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Geometry-guided Dense Perspective Network
for Speech-Driven Facial Animation
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Abstract—Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and
face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet), to achieve
speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation
and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate
point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear
face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the
geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence
Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order
correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet
compared with state-of-the-art model. The code is available for research purposes at
http:// cic.tju.edu.cn/ faculty/ likun/ projects/ GDPnet .

Index Terms—Speech-driven, 3D Facial Animation, Geometry-guided, Speaker-independent
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1 INTRODUCTION

The most important approach of human communication is
through speaking and making corresponding facial expressions.
Understanding the correlation between speech and facial motion
is highly valuable for human behavior analysis. If the correlation
between speech and facial motion (which is a form of low level hu-
man behavior) is correctly learned, the generated facial animation
will be more reasonable and realistic. Therefore, speech-driven
facial animation has drawn much attention from both academia
and industry recently, and has a wide range of applications and
prospects, such as gaming, live broadcasting, virtual reality, and
film production [26], [28], [42]. 3D models, as a popular and
effective representation for human faces, have stronger ability to
show the facial motion and understand the correlation between
speech and facial motion than 2D images. However, 3D models
are more complicated than images, and it is more difficult to obtain
realistic 3D animation results. As shown in Figure 1, our aim is to
animate a 3D template model of any person according to an audio
input.

Despite the great progress in speaker-specific speech-driven
facial animation [3], [20], [34], speaker-independent facial an-
imation is still a challenging problem. Some methods animate
unrealistic artist-designed character rigs driven by audio [6], [43].
Others achieve more realistic animation by combining audio and
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video [26], [30], relying on manual processes, or focusing only
on the mouth [36]. VOCA [5] achieves the first audio-driven
speaker-independent 3D facial animation in any language using
a realistic 3D scanned template. It could generate animation of
different styles across a range of identities. But there are still three
challenges to achieve realistic audio-driven 3D facial animation
for an arbitrary person and language:

• The animated results are easily affected by both facial
motion and geometry characteristics. Therefore, we need
to consider the geometry representation of 3D models to
generate more realistic animation results, in addition to
relating the audio and the facial motion.

• The relation between audio and visual signals is compli-
cated, and we need more effective neural networks to learn
this non-linear and high-order relationship.

• In-the-wild speech audio usually contains noise and out-
liers, which challenge the robustness of the animation
method.

In this paper, to address these challenges, we propose a
geometry-guided dense perspective network (GDPnet), which
consists of encoder and decoder modules. For the encoder, to
ensure maximum information flow between layers in the network,
we connect all layers (with matching feature-map sizes) directly
with each other. For the decoder, we utilize attention mechanism
to use global information to selectively emphasize informative
features. We use an implicit dynamic geometry representation
that is encoded by the network to guide the network training, and
adopt two constraints from different perspectives to achieve more
robust animation. Experimental results demonstrate that the non-
linear geometry representation is beneficial to the speech-driven
model, and our model generalizes well to arbitrary subjects unseen
during training. The code is available for research purposes at
http://cic.tju.edu.cn/ faculty/ likun/projects/GDPnet.
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Figure 1: Our method is able to output reasonable and realistic 3D animated faces for any person in any language. Top: Actor from
VOCASET [5]; Middle: Actor from D3DFACS [4]; Bottom: Great tribute to Mr. Albert Einstein.

Specifically, the main contributions of this work are summa-
rized as follows:
• We propose a dense perspective network to better model

the non-linear and high-order relationship between audio
and visual signals and utilize an attention mechanism to
use global information to selectively emphasize informa-
tive features. To the best of our knowledge, it is the first
time to introduce dense connection in cross-modal tasks.
By using dense connection, our network can combine
the features learned in different stages and get a more
informative implicit embedding from the speech, which
can generate more reasonable face displacements by the
decoder, leading to better performance of 3D animation.

• We adopt a non-linear face representation to guide the net-
work training, which helps to solve the geometry-related
deformation and is effective for generalization across
subjects. The relation between audio and mesh output is
complicated, and hence it is hard to directly get the map-
ping through a network. Moreover, the animated results
are easily affected by both facial motion and geometry
structure. By applying the non-linear face representation,
our network can learn more geometry information and
generate more realistic animations, in addition to relating
the audio and the facial motion.

• We introduce Huber and HSIC (Hilbert-Schmidt indepen-
dence criterion) constraints to promote the robustness of
our model and better measure the non-linear and high-
order correlations between the implicit geometry repre-
sentation and the latent code without explicitly estimating
the joint distribution of the random variables. As a result,
both convergence speed and performance are improved.

• Our model is easy to train and fast to converge. At
the same time, we achieve more accurate and realistic
animation results for various persons in various languages.

2 RELATED WORK

Despite the great progress in facial animation from images or
videos [21], [38], [39], [40], less attention has been paid to
speech-driven facial animation, especially animating a 3D face.
However, understanding the correlation between speech and facial
deformation is very important for human behavior analysis and
virtual reality applications. Speech-driven 3D facial animation can
be categorized into two types: speaker-dependent animation and
speaker-independent animation, according to whether the method
supports generalization across characters.

2.1 Speaker-dependent Animation
Speaker-dependent animation mainly uses a large amount of data
to learn the animation ability in a specific situation. Cao et al. [3]
first rely on a database of high-fidelity recorded facial motions,
which includes speech-related motions, but the method relies on
high-quality motion capture data. Suwajanakorn et al. [34] utilize
a recurrent neural network trained on millions of video frames to
synthesize mouth shape from audio, but this method only focuses
on learning to generate videos of President Barack Obama from
his voice and stock footages. Karras et al. [20] first propose an
end-to-end network for animation. Through the input of voice
and specific emotion embedding, it could output the 3D vertex
positions of a fixed-topology mesh that corresponds to the center
of the audio window. Besides, it could produce expressive 3D
facial motion from audio in real time and with low latency.
However, this kind of animation methods has limited practical
applications due to its inconvenience for generalization across
characters.

2.2 Speaker-independent Animation
Many works focus on the facial animation of artist-designed
character rigs [6], [7], [14], [19], [33], [35], [36], [37], [43]. Liu
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Figure 2: The architecture of our proposed geometry-guided dense perspective network.

et al. [26] first propose a speaker-independent method based on a
Kinect sensor with video and audio input for 3D facial animation,
which reconstructs 3D facial expressions and 3D mouth shapes
from color and depth input with a multi-linear model and adopts a
deep network to extract phoneme state posterior probabilities from
the audio. However, this method relies on a lot of pre-processing
and inefficient search methods. Taylor et al. [36] propose a simple
and effective deep learning approach for speech-driven facial
animation using a sliding window predictor to learn arbitrary non-
linear mappings from phoneme label input sequences to mouth
movements. Pham et al. [29] propose a regression framework
based on a long short-term memory (LSTM) recurrent neural
network to estimate rotation and activation parameters of a 3D
blendshape face model. Based on this work, they [30] further em-
ploy convolutional neural networks to learn meaningful acoustic
feature representations, but their method also needs the recurrent
layer to process the information of time series. Zhou et al. [43]
propose a three-stage network using hand-engineered audio fea-
tures to regress the cartoon human. However, the animated face
is not a realistic scanned face. Cudeiro et al. [5] first provide a
self-captured multi-subject 4D face dataset and propose a generic
speech-driven 3D facial animation framework that works across
a range of identities. However, none of these methods take into
account the influence of geometry representation on speech-driven
3D facial animation.

In this paper, we propose a speaker-independent speech-driven
3D facial animation method by designing a geometry-guided
dense perspective network. The introduced non-linear geometry
representation and two constraints from different perspectives are
very beneficial to achieving realistic and robust animation.

3 GEOMETRY-GUIDED DENSE PERSPECTIVE NET-
WORK

Figure 2 shows the architecture of our geometry-guided dense per-
spective network (GDPnet). First of all, we extract speech features
using DeepSpeech [12] and embed the identity information to one-
hot embedding. After concatenating the two kinds of information,

the encoder maps it to the latent low-dimensional representation.
The purpose of the decoder is to map the hidden representation
to a high-dimensional space of 3D vertex displacements, and the
final output mesh is obtained by adding the displacements to the
template.

3.1 Problem Definition

Suppose we have three types of data {(p,xi,yi)}Fi=1. Here, the
index i refers to a specific frame, and F is the total number of
frames. xi ∈ RW×D is the speech feature window centered at the
ith frame generated by DeepSpeech [12], where D is the number
of phonemes in the alphabet plus an extra one for a blank label
and W is the window size. p ∈ RN×3 denotes the corresponding
template mesh, reflecting the subject-specific geometry, and N
is the number of vertices of the mesh. yi ∈ RN×3 denotes the
ground truth for facial animation at each frame. At last, let ŷi ∈
RN×3 denotes the output of our GDPnet model for the input xi
with template p.

3.2 Model

Our GDPnet model consists of an encoder and a decoder, as shown
in Figure 2. The input of the encoder is a DeepSpeech feature of
the audio and specific identity information. In order to effectively
express different subjects, we encode the identity information as
one-hot embedding so as to control different speaking styles.
In particular, the dimension of identity embedding is equal to
the number of subjects in the training set. During inference,
changing the identity embedding alters the output speaking style.
We adopt dense connections to combine the features learned in
different stages and get a more informative implicit embedding
from the speech, and add attention layers to selectively emphasize
important features. Also, we use an implicit dynamic geometry
representation that is encoded by the network to guide the network
training, and introduce Huber and HSIC constraints to improve
the robustness of our model and better measure the non-linear and
high-order correlations.
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Figure 3: Qualitative evaluation results for clean audio inputs.

3.2.1 Encoder

The purpose of the encoder is to map speech features to latent
representations. Similar to VOCA [5], to learn temporal features
and reduce the dimensionality of the input, we stack four convolu-
tional layers for the encoder. The problem of simply stacking the
convolutional layers is that the information of the early layers can
be easily lost [16]. We believe that both low-dimension and high-
dimension features are important, and hence we need an effective
way to combine the features at the low-dimension layer and the
high-dimension layer. Dense connections are widely used in many
deep learning architectures, including computer vision and natural
language processing. In computer vision, the DenseNet [16] uses
different numbers of dense blocks in different datasets, which can
take full advantage of features and perform better compared with
ResNet [13]. In natural language processing, the dense blocks are
used to learn more about local dependence within the sentence,
like MC-RNN [41]. Their motivation to use dense connection
is to reuse shallow features and encourage the combination of
features learned in different stages. Inspired from them, we use
dense connections in the speech encoder of our cross-modal task.
The biggest difference is that, they use the dense connections to
get more features from images to generate images or get more
sentence features from sentences for sentence analysis, which are
single-modal tasks, while dense connections in our GDPnet help
to get more features from speech to generate the 3D animation,
which is cross-modal. Consequently, the ith layer receives the

feature maps of all preceding layers, x0, . . . ,x`−1, as input:

x` = H` ([x0,x1, . . . ,x`−1]) , (1)

where [x0,x1, . . . ,x`−1] refers to the concatenation of the feature
maps produced in layers 0, . . . , ` − 1, and H` is a composite
function of two operations: convolution (Conv) with 3 × 1 filter
size and 2 × 1 stride, followed by a rectified linear unit (ReLU)
[10].

We follow common practice and double the number of fil-
ters (feature maps) after each convolutional layer. Applying the
concatenation operation in dense connections directly would be
infeasible as the sizes of feature maps are different. Therefore,
we introduce 2×1 pooling layers in the feature map dimension to
reduce the number of feature maps before concatenation (indicated
as the Down Sample layer in Figure 2). As a direct consequence of
the input concatenation, the feature maps learned by any layers can
be accessed easily. Benefiting from the dense connection structure,
we can reuse features effectively, which makes the encoder learn
more specific and richer latent representations.

3.2.2 Decoder
The decoder maps the latent representation to a high-dimensional
space of 3D vertex displacements, and the final output mesh
is obtained by adding the displacements to the template vertex
positions. To achieve this, we stack two fully connected layers
with tanh activation function.
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Figure 4: Qualitative evaluation results for noisy audio inputs.

Inspired by the attention mechanism in image classification
[15], we add attention mechanism to perform feature recalibra-
tion. In this way, the network learns to use global information
to selectively emphasize informative features and suppress less
useful ones. Let x` ∈ RC×1 denote the input of the attention
layer, where C is the number of feature maps, and the attention
value a` can be calculated by

a` = σ (W2δ (W1x`)) , (2)

where σ refers to the ReLU function and δ refers to the sigmoid
function. W1 ∈ RC

2 ×C and W2 ∈ RC×C
2 denote the learnable

parameter weights for the attention block. The final output of the
attention block is obtained by

x̃l = xl ⊗ a`. (3)

Here, ⊗ is element-wise multiplication. Through the attention
block, the model can adaptively select important features for the
current input samples, and different inputs can generate different
attention responses.

The final output layer is a fully connected layer with linear ac-
tivation function, which produces N × 3 output, corresponding to
the 3-dimensional displacement vectors of N vertices. N = 5023
is used in our experiments. The final mesh can be generated by
adding this output to the identity template. In order to make
the training more stable, the weight of this layer is initialized
by 50 PCA components which are calculated from the vertex

displacements of the training data and scaled by the PCA standard
deviation [5]. The deviation of this layer is initialized by zero.

3.3 Geometry-guided Training
The encoder-decoder structure described above can be regarded
as a cross-modal process. The encoder maps the speech mode to
the latent representation space, while the decoder maps the latent
representation space to the mesh mode. We refer to the latent rep-
resentation as a cross-modal representation, which should express
the expression and deformed geometry of a certain identity. It can
be exactly related to the reconstructed expression in the 3D face
representation and reconstruction using autoencoders [18], [24],
[31]. Specifically, r refers to the latent representation generated
from the speech input network and r̂ refers to that generated
from MGCN (Multi-column Graph Convolutional Network) [24].
Figure 2 clearly shows the definition. Since r is generated only
from speech, to get better geometries during the training, we use
MGCN [24] to extract geometry representation for each training
mesh due to its ability to extract non-local multi-scale features.
The MGCN is an encoder-decoder architecture with multi-column
graph convolutional networks to capture features of different
scales and learn a better latent space representation. In this way, we
can have a geometry representation corresponding to each frame
in the speech rather than just using the identity information of
the template for the speech during the training. Using this 3D ge-
ometry representation r̂ can effectively constrain our cross-modal
representation. We assume that our implicit dynamic geometry
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Figure 5: Specific subject names for training, validation and test.

representation that is encoded by the network contains the expres-
sion and deformed geometry of a certain identity, and the nonlinear
representation r̂ from MGCN should be highly correlated with the
representation r from the speech input. Here we introduce two
approaches of measurement: Huber [17] constraint and Hilbert-
Schmidt independence criterion (HSIC) constraint.

3.3.1 Huber Constraint

Most work uses the `2 loss to measure the distance between two
vectors, but this measurement is more easily affected by noise
and outliers. `1 loss is a better choice for robustness, but it is
discontinuous and non-differentiable at position 0, leading to the
difficulty for optimization. Huber loss adopts a piece-wise method
to integrate the advantages of `1 loss and `2 loss and has been
widely used in a variety of tasks.

Definition 1. Assuming that there are two vectors r and r̂, the
Huber constraint Lξ is defined as

Lξ : R→ [0,+∞),

Lξ(r, r̂) =

{
r−r̂2

2 if |r − r̂| ≤ ξ
ξ|r − r̂| − ξ2

2 otherwise,

(4)

where ξ > 0 is the parameter that balances bias and robustness,
and is set to 1.0 as default setting.

The parameter ξ controls the blending of `1 and `2 losses
which can be regarded as two extremes of the Huber loss with
ξ → ∞ and ξ → 0, respectively. For smaller values of |r − r̂|,
the loss function Lξ is `2 loss, and the loss function becomes `1
loss when the magnitude of |r − r̂| exceeds ξ.

3.3.2 HSIC Constraint

In addition to the distance between the two expressions, we
also constrain from the perspective of correlations. The relation
between the audio and the animated meshes is complicated, and
hence it is hard to directly get the mapping through a network.
Moreover, the animated results are easily affected by both facial

motion and geometry characteristics. Therefore, we adopt a non-
linear face representation to guide the network training. The
HSIC measures the nonlinear and high-order correlations between
the implicit geometry representation and the latent code without
explicitly estimating the joint distribution of the random variables.
It has been successfully used in multi-view learning [2], [27]. As
a result, both convergence speed and performance are improved.

Assuming that there are two variables R =
[r1, . . . , ri, . . . , rM ] and R̂ = [r̂1, . . . , r̂i, . . . , r̂M ], M is
the batch size. We define a mapping φ(r) to kernel space
H, where the inner product of two vectors is defined as
k (ri, rj) = 〈φ (ri) , φ (rj)〉. Then, φ(r̂) is defined to map r̂
to kernel space G. Similarly, the inner product of two vectors is
defined as k (r̂i, r̂j) = 〈φ (r̂i) , φ (r̂j)〉.

Definition 2. HSIC is formulated as

HSIC
(
PRR̂,H,G

)
=
∥∥CRR̂∥∥2

= ERR̂R′R̂′

[
kR (R,R′) kR̂′

(
R̂, R̂′

)]
+ ERR′ [kR (R,R′)]ER̂′

[
kR̂

(
R̂, R̂′

)]
− 2ERR̂

[
ER′ [kR (R,R′)]ER̂′

[
kR̂

(
R̂, R̂′

)]]
,

(5)
where kR and kR̂ are kernel functions, H and G are the
Hilbert spaces, and ERR̂ is the expectation over R and R̂. Let
D := {(r1, r̂1) , · · · , (rm, r̂m)} drawn from PRR̂. The empirical
version of HSIC is induced as:

HSIC(D,H,G) = (N − 1)−2 tr (K1HK2H) , (6)

where tr(. . . ) is the trace of a square matrix. K1 and K2 are the
Gram matrices with k1,ij = k1 (ri, rj) and k2,ij = k2 (r̂i, r̂j).
H centers the Gram matrix which has zero mean in the feature
space:

H = Im −
1

m
1m1Tm. (7)

Please refer to [11] for more detailed proof of HSIC.
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Table 1: Performance (mm) and training time (s) of different GDPnet variants.

Variant HSIC Huber Dense Attention Validation Test Training Time

(a) 5.861 7.701 98m58s
(b) X 5.842 7.655 49m24s
(c) X 5.867 7.665 46m14s
(d) X X 5.858 7.628 49m50s
(e) X X 5.783 7.576 50m11s
(f) X X X 5.775 7.520 52m35s

Table 2: Quantitative results on VOCASET dataset (mm).

Validation Test
Noise

Speakerval1 Speakerval2 Mean Speakertest1 Speakertest2 Mean

VOCA [5] 4.073 7.649 5.861 9.657 5.844 7.701 7.890
GDPnet 4.084 7.467 5.775 9.377 5.663 7.520 7.721

Figure 6: User study result. The blue bars show the percentage of
people who give higher scores for our GDPnet than VOCA [5],

and the orange bars are the opposite.

3.4 Loss Function
The loss of the proposed GDPnet consists of three parts, i.e.,
reconstruction loss, constraint loss and velocity loss:

L = Lr + λ1Lc + λ2Lv, (8)

where λ1 and λ2 are positive constants to balance loss terms.
The reconstruction loss Lr computes the distance between the
predicted output and the ground truth:

Lr = ‖yi − ŷi‖2F . (9)

During the training stage, the reconstruction representation con-
straint Lc could use Huber or HSIC as we discuss in Section
3.3. The choice of these two constraints is a trade-off, as Huber
constraint has faster convergence and HSIC constraint has better
performance, which will be discussed in Section 4.2. Besides, we
have the velocity loss

Lv = ‖(yi − yi−1)− (ŷi − ŷi−1)‖2F , (10)

to induce temporal stability, which considers the smoothness of
prediction and ground truth in the sequence context.

3.5 Implementation Details
Our GDPnet is implemented using Tensorflow [1] and trained with
the Adam optimizer [22] on an NVIDIA GeForce GTX 1080
Ti GPU. We train our model for 50 epochs with a learning rate

Table 3: Results of Wilcoxon signed rank test in five cases of the
user study.

Cases
VOCA [5] GDPnet

z p
Mean Mean

Across Subjects 4.98 5.55 7.959 < 0.01

Across Languages 5.00 5.43 7.645 < 0.01

With Noise 4.89 5.41 7.332 < 0.01

With Outliers 4.90 5.38 4.863 < 0.01

Scanned Models 4.89 5.42 7.664 < 0.01

of 1e − 4 without learning rate decay. We use Adam with a
momentum of 0.9, which optimizes the loss function between the
output mesh and the ground-truth mesh. The balancing weights
for loss terms are set to λ1 = 0.1 and λ2 = 10.0, respectively.
For network architecture, we use a windows size of W = 16
with D = 29 speech features, and set the dimension of latent
representation as 64.

4 EXPERIMENTS

In this section, we first introduce the experimental setup including
the dataset, training setup and the metric. Then, we evaluate
the performance of our GDPnet quantitatively and qualitatively
compared with the state-of-the-art method. We also conduct a
blind user study. Finally, we perform an ablation study to analyze
the effects of different components of our approach.

4.1 Experimental Setup
4.1.1 Dataset
VOCASET [5] provides high-quality 3D scans with about 29
minutes of 4D scans captured at 60 fps as well as alignments
of the entire head including the neck. The raw 3D head scans are
registered with a sequential alignment method using the publicly
available generic FLAME model [25]. Each registered mesh has
5023 vertices with 3D coordinates. In addition to high-quality face
models, VOCASET also provides the corresponding voice data,
which is very useful to train and evaluate speech-driven 3D facial
animation. In total, it has 12 subjects and 480 sequences each
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Figure 7: Our method generalizes across various scanned models from 3dMD dataset [9].

containing a sentence spoken in English with a duration of 3-5
seconds. The sentences are taken from a diverse corpus similar to
[8]. As we know, the posture, head rotation and other subjective
information of the speaker cannot be completely judged only by
voice. In order to eliminate the influence of pose and distortion
on the model, we only use the unposed data for training, so that
we can effectively make use of the template information to obtain
more realistic animation results using the unknown voices.

4.1.2 Training Setup
In order to train and test effectively, we split 12 subjects into
a training set, a validation set and a test set, as VOCA [5] did.
Furthermore, we split the remaining subjects as 2 for validation
and 2 for testing. The training set consists of all sentences of eight
subjects. For the validation and test sets, 20 unique sentences are
selected so that they are not shared with any other subject. The
specific data division is shown in Figure 5. Note that there is no
overlap between training, validation and test sets for subjects or
sentences.

4.1.3 Metric
To quantitatively evaluate the performances of the proposed
method and the compared method, we adopt mean squared error
(MSE), i.e., the average squared difference between the estimated
value and the ground-truth value. Specifically, the MSE between
the generated mesh ŷ and the ground-truth mesh y is defined as:

mse (ŷ, y) =
1

N

N∑
i=1

‖vi − v̂i‖2 , (11)

where v is a vertex of the mesh, and N is the number of vertices.

4.2 Ablation Study

Furthermore, we study the impact of different components in
our GDPnet. Specifically, we analyze four key components:
HSIC constraint, Huber constraint, dense connection structure in
the encoder and attention mechanism. By taking one or several
components into account, we obtain six variants as follows:
(a) without any of the components;
(b) with HSIC constraint loss to leverage geometry-guided
training strategy;
(c) with Huber constraint loss to leverage geometry-guided
training strategy;
(d) with HSIC constraint and dense connection structure in the
encoder;
(e) with HSIC constraint and attention mechanism in the decoder;
(f) with HSIC constraint, dense connect structure and attention
mechanism.

In Table 1, we compare the mean squared errors of different
variants on the validation set and the test set, together with
the training time. The training convergence time is the time
when the best validation accuracy was achieved. With HSIC or
Huber constraint, the adoption of our geometry-guided training
strategy will speed up the training convergence of the network
(less than half of the time). Besides, the accuracy is improved
from 7.701 to 7.655 by using the HSIC/Huber regularization. The
convergence speed of using Huber constraint is the fastest, because
the calculation time of Huber loss is less than that of HSIC loss.
However, the performance of using Huber constraint is slightly
worse than that of using HSIC constraint, since the correlation
measurement of HSIC is more consistent with this task. Therefore,
we use the HSIC constraint in the following comparison experi-
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Figure 8: Our method generalizes natural and realistic animations across languages, compared with VOCA [5].

ments. In summery, each module in our GDPnet can improve the
performance of animation effectively, especially when using both
dense connection structure and attention mechanism.

4.3 Comparison
In this section, we compare our method with a state-of-the-
art method, VOCA [5], quantitatively and qualitatively with a
user study. VOCA [5] is the only state-of-the-art method that
achieves the same goal with our work: generating realistic 3D
facial animation given an audio in any language and any 3D face
model.

4.3.1 Quantitative Evaluation
We first evaluate the quantitative results of our GDPnet method
and VOCA [5] on the VOCASET dataset. For fair comparison, we
use the same dataset split as VOCA [5]. As presented in Table 2,
we calculate the mean squared error for each subject in the valida-
tion set and the test set. It can be seen that the overall performance

of our model is better than VOCA, demonstrating the better gen-
eralization ability of our model. In order to more clearly formulate
the different speakers in the validate and test sets, we denote the
ith subject in the validate set as Speakervali similar to the test set.
Our GDPnet improves accuracy by 0.182mm on Speakerval2

and achieves competitive performance on Speakerval1 in the
validation set. It is worth noting that, in the test set, our method
reduces 0.280mm error for Speakertest1 and error by 0.181mm
for Speakertest2 . This proves that GDPnet is more generalized
than VOCA. Some visual results are shown in Figure 3. The per-
vertex errors are color-coded on the reconstructed mesh for visual
inspection. Our method obtains more accurate results which are
closer to the ground truths.

In order to evaluate the robustness of our method, we combine
a speech signal with Gaussian noise, natural noise1 or outliers,
and use the polluted signal as the input. The averaged errors over

1. From http://soundbible.com
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Figure 9: Our method generalizes natural and realistic animations across sentences, compared with VOCA [5].

the noisy cases are given in Table 2. Our method also obtains
more accurate results for the noisy cases. Some visual results with
Gaussian noisy inputs are shown in Figure 4. The per-vertex errors
are color-coded on the reconstructed mesh for visual inspection.
More results with different noises are shown in Figure 10. These
results demonstrate that our GDPnet is more robust to noise and
outliers.

4.3.2 Qualitative Evaluation and User Study

To evaluate the generalizability of our method, we perform qual-
itative evaluation and perceptual evaluation with a user study,
compared with the state-of-the-art method.

In the study, we show the video results of VOCA [5] (Method
A) and our method (Method B) for the same sentence in five
cases with two examples per case (12 questions in total including
question related to gender and age of the participant): general-
ization across unseen subjects, generalization across languages,
robustness to noise, robustness to outliers, and application to
scanned models, which is a side by side comparison [23]. The
users are required to score the results of VOCA [5] (Method A)

and our method (Method B) separately from 1 to 7 where 1 means
extremely poor and 7 means excellent. In the user study, we have
collected 144 answers, including 76 females and 68 males with
different ages (2 users under 18, 128 users between 18 and 40, 13
users between 40 and 60, and 1 user above 60). Table 3 gives the
results of Wilcoxon signed rank test [32] in the five cases. The p
values are less than 0.01, which means there is great significant
difference between the results of the two methods. The mean
values of our model are better than VOCA [5]. This demonstrates
that our model has a better performance than VOCA [5]. Figure 6
shows the results of user preference for VOCA [5] and our method
in the five cases. The blue bars show the percentage of people who
give higher scores for our method than VOCA [5], and the orange
bars are the opposite. As shown in the figure, our method has
higher approval ratings.

• Generalization across unseen subjects and real
scanned subjects: Our method can animate any model
that has the consistent topology with the FLAME. To
demonstrate the generalization capability of our method,
we non-rigidly register the FLAME model against several
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Figure 10: Our method is robust to various noise and outliers in the input audio, compared with VOCA [5].

scanned models from 3dMD dataset [9], a self-scanned
model and a model of Albert Einstein downloaded from
TurboSquid 2. Specifically, we first manually define some
3D landmarks and fit the FLAME model to these 3D
landmarks. Then, we adopt ED graph-based non-rigid
deformation and per-vertex refinement to obtain a fitted
mesh with geometry details. Figure 1 shows some
animation results on unseen subjects in VOCASET [5],
D3DFACS [4] and our fitted dataset, driven by the same
audio sequence. Figure 7 gives more results on our fitted
dataset. Video results compared with VOCA [5] are
shown on the project website3. Our method achieves more
reasonable and realistic 3D facial animation results.

• Generalization across languages and sentences:
Although trained with speech signals in English, our
model can generate animation results in any language.
Because our 3D face animation results are generated
according to the signal characteristics of the speech
instead of the word or language, our model generalizes
well across languages and sentences. The advantages

2. https://www.turbosquid.com
3. http://cic.tju.edu.cn/faculty/likun/projects/GDPnet

of our method are fast convergence, reasonable output,
robustness to noise and outliers, and good generalization
across unseen subjects, languages and sentences. Figure
8 shows some examples of our generalization across
languages, compared with VOCA [5], and Figure 9 shows
some examples of our generalization across sentences.
The video on the project website3 gives the detailed
results. The results demonstrate that our method is able
to achieve more obvious facial motion for these examples
with different languages and sentences in these examples.

• Robustness to noise and outliers: To demonstrate our
robustness to noise and outliers, we combine a speech
signal with Gaussian noise, natural noise or outliers, and
use the polluted signal as the input. Figure 10 shows a
comparison between VOCA [5] and our model. Benefiting
from the geometry-guided training strategy, our model not
only has a faster training convergence time, but also has
better robustness. Also, the video on the project website3

shows more visual results.

4.4 Failure Case and Discussion
In terms of the whole sequence, there are no obviously wrong
cases for our results. By carefully comparing the differences
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between the predicted result and the ground-truth for each frame,
some small differences, e.g., the subtle change of expression and
the range of mouth opening and closing, can be occasionally
found. Figure 11 gives an example of this failure case, which is
wrong (or inaccurate) only at a certain time instance. The ground-
truth is closing the mouth, while our estimated model opens the
mouth a little by taking an action for the sound signal. That is
to say, for the speech corresponding to the mouth fully closed,
our method cannot judge the expression of the speaker simply
from the voice. In addition to the fundamental shortcoming of
data-driven methods that struggle to generate extreme cases, the
limited speaking styles are also a main reason. The current model
only uses a separate identity coding for the style control and the
style attributes are not explicitly modeled, which results in the
poor diversity of style for the animation. Only using audio features
cannot achieve perfect 3D facial animation. In the future work, we
will use a GAN-based approach to achieve richer style changes.

5 CONCLUSION

In this paper, we propose a geometry-guided dense perspective
network (GDPnet) to animate a 3D template model of any person
speaking the sentences in any language. We design an encoder
with dense connection to strengthen feature propagation and
encourage the re-usage of audio features, and a decoder with atten-
tion mechanism to better regress the final 3D facial mesh. We also
propose a geometry-guided training strategy with two constrains
from different perspectives to achieve more robust animation.
Experimental results demonstrate that our method achieves more
accurate and reasonable animation results and generalizes well to
unseen subjects.

GroundTruth Ours

Figure 11: One failure case using our method.
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