 
103. These three metrics together offer a comprehensive evaluation of 
both reconstruction accuracy and visual quality.

5.2. Comparison results

Quantitative results. Quantitative comparisons on the ZJU-MoCap and 
People-Snapshot datasets are presented in Tables  1 and 2, respectively. 
As shown in Table  1, our method consistently outperforms existing 
approaches across PSNR, SSIM, and LPIPS metrics. The highest PSNR 
values indicate superior pixel-wise reconstruction accuracy, while the 
highest SSIM scores demonstrate better structural preservation. Ad-
ditionally, our approach achieves the lowest LPIPS values, reflecting 
improved perceptual quality. These results confirm the effectiveness of 
our method in generating high-fidelity reconstructions. A similar trend 
is observed in Table  2. Although our method does not achieve the 
highest PSNR and SSIM scores for ‘‘female-3-causal’’, it achieves the 
best LPIPS, indicating more perceptually realistic renderings. Moreover, 
our method consistently outperforms competing approaches on the 
remaining subjects, demonstrating its ability to reconstruct high-quality 
avatars with enhanced visual fidelity. For detailed comparison with 
3DGS-Avatar can be found in the supplemental document.
7 
Qualitative results. Figs.  3 and 4 present qualitative comparisons on 
the ZJU-MoCap and People-Snapshot datasets, respectively. Compared 
to other methods, our approach generates more detailed renderings, 
particularly in the intricate regions of clothing and hands. Notably, 
fine patterns in the fourth and fifth rows are better preserved, demon-
strating the efficacy of our method in capturing subtle textures. Both 
GART and GauHuman, which utilize 3D Gaussian Splatting (3DGS) 
as their representation, exhibit enhanced visual quality over NeRF-
based methods such as Instant-NVR, particularly in terms of edge 
sharpness and detail preservation. Our method further improves these 
results through the proposed local geometry and texture prediction 
mechanisms, which facilitate more accurate surface reconstruction. By 
enabling local Gaussians to interact and influence each other during op-
timization, our approach effectively preserves fine-grained details and 
maintains sharp boundaries. Consequently, our model achieves high-
quality avatar reconstruction with superior rendering fidelity, setting a 
new benchmark in the field.

5.3. Ablation study

To systematically evaluate the effectiveness of key components in 
LoGAvatar, we conduct comprehensive ablation studies by comparing 
our full implementation against the following model variants:

Model without local geometry prediction (w/o log). This variant removes 
the local geometry prediction module to assess its contribution. Unlike 
our approach, which predicts geometric attributes from anchor points, 
this baseline treats each Gaussian as an independent entity with di-
rectly optimizable geometric parameters, following the conventional 
3D Gaussian Splatting (3DGS) training paradigm. All other components 
remain unchanged.
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Fig. 3. Qualitative results on ZJU-MoCap dataset compared with Instant-nvr [58], GauHuman [23], and GART [21]. Please zoom in for details.
Model without local texture prediction (w/o lot). To evaluate the im-
pact of the local texture prediction module, this variant replaces it 
with standard optimizable color tensors per Gaussian. While geometric 
learning remains intact, the appearance modeling follows conventional 
per-Gaussian optimization.

Model without sharpening loss (w/o sha). This experiment removes the 
sharpening loss to assess its role in preserving high-frequency details 
and refining geometry. The absence of this regularization allows us to 
analyze its effect on detail sharpness and artifact suppression.

The ablation studies validate the necessity of each proposed compo-
nent. Removing local geometry prediction leads to the most significant 
performance degradation, as directly optimizing isolated Gaussians 
fails to maintain structural coherence. Our anchor-based formulation 
addresses this through geometric attribute learning, enforcing local 
similarity while permitting flexible Gaussians. The absence of local 
texture prediction notably impacts perceptual quality, particularly in 
8 
high-frequency detail preservation. This confirms the advantage of 
the design of the local texture prediction module, which successfully 
captures fine details. While removing the sharpening loss maintains 
comparable performance in some metrics, the increased variance across 
test cases reveals its role as a crucial regularization. Our full model 
achieves superior performance in almost all metrics, which aligns with 
our theoretical analysis in Section 4, confirming the effectiveness of the 
proposed design.

Fig.  5 illustrates the ablation study results on the People-Snapshot 
dataset, highlighting the contributions of key components in our frame-
work. The model without local geometry prediction (w/o log) intro-
duces noticeable artifacts, particularly in challenging poses, such as 
bent limbs or complex body rotations, whereas our full model produces 
clear and coherent reconstructions with precise anatomical details. 
Similarly, the model without local texture prediction (w/o lot) struggles 
to capture intricate textures, such as fabric patterns or skin pores, 
resulting in less realistic appearances and blurred surfaces. While the 
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Fig. 4. Qualitative results on People-Snapshot dataset compared with InstantAvatar [58], 3DGS-Avatar [23], and GART [21]. Please zoom in for details.
Fig. 5. Ablation results on People-Snapshot dataset. Please zoom in for details.
Table 3
Ablation study on People-Snapshot [28]. 
 Male-3-casual Male-4-casual Female-3-casual Female-4-casual

 PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
 w/o log 30.54 0.9791 17.2 28.23 0.9694 30.3 27.43 0.9697 23.0 29.97 0.9759 16.4  
 w/o lot 30.37 0.9770 23.6 28.02 0.9666 45.5 27.31 0.9663 38.6 29.89 0.9752 21.8  
 w/o sha 30.52 0.9789 16.6 28.13 0.9697 28.8 27.48 0.9695 22.4 29.79 0.9755 16.5  
 Ours 30.56 0.9791 16.3 28.31 0.9701 29.4 27.60 0.9700 22.3 29.99 0.9763 16.4  
variant without sharpening loss (w/o sha) still generates reasonable 
outputs, it fails to preserve fine details (e.g., the stripes in the first row) 
and introduces artifacts in specific regions (e.g., the legs in the second 
row), compromising the overall visual fidelity. In contrast, our full 
9 
model consistently delivers high-quality avatars with sharper and more 
accurate textures, demonstrating the effectiveness of our integrated ap-
proach in achieving realistic and detailed avatar reconstruction. Table 
3 also suggests similar conclusions.
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Fig. 6. Texture editing results. The first row shows the learned front texture and the modified front texture after editing.
Different training time. Compared with GART, our model incorporates 
neural networks to achieve local geometry and local texture prediction, 
which can decrease the training and rendering speed. To investigate 
this, we conduct experiments by comparing with GART in different 
training times. The quantitative results can be found in Table  4. which 
compares performance across different training durations (Time), in-
cluding corresponding rendering speeds (Frame-Per-Second, FPS) and 
iteration counts (Iter.) achieved within each time interval. Note that 
the unit of time is minutes.

Our experiments demonstrate that while the introduced neural com-
ponents do incur some computational overhead, the impact on overall 
training speed is mitigated through careful architectural design. Specif-
ically, on the People-Snapshot dataset, our method achieves rendering 
speeds exceeding 110 fps while maintaining superior reconstruction 
quality compared to existing approaches. Importantly, when comparing 
methods trained for identical wall-clock time, our approach consis-
tently outperforms GART despite requiring fewer iterations, highlight-
ing its efficiency. Furthermore, we observe that unlike GART’s per-
formance which tends to plateau with extended training, our method 
continues to show quality improvements with additional training time. 
This suggests that our architecture can effectively utilize increased 
computational resources when available.
10 
The number of predicted Gaussians. In Section 4.1.1, we adopt 𝑁 = 4, 
which means one anchor point can predict 4 Gaussians. To thoroughly 
investigate value of 𝑁 , we conducted comprehensive experiments test-
ing various configurations from 1 to 20 across multiple subjects. As 
shown in Table  5, the results demonstrate consistent performance 
across different balues, with the 𝑁 = 4 configuration achieving optimal 
balance between quality and efficiency. For instance, the Female-4-
casual case shows PSNR of 29.99 at 𝑁 = 4 compared to 29.65 at 𝑁 = 1
and 29.72 at 𝑁 = 10. Higher ratios (1:10 and 1:20) exhibit marginally 
reduced geometric detail as evidenced by slightly elevated LPIPS val-
ues, while lower ratios incur unnecessary computational overhead 
without commensurate quality improvements. 

5.4. Applications

Texture editing. Leveraging the local texture prediction module, our 
model generates front and back Gaussian maps, which enable intuitive 
texture editing by modifying these maps directly.

Fig.  6 illustrates two texture editing cases. The first two columns of 
the first row display the original Gaussian map and its edited version, 
with the modified regions highlighted by green bounding boxes. The 
remaining rows present the corresponding rendered images using dif-
ferent Gaussian maps. In the first case, the same regions of the back 
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Fig. 7. Shape editing results. The middle row shows the reconstructed avatar and the other rows present modified results.
Table 4
Ablation study on People-Snapshot [28]. 
 Time FPS Iter. Male-3-casual Male-4-casual Female-3-casual Female-4-casual

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
GART 1 150 2000 26.25 0.9674 44.1 29.52 0.9742 32.1 30.72 0.9797 33.3 27.55 0.9686 54.5  
Ours 1 110 500 26.58 0.9676 25.3 29.28 0.9735 17.8 30.01 0.9763 18.4 27.57 0.9669 34.7  
GART 2 145 3000 26.11 0.9670 46.5 29.15 0.9740 35.0 30.68 0.9801 36.1 27.50 0.9689 59.1  
Ours 2 110 1000 26.79 0.9684 25.5 29.57 0.9741 19.6 30.27 0.9772 19.7 27.74 0.9674 35.8  
GART 30 140 50000 25.88 0.9663 36.9 28.70 0.9738 27.9 30.67 0.9808 29.2 27.19 0.9688 46.1  
Ours 30 110 10000 27.60 0.9700 22.3 29.99 0.9763 16.4 30.56 0.9791 16.3 28.31 0.9701 29.4  
able 5
blation study on People-Snapshot [28]. 
𝑁 Male-3-casual Male-4-casual Female-3-casual Female-4-casual

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 
1 330.36 0.9772 14.9 27.82 0.9670 25.6 27.36 0.9688 19.1 29.65 0.9743 15.0  
2 30.48 0.9780 13.7 27.94 0.9679 24.2 27.37 0.9694 18.4 29.69 0.9746 14.0  
4 30.56 0.9791 16.3 28.31 0.9701 29.4 27.60 0.9700 22.3 29.99 0.9763 16.4  
10 30.52 0.9786 13.1 27.98 0.9680 23.7 27.36 0.9695 18.5 29.72 0.9752 14.4  
20 30.53 0.9797 16.5 28.20 0.9705 30.4 27.55 0.9710 27.7 29.88 0.9762 16.7  
5
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aussian map are also edited to maintain consistency. As observed, 
ur approach allows direct modifications to the Gaussian maps, en-
bling efficient texture editing of reconstructed avatars. The resulting 
enderings maintain consistency across different poses, demonstrating 
he robustness of our method for avatar customization.
hape editing. The results of local geometry prediction are derived 
rom the fixed surface points of the SMPL model. This indicates that 
odifying the shape parameters of the SMPL model allows us to edit the 
inal avatar’s shape. Specifically, by adjusting these shape parameters, 
e retain the same surface points with identical indices as the originally 
ampled points. Consequently, the position of the anchor point is 
ltered. Utilizing the other estimated geometric and texture attributes, 
e can generate an animatable avatar with the new shape.
Fig.  7 showcases visual examples of leg and stomach editing. It is 

vident that our method effectively modifies the shape of the recon-
tructed avatar while preserving high-quality rendering results across 
arious poses.
 p

11 
.5. Limitation

To achieve an editable texture Gaussian map, we disregard texture 
ariations across different poses, which limits the photorealistic quality 
f the results in diverse poses. In future work, we plan to retain the 
asic Gaussian map and introduce a position-aware texture residual to 
nhance the realism of the outcomes. Besides, our current work does 
ot account for complex scenes with occlusions in the input images. We 
ecognize this as a critical direction and plan to address it in our future 
esearch. Additionally, we aim to incorporate physics-based priors to 
odel more dynamic and natural details.

. Conclusion

This paper presents LoGAvatar, a novel approach for high-fidelity 
D human avatar reconstruction based on local geometry and texture 
rediction. By introducing an anchor-based local geometry prediction 
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module, our method effectively captures fine-grained shape details 
while maintaining structural consistency. Additionally, the proposed lo-
cal texture prediction module enables enhanced texture representation, 
leading to improved perceptual quality. Through extensive experiments 
on the ZJU-MoCap and People-Snapshot datasets, LoGAvatar consis-
tently outperforms state-of-the-art methods in both quantitative and 
qualitative evaluations. Ablation studies further validate the effective-
ness of each proposed component. Additionally, we demonstrate the 
flexibility of our method for texture and shape editing, showcasing its 
potential for avatar customization and interactive applications.
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