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Abstract

Learning-based photometric stereo methods predict the surface normal either in
a per-pixel or an all-pixel manner. Per-pixel methods explore the inter-image
intensity variation of each pixel but ignore features from the intra-image spatial
domain. All-pixel methods explore the intra-image intensity variation of each input
image but pay less attention to the inter-image lighting variation. In this paper,
we present a Graph-based Photometric Stereo Network, which unifies per-pixel
and all-pixel processings to explore both inter-image and intra-image information.
For per-pixel operation, we propose the Unstructured Feature Extraction Layer to
connect an arbitrary number of input image-light pairs into graph structures, and
introduce Structure-aware Graph Convolution filters to balance the input data by
appropriately weighting shadows and specular highlights. For all-pixel operation,
we propose the Normal Regression Network to make efficient use of the intra-
image spatial information for predicting a surface normal map with rich details.
Experimental results on the real-world benchmark show that our method achieves
excellent performance under both sparse and dense lighting distributions.

1 Introduction

Photometric stereo aims at estimating surface normals of a static object from a set of images acquired
under various illumination conditions from a fixed camera [1]. The pixel-wise estimation of surface
orientation makes photometric stereo outstanding in acquiring high-resolution 3D information. Recent
progress in deep learning has been verified to be effective in photometric stereo for general complex
reflectance, showing superior accuracy over conventional methods on a benchmark dataset [2]. To
design effective deep learning frameworks in the context of photometric stereo, the core problem
is how to deal with a sequence of unordered and arbitrary numbers of input images under various
illumination conditions. The first deep photometric stereo network [3] fixes the order and number
of input images during training and testing. Following works focus on relaxing this unpractical
assumption in dealing with unordered, arbitrary numbers of images, either in a per-pixel [4]–[6] or an
all-pixel [7]–[9] manner, i.e., whether the observations of a single pixel or the whole image are fed to
the network, according to a recent survey about data-driven photometric stereo [10].

As illustrated in the top row of Fig. 1, per-pixel methods explore the inter-image intensity1 variation
by projecting the observations of each pixel into a fixed-size observation map, according to the first

∗Corresponding authors
1Throughout this paper, we assume the camera is radiometrically calibrated and the images are linearized, so

we use “intensity" to refer to image irradiance for simplicity.
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Figure 1: Illustration of GPS-Net (bottom row) and state-of-the-art per-pixel [4]–[6] and all-pixel [7],
[8] learning-based photometric stereo methods (top row).

two components of the two-degree-of-freedom normalized lighting directions (lx and ly) [4]–[6]. All-
pixel methods explore the intra-image intensity variation by extracting features of each image-light
pair separately using a shared-weight feature extractor before fusing them using a size-independent
max-pooling layer [7], [8]. Then the unordered, arbitrary numbers of inputs are converted into a
structured observation map or feature map, which can be fed into the subsequent CNN-based network
to regress a pixel-wise surface normal or a complete normal map. Per-pixel methods ignore features
from the intra-image spatial domain, and their observation maps have to take a trade off between
resolution and density, which makes them difficult to maintain good performance when the number of
input images varies from sparse to dense. In contrast, the independent processing for each image in
all-pixel methods prevents them from exploring the inter-image lighting variation, and their networks
that make extensive use of 3×3 convolutional layers cause over-smoothing and loss of resolution
details in the spatial domain.

In this paper, we present an end-to-end Graph-based Photometric Stereo Network, namely GPS-Net,
which combines the advantages of per-pixel and all-pixel methods to explore both inter-image and
intra-image variation, as shown in the bottom row of Fig. 1. To explore per-pixel information, the
Unstructured Feature Extraction Layer (UFE-Layer) is designed to connect an arbitrary number of
inter-image observations of each pixel into a graph structure to avoid introducing the problem of the
density of valid data; the Structure-aware Graph Convolution (SGC) filters in UFE-Layer are then
adopted to deal with the topologically inconsistent graphs and extract a fixed-size feature map from
the unstructured data. SGC filters also learn adaptive weights for suppressing outliers (e.g., attached
shadows and cast shadows), and emphasizing useful observations (e.g., specular highlights). To
explore all-pixel information, the Normal Regression Network (NR-Net) is further designed to make
efficient use of the intra-image spatial information and regress a high-resolution and high-accuracy
normal map. Experimental results demonstrate that GPS-Net achieves superior performance over
state-of-the-art per-pixel and all-pixel methods, provides stable performance from sparse to dense
lighting distributions, and maintains rich surface normal details for each pixel.

2 Related Work

2.1 Conventional Methods

Under the ideal Lambertian reflectance assumption, the classic photometric stereo algorithm [1]
estimates surface normals through a least-squares method. To extend the classic Lambertian algorithm
to more practical real-world scenes, many Non-Lambertian methods are proposed.
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Outlier rejection methods treat Non-Lambertian observations as sparse outliers, and reject them
through RANSAC [11], taking median values [12], expectation maximization [13], or sparse Bayesian
regression [14]. Model-based methods such as Torrance-Sparrow model [15], Ward model [16],
Cook-Torrance model [17], specular spike model [18], [19], microfacet model [20], and empirical
model [21]–[27] are proposed to approximate analytic Non-Lambertian Bidirectional Reflectance
Distribution Functions (BRDFs). Example-based methods [28], [29] guide normal estimation by
taking advantage of the observations of a known reference object captured under the same lighting
condition as the target object. Please refer to the survey in [2] for more detailed discussions.

2.2 Learning-based Methods

Recently, with the progress of deep learning, several learning-based approaches [3]–[8], [30], [31]
are proposed and achieve excellent performance. The major difficulty of learning-based photometric
stereo frameworks lies in how to deal with an arbitrary number of unstructured inputs. DPSN [3]
and OUTDOOR-PS [31] take a fixed light source setting or fixed number of lights to simplify the
unstructured inputs, which makes them impractical for randomly distributed lightings with sparse to
dense variation. To relax this inflexible assumption and deal with diverse distributions of lightings,
state-of-the-art learning-based frameworks adopt two strategies — per-pixel methods [4]–[6] using
the observation map strategy, and all-pixel methods [7], [8] using the mechanism of shared-weight
feature extractor and max-pooling layer, based on a recent survey in [10].

CNN-PS [4] generates a fixed-size observation map that merges all the observations of each pixel,
from which a CNN-based network is further used to predict a surface normal in a per-pixel manner.
Due to the contradiction between the density and resolution of the observation map, CNN-PS has
difficulty in achieving good performance under sparse and dense lighting distributions at the same
time, and its pixel-wise processing cannot explore the intra-image spatial information. LMPS [5]
and SPLINE-Net [6] are proposed to solve sparse photometric stereo following the observation map
strategy. PS-FCN [7] and SDPS-Net [8] aggregate features extracted by a shared-weight feature
extractor using a size-agnostic max-pooling layer and then feed them to a CNN-based network
to estimate a complete normal map. However, they pay less attention to the inter-image lighting
variation. In addition to frameworks trained in a supervised manner, Taniai and Maehara [30]
propose an unsupervised all-pixel photometric stereo network. However, it has the drawback of
time-consuming computation. Please refer to the survey in [10] for more details.

3 Problem Formulation

Calibrated photometric stereo takes a set of intensity observations I under directionally varying
lightings l = (lx, ly, lz)

> ∈ R3 as input, and outputs the estimated surface normal n.2 For per-
pixel photometric stereo methods, I and n are defined for each pixel, which can be represented
as I = Ii ∈ R and n = ni = (nix, niy, niz)

> ∈ R3, where i indicates the pixel index. For
all-pixel methods, I and n are usually represented in matrix format as I = I ∈ RH×W and
n = N ∈ RH×W×3, where H and W indicate the height and width of the input image. Given a
sequence of inputs {[I, l]} = {[Ij , lj ]|1 ≤ j ≤ K}, where j indicates that the observation is captured
under the illumination of the j-th light source and K is the number of lights, n can be calculated by
inversely solving the image formation model via

I = ρ(n, l,v), (1)

where v = (0, 0, 1)> represents the outgoing viewing direction, and the BRDF model is usually used
to describe the function ρ. Unlike conventional methods inversely solving Eq. (1), learning-based
approaches directly learn the mapping from {[I, l]} to n.

The state-of-the-art learning-based methods can be divided into per-pixel methods [4]–[6] and all-pixel
methods [7], [8]. For per-pixel methods, their input can be represented as {[I, l]} = {[Iij , lj ]|1 ≤
j ≤ K}. As illustrated in Fig. 1, these methods predict a surface normal for pixel i via

n = ni = CNNper(OBS({[Iij , lj ]|1 ≤ j ≤ K})), (2)

where OBS indicates that all the inter-image information is projected into an observation map.
2In practice, the observed intensity I is normalized by dividing the light source intensity in a pre-processing

stage.
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For all-pixel methods, their input can be represented as {[I, l]} = {[Ij , lj ]|1 ≤ j ≤ K}. They
predict a complete normal map via

n = N = CNNall(max({SFE([Ij , lj ])|1 ≤ j ≤ K})), (3)

where SFE stands for the shared-weight feature extractor. It can be seen from Eq. (2) and Eq. (3) that
per-pixel methods do not explicitly extract features from the intra-image spatial domain, and all-pixel
methods pay less attention to the inter-image information that reflects the pixel-wise variation under
different lightings. Unlike per-pixel and all-pixel approaches that focus only on one “dimension” of
photometric stereo input, we design a network that extracts both inter-image and intra-image features.
As illustrated in Fig. 1, our method can be formulated as

n = N = CNN({SGC({[Iij , lj ]|1 ≤ j ≤ K})|1 ≤ i ≤ H ×W}), (4)

where SGC represents the proposed SGC filter.

4 Graph-based Photometric Stereo Network

In this section, we introduce our Graph-based Photometric Stereo Network, called GPS-Net. As
shown in Fig. 1, GPS-Net consists of two modules, i.e., the UFE-Layer for per-pixel operation
to connect the unstructured inter-image inputs of each pixel into a graph structure and generate a
fixed-size feature map, and the NR-Net for all-pixel operation to further regress a normal map from
the intra-image spatial information.

4.1 UFE-Layer for Per-pixel Operation

To deal with the unstructured inter-image information of each pixel, previous per-pixel learning-
based methods [4]–[6] adopt an observation map to aggregate an arbitrary number of pixel-wise
observations. However, this strategy has two problems. First, as shown in Fig. 1, the size w of the
observation map is fixed. If w is too small, the resolution of the observation map will be reduced
so that its performance will drop significantly. If w is too large, the valid data can only occupy
a small proportion of the observation map, causing the sparsity problem and poor performance.
This contradiction between resolution and density makes per-pixel approaches difficult to find a
balance between sparse and dense lighting distributions. Second, observation maps cannot retain the
intra-image spatial information that can be further used to improve performance. To solve these two
problems, we propose the UFE-Layer. Moreover, an inherent advantage of per-pixel methods is that
observation maps reflect the distribution of outliers in their spatial domain [4]–[6]. Our UFE-Layer
can also distinguish negative and positive observations through adaptive weighting for attached/cast
shadow outliers and specular highlight clues using the proposed SGC filters.

As shown in Fig. 1, UFE-Layer connects an arbitrary number of inter-image observations of each pixel
({[Iij , lj ]|1 ≤ j ≤ K}) into a graph structure. The central node that indicates the pixel index does not
carry any information, and each adjacent node contains the input information under a certain lighting
(xij = [Iij , lj ] = (Iij , ljx, ljy, ljz)

> ∈ R4). The number of adjacent nodes equals to the number of
lights. Since the number of lights may vary from sparse to dense, the graph structure also has an
arbitrary number of adjacent nodes. To efficiently extract features from an unstructured graph with
arbitrary numbers of adjacent nodes, we design the SGC filters, which are inspired by the convolution
strategy for topologically inconsistent graphs [32]. Each SGC filter is composed of four learnable
parameter matrices, i.e., V = (v1,v2,v3,v4) = ((v11, v12, ..., v1t)

>, ..., (v41, v42, ..., v4t)
>) ∈

Rt×4, M1 ∈ R4×s, M2 ∈ Rs×s, and M3 ∈ Rs×1, where t and s are hyperparameters, and 4 is the
number of channels of xij . The SGC filter generates diverse weights wij = (wij1, wij2, wij3, wij4)

>

for each adjacent node so that we can convolve xij through an inner product operation to get a 2-
channel output feature vector of pixel i, which can be formulated as

yi = (
1

K

K∑
j=1

(xij ·wij), max({xij ·wij |1 ≤ j ≤ K}) )> ∈ R2. (5)

There are two points worth noting. First, we adopt an averaging operation instead of a summing
operation that is widely used in graph convolution strategies, which aims at making our network more
robust to the drastically varying number of photometric stereo inputs (K). Second, we further expand

4



the feature vector by introducing the maximum convolution result, which has been proven to provide
strong clues for surface normal inference [7].

To generate diverse weights, we first use three learnable parameter matrices and three nonlinear
operations to quantitatively calculate the topological relationship rij of each adjacent node according
to the information it carries via

rij = Tanh(ReLU(ReLU(xij
>M1)M2)M3). (6)

Then, we take rij as the argument of an adaptively fitted weighting function and use the function
value to represent the generated weight, which can be formulated as

wijc =

t∑
k=1

vck · hk(rij), (7)

where the learnable coefficient vck is from matrix V . vc = (vc1, vc2, ..., vct)
> (1 ≤ c ≤ 4) is used to

fit a weighting function for the c-th channel with Chebyshev polynomials truncated to t terms. hk(·)
expresses the k-term Chebyshev polynomial which can be generated by the stable recurrence relation,
i.e., hk(r) = 2rhk−1(r) − hk−2(r), with h1(r) = 1 and h2(r) = r. Hyperparameter t affects the
expressive ability of the fitted weighting functions, and hyperparameter s affects the performance
of the quantitative calculation of topological relationship. We experimentally find that t = 32 and
s = 10 can guarantee a sufficiently good performance, while a larger setting will increase the number
of network parameters without bringing performance improvement. Finally, we use 32 SGC filters so
that each pixel can generate a 64-channel feature vector. All the feature vectors are arranged together
according to the pixel position to obtain a structured 64-channel feature map.

The UFE-Layer explores the unstructured inter-image information without suffering from the con-
tradiction between resolution and density in the observation map [4]. Therefore, we can achieve
consistently good performance under both sparse and dense lightings. The UFE-Layer also retains
the intra-image spatial information used by the subsequent NR-Net to improve prediction accuracy.

4.2 NR-Net for All-pixel Operation

After processing the input data using the UFE-layer pixel-wisely, the unstructured input is transformed
into a structured H×W×64-dimensional feature map with its spatial information preserved. We
further regress a complete normal map using the NR-Net by operating in an all-pixel manner. Existing
all-pixel learning-based methods [7], [8] use 3×3 filters in all convolutional layers in their networks
to predict a normal map. This brings a problem. Although 3×3 convolutional layers can improve
performance by exploring the intra-image spatial information, too many 3×3 convolutional layers
will cause over-smoothing in the spatial domain, leading to the loss of resolution details and poor
performance. In contrast, a moderate number of 3×3 convolutional layers can find a balance between
over- and proper- smoothing spatial information to improve prediction accuracy while preserving
high-resolution image details. To this end, we adopt a multi-scale and multi-branch design in the
NR-Net, as shown in Fig. 1. Unlike all-pixel methods with all-3×3 architectures, we adopt an
appropriate number of 3×3 convolutional layers to make efficient use of the intra-image spatial
information, which avoids the blurring effect and performance degradation caused by over-smoothing.
To preserve the pixel-wise resolution details to the greatest extent, we further divide NR-Net into two
branches with 1×1 and 3×3 architectures to ensure that there is an all-1×1 branch operating in the
pixel-wise manner before the final convolutional layer. Experimental results in Section 5.4 prove that
NR-Net can restore image details better than all-pixel methods, and experimental results in Section
5.5 verify that our multi-scale and multi-branch design achieves the best prediction accuracy.

4.3 Loss Function

The learning of our GPS-Net is supervised by the angular error loss function via

LAE =
1

P

∑
| arccos(np · n′p)|, (8)

where p accounts for all the pixels located in the foreground mask, and P is the number of them. np

and n′p represent the predicted surface normal and the ground truth, respectively. Other losses like
mean square error [4], [5], [30] and cosine similarity error [7], [8] can also be utilized.
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Table 1: Performance on the DiLiGenT benchmark with different numbers of input images. We
perform the testing on all the ten objects contained in the DiLiGenT dataset and average the results.
The values represent MAEs in degree (the lower the better). The penultimate column represents the
average performance of each method, and the last column represents their standard deviations. Black
bold texts indicate the best performance, and underlined texts indicate the second best.

Number of input images

4 8 10 16 32 64 96 Avg. Std.

LS [1] 18.79 16.36 16.10 15.73 15.51 15.42 15.39 16.19 1.12
CNN-PS [4] 47.82 18.44 13.53 10.40 8.18 7.56 7.21 16.16 13.45
LMPS [5] 15.61 10.39 10.01 9.66 9.38 9.15 8.41 10.37 2.22

SPLINE-Net [6] 17.05 11.32 10.35 10.12 9.93 9.72 9.63 11.16 2.46
NEURAL-PS [30] 16.86 11.57 10.79 9.87 9.38 8.98 8.83 10.90 2.60

PS-FCN [7] 16.50 10.84 10.19 9.20 8.74 8.47 8.39 10.33 2.66

Ours 13.46 10.07 9.43 8.71 8.05 7.84 7.81 9.34 1.86

Table 2: Results on each object in the DiLiGenT benchmark with 10 and 96 input images.

10 input images

ball cow bear cat pot1 pot2 buddha goblet reading harvest Avg.

LS [1] 4.58 26.48 9.84 8.90 9.59 15.65 16.02 19.23 19.37 31.32 16.10
CNN-PS [4] 8.21 13.83 11.89 9.00 12.79 15.04 13.39 15.74 16.07 19.36 13.53
LMPS [5] 3.97 10.19 8.73 6.69 7.30 9.74 11.36 10.46 14.37 17.33 10.01

SPLINE-Net [6] 4.96 8.80 5.99 7.52 8.77 11.79 10.07 10.43 16.13 19.05 10.35
NEURAL-PS [30] 2.12 8.87 6.92 6.58 7.14 9.61 11.41 14.99 13.70 26.55 10.79

PS-FCN [7] 4.35 9.97 5.70 8.24 8.38 10.37 10.54 11.21 14.34 18.82 10.19

Ours 4.33 9.34 6.34 6.81 7.50 8.38 8.87 10.79 15.00 16.92 9.43

96 input images

ball cow bear cat pot1 pot2 buddha goblet reading harvest Avg.

LS [1] 4.10 25.60 8.39 8.41 8.89 14.65 14.92 18.50 19.80 30.62 15.39
CNN-PS [4] 2.12 7.92 4.20 4.38 5.37 6.38 8.07 7.42 12.12 14.08 7.21
LMPS [5] 2.40 7.98 5.23 6.11 6.54 7.48 9.89 8.61 13.68 16.18 8.41

SPLINE-Net [6] 4.51 7.44 5.28 6.49 8.29 10.89 10.36 9.62 15.50 17.93 9.63
NEURAL-PS [30] 1.47 6.32 5.79 5.44 6.09 7.76 10.36 11.47 11.03 22.59 8.83

PS-FCN [7] 2.82 7.33 7.55 6.16 7.13 7.25 7.91 8.60 13.33 15.85 8.39

Ours 2.92 6.14 5.07 5.42 6.04 7.01 7.77 9.00 13.58 15.14 7.81

5 Experimental Results

5.1 Datasets and Settings

Synthetic dataset for the training. For the training, we use the synthetic photometric stereo dataset
made by Chen et al. [7], which renders shapes from the Blobby shape dataset [33] and the Sculpture
shape dataset [34] with the MERL BRDF dataset [35]. This dataset contains 85212 samples rendered
under 64 directional lightings, which are randomly split into 99:1 for training and validation.

Synthetic dataset for the testing. To test our model on different materials, we rendered a “sphere”
and a “bunny” with all the 100 BRDFs from the MERL dataset [35] under the illumination of 100
randomly distributed light sources (sampled from a range of 180◦ × 180◦).

Real datasets for the testing. For the quantitative comparison, we use the DiLiGenT dataset [2]
which is a real-world public benchmark containing images of 10 objects with complex reflectance
illuminated by 96 directional lightings. We further perform qualitative experiments on two challenging
real datasets without ground truth, i.e., the Light Stage Data Gallery dataset [36] containing 6 objects
illuminated by 253 directional lightings, and the Gourd&Apple dataset [22] containing 3 objects
illuminated by 112, 102, and 98 directional lightings, respectively.
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Table 3: Results on the synthetic dataset with different materials. We perform the testing on all the
100 BRDFs and average the results.

27 98 27 98

sphere bunny

Sphere Bunny Sphere Bunny

Number of inputs Number of inputs

4 32 100 Avg. 4 32 100 Avg.

CNN-PS [4] 45.01 5.14 3.14 17.76 42.38 6.00 4.11 17.50
PS-FCN [7] 17.96 4.37 3.96 8.76 19.53 8.41 8.19 12.04

Ours 11.76 4.26 4.07 6.70 12.13 4.93 4.61 7.22

Ours PS-FCN

Figure 2: Qualitative results on the Light Stage Data Gallery dataset.

Settings and implementation details. Our framework is implemented in TensorFlow. We train
our model using a batch size of 32 for 30 epochs, which takes about 10 hours using a single GeForce
GTX 1080 Ti GPU. Images in the training dataset are randomly cropped and scaled to 32×32 to
increase the training speed, and the testing is performed at the original resolution of input images. The
learning rate is initially set to 0.01 and halved every 3 epochs. Adam optimizer is used to optimize
our network with default parameters (β1 = 0.9 and β2 = 0.999). The widely used mean angular
error (MAE, the lower the better) in degree is adopted to measure the accuracy of the estimated
normal map. In all the experiments, we perform 100 random trials and average them.

5.2 Quantitative Comparison on the DiLiGenT Dataset

We compare GPS-Net with six state-of-the-art methods, including linear least squares based method
(LS [1]), three per-pixel learning-based methods (CNN-PS [4], LMPS [5] and SPLINE-Net [6]), and
two all-pixel learning-based methods (NEURAL-PS [30] and PS-FCN [7]). We perform the testing on
the DiLiGenT benchmark [2] with seven sets of different numbers of input images (lighting conditions)
varying from sparse to dense. Experimental results are shown in Table 1. First, we compare GPS-Net
with per-pixel methods [4]–[6].3 As analyzed in Section 4.1, the fixed-size observation map makes
CNN-PS [4] difficult to find a balance between sparse and dense lighting distributions. To achieve
good results under dense conditions, CNN-PS sets w = 32, which causes a significant performance
drop as the number of lights decreases (≤ 32). Although CNN-PS achieves the best performance
under dense lighting distributions (64 and 96), GPS-Net achieves better performance under sparse
and moderate numbers of lights (≤ 32), because UFE-Layer is able to efficiently explore the inter-
image variation given an arbitrary number of inputs. Although LMPS [5] and SPLINE-Net [6]4 are
proposed to improve the performance of sparse observation maps, they cannot fundamentally solve its
contradiction between resolution and density. Hence, GPS-Net outperforms them under both sparse
and dense lighting distributions. Then, we compare GPS-Net with all-pixel methods [7], [30]. Due to

3The training datasets used by per-pixel methods [4]–[6] differ greatly from those of our GPS-Net and
all-pixel methods [7], [8] in terms of rendering approach and data accuracy. So their performance drops severely
when we retrain them using our training dataset.

4SPLINE-Net [6] only publishes its testing code and pre-trained model with an input number of 10 or less.
For numbers of inputs larger than 10, e.g., 16, we select 10 of 16 lights that have the least correlation in direction
as the input and test it on the pre-trained model.
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Figure 3: Visualization of the adaptive weight maps. The left shows how to visualize a weight map,
and the right shows the four channels of the weight map. Black boxes mark specular highlights and
blue boxes mark shadows.

Table 4: Effectiveness of Eq. (5).

Number of input images

4 8 10 16 32 64 96 Avg. Std.

Max 14.90 10.21 9.67 8.73 8.29 8.04 7.92 9.68 2.27
Avg 15.88 12.38 11.72 11.02 10.59 10.47 10.44 11.79 1.80

Max+Avg 13.46 10.07 9.43 8.71 8.05 7.84 7.81 9.34 1.86

the effectiveness of our multi-scale and multi-branch NR-Net and the ability to explore the additional
inter-image lighting variation, GPS-Net achieves an all-round performance improvement compared
to them. Overall, GPS-Net achieves the best average performance over existing methods, and more
stable performance under varying lighting distributions than existing deep learning methods. Table
2 specifically shows the results on each object in the DiLiGenT dataset when the number of input
images is 10 and 96. More quantitative results on each object with different numbers of inputs and
visual comparisons of the predicted normal maps are shown in our supplementary material.

5.3 Results on the Synthetic Dataset

Table 3 shows the performance of GPS-Net, per-pixel method CNN-PS [4] and all-pixel method
PS-FCN [7] on the synthetic dataset with 100 diverse BRDFs. In all the experiments, we perform 100
random trials and average them. It can be seen that GPS-Net achieves the best overall performance,
which shows its robustness to different materials and varying input numbers.

5.4 Qualitative Results on Other Real-world Datasets

To further verify the capability of GPS-Net, we perform qualitative experiments on two challenging
real datasets without ground truth, i.e., the Light Stage Data Gallery dataset [36] and the Gourd&Apple
dataset [22]. Fig. 2 shows the comparison results between GPS-Net and a typical all-pixel method
PS-FCN [7] on two objects of the Light Stage Data Gallery dataset. More results on all the objects are
shown in our supplementary material. As shown in Fig. 2, GPS-Net can recover pixel-wise surface
normals in clearer details. This attributes to the fact that we adopt a multi-scale and multi-branch
design in the NR-Net to avoid over-smoothing in the spatial domain, which is different from those
all-pixel networks with all-3×3 architectures [7], [8].

5.5 Network Analysis

Learning proper weights for shadows and specular highlights. As mentioned in Section 4.1,
our SGC filters can learn to generate diverse weights for each pixel according to Eq. (7). This is
different from traditional filters whose weights are the same for each pixel. We verify our adaptive
weighting mechanism through visual experiments. As shown in Fig. 3, the generated weights that
come from the same input image are arranged in pixel order, and then we can get a 4-channel weight
map corresponding to a certain input image. By visualizing it, we can observe what weights SGC
filters will generate when there are outliers or useful clue observations in the input image. It is
interesting to note that the learned weights share similar spirits with how non-learning approaches are
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Table 5: Effectiveness of NR-Net architecture.

Conv(1*1)+LReLU Res-block(1*1)
Conv(3*3)+LReLU

L2-Norm
Res-block(3*3) C Concat MAE MAE

Conv(1*1)+LReLU Res-block(1*1)
Conv(3*3)+LReLU

L2-Norm
Res-block(3*3) C Concat

9.39 I 8.38 II

7.90 III

C

C

7.81 IV

designed to improve their accuracies. The smaller weights usually appear in attached/cast shadow
regions, indicating observations that should be discarded [14], [37]. The higher weights are given to
pixels whose normals bisect the lighting and viewing directions, indicating “specular spikes” that
easily tell the correct normals [23]. In those near-diffuse regions that produce near-Lambertian
observations, SGC filters generate moderate weights. In this way, SGC filters appropriately balance
the photometric stereo observations when extracting features from them.

Effectiveness of Eq. (5). To verify the effectiveness of Eq. (5), we experimentally explore the
effect of maximum and average operations in Eq. (5) in Table 4. Max-pooling achieves better
performance than averaging (also demonstrated in Section 4.1 of PS-FCN [7]), while averaging is
more robust to the varying input numbers. The combination of them achieves the best results.

Effectiveness of NR-Net architecture. We verify the effectiveness of our multi-scale and multi-
branch design in Table 5. We conduct the comparative experiments on the DiLiGenT benchmark [2]
under all the 96 input images. The comparison between the results numbered by I, II, and III shows
that, although 3×3 convolutional layers can explore spatial information to improve performance, too
many of them will cause over-smoothing and performance degradation, and an appropriate number
of them can make efficient use of the spatial information to achieve good performance. The result
numbered by IV shows that our multi-scale and multi-branch design achieves the best performance.

6 Conclusion

We propose GPS-Net to combine the advantages of state-of-the-art learning-based frameworks by
exploring both inter-image and intra-image variation of photometric stereo input. The UFE-Layer
for per-pixel operation explores the inter-image intensity variation and appropriately balances it
using SGC filters. The NR-Net for all-pixel operation makes efficient use of the intra-image spatial
information to predict a high-resolution normal map. Experimental results indicate that GPS-Net
achieves excellent performance under both sparse and dense lighting distributions. However, there
are still some limitations in our method. We pay more attention on making our framework perform
well with an arbitrary number of inputs that vary from sparse to dense. But we do not achieve the
best accuracy under dense lighting distributions (e.g., 96 input images). So we will investigate how
we can make more efficient use of the dense photometric stereo observations in our future work.

Broader Impact

The proposed framework will promote the development of photometric stereo technology, which
can be useful for applications requiring 3D models with fine details (such as movie, game and other
entertainment industries or industrial inspection). With the advancement of this technology, people
may conveniently recover high-resolution and high-accuracy 3D information from images through
specialist devices and efficient algorithms.

However, the efficient acquisition of high-quality 3D models (such as faces) may cause severer
privacy violation problems than 2D images. We suggest that policymakers should establish an
efficient monitoring platform to regulate the illegal spread of 3D models with private information that
may cause ethical problems.
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