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Abstract—3D reconstruction of dynamic crowds in large scenes
has become increasingly important for applications such as
city surveillance and crowd analysis. However, current works
attempt to reconstruct 3D crowds from a static image, causing
a lack of temporal consistency and inability to alleviate the
typical impact caused by occlusions. In this paper, we propose
DyCrowd, the first framework for spatio-temporally consistent
3D reconstruction of hundreds of individuals’ poses, positions
and shapes from a large-scene video. We design a coarse-to-
fine group-guided motion optimization strategy for occlusion-
robust crowd reconstruction in large scenes. To address temporal
instability and severe occlusions, we further incorporate a VAE
(Variational Autoencoder)-based human motion prior along with
a segment-level group-guided optimization. The core of our
strategy leverages collective crowd behavior to address long-term
dynamic occlusions. By jointly optimizing the motion sequences
of individuals with similar motion segments and combining this
with the proposed Asynchronous Motion Consistency (AMC)
loss, we enable high-quality unoccluded motion segments to
guide the motion recovery of occluded ones, ensuring robust
and plausible motion recovery even in the presence of temporal
desynchronization and rhythmic inconsistencies. Additionally,
in order to fill the gap of no existing well-annotated large-
scene video dataset, we contribute a virtual benchmark dataset,
VirtualCrowd, for evaluating dynamic crowd reconstruction from
large-scene videos. Experimental results demonstrate that the
proposed method achieves state-of-the-art performance in the
large-scene dynamic crowd reconstruction task. The code and
dataset will be available for research purposes.

Index Terms—3D reconstruction, dynamic crowd, large-scene
video, multi-person pose and shape estimation.

I. INTRODUCTION

3D human pose and shape estimation in large scenes is
essential for enabling effective behavioral modeling and

crowd monitoring. This capability plays a pivotal role in a wide
range of applications, from public safety and urban planning
to large-scale event management. However, current efforts [1],
[2] related to large-scene 3D pedestrians reconstruction are
based on a single image, capturing static crowds’ 3D positions,
postures and shapes. While these methods can provide useful
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insights into the spatial distribution and individual character-
istics of crowds, they fall short when it comes to representing
temporal dynamics and continuous movement patterns, which
are critical for understanding crowd behavior over time. This
paper aims to reconstruct dynamic crowds within a global
camera space from a large-scene video.

Most single-person reconstruction methods estimate tem-
porally consistent and smooth pose and shape by using var-
ious temporal modeling techniques [3]–[6] or optimization
paradigms [7], [8] from a single RGB video. To extend
to large-scene crowd videos, an intuitive idea is to com-
bine these methods with multi-object tracking techniques
and independently reconstruct multiple people from cropped
instance images. However, this approach ignores interactions
among individuals and overlooks critical location and scale
information within the global coordinate system of large
scenes. For video-based multi-person reconstruction works,
the regression-based approaches [9], [10] reconstruct multiple
people at once from a video, but they fail to cope with large
scenes because scaling the high-resolution images of large
scenes down to input resolution would result in the loss of
image features for most small and medium-sized individuals.
Moreover, insufficient data availability hinders regression-
based methods from effectively reconstructing crowds from
large-scene videos. Additionally, existing optimization-based
methods [11], [12], designed specifically for small scenes with
handheld cameras, cannot be directly applied to large-scene
videos due to unique challenges such as a large number of
people, severe scale variation, wide spatial distribution, and
frequent dynamic occlusions.

Crowd3D [1] and GroupRec [2] are two state-of-the-art
methods for multi-person reconstruction in large scenes, pre-
dicting human body meshes with absolute positions for hun-
dreds of pedestrians within a unified camera system from a sin-
gle large-scene image. However, when applied to each frame
of a large-scene video, these methods often yield temporally-
unstable and unrealistic 3D motion and frequently lose objects
due to severe mutual occlusion. Occlusions frequently occur
and may last for a long time in large scene videos due
to the high density of moving individuals, causing spatio-
temporal discontinuity and thereby hampering dynamic human
reconstruction in large scenes.

In this paper, we propose DyCrowd, the first framework
capable of reconstructing the 3D positions, poses, and shapes
of dynamic crowds from large-scene videos. To achieve robust
and plausible crowd reconstruction in large scenes, we design
a Coarse-to-fine Group-guided Motion (C.G.M.) optimization
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Fig. 1. Spatio-temporally consistent 3D crowd reconstruction from a large-scene video via the proposed DyCrowd. This approach effectively achieves dynamic
3D reconstruction in a global space and addresses frequent dynamic occlusions in large scenes. Even when certain subjects (e.g., subject 1 in the figure)
remain segment-level occluded throughout the entire video, our method can still reconstruct reasonable motion trajectories and poses through optimization.

strategy, which includes VAE-based human motion prior op-
timization and segment-level group-guided optimization. This
strategy fully leverages the collective behavior of crowds in
large scenes [13]–[15]: (1) pedestrians with similar trajecto-
ries often exhibit similar motion postures, and (2) severely
occluded pedestrians and unoccluded pedestrians frequently
coexist in the same scene. To effectively leverage the collective
motion within groups, unlike GroupRec [2], which recon-
structs crowds through collective behavior in static images, we
focus on the dynamic changes of the group across consecutive
frames and the commonalities in motion among individuals.
The goal is to utilize high-quality and unoccluded motion
data to assist in recovering the motion of occluded pedes-
trians. Therefore, we first cluster individual motion segments
based on trajectory similarity and introduce detection scores
and joint importance to determine the confidence of motion
segments, identifying those requiring correction and high-
quality, unoccluded motion segments. It is important to note
that a segment of an individual’s motion may be mixed with
other segments from the same or different individuals in the
same group. To address issues such as temporal misalignment
and rhythm variations among motion sequences within the
group, we propose an Asynchronous Motion Consistency
(AMC) loss, ensuring the successful alignment and recovery
of long-term occluded motion sequences under the guidance
of unoccluded motion. To ensure the quality of group motion
segments in C.G.M., we employed a transformer Variational

Autoencoder (VAE) and trained the model using occlusion
data augmentation to develop a human motion prior, thereby
improving the smoothness and authenticity of the motion.

Furthermore, to verify the proposed method, we create a
synthetic large-scale dynamic crowd dataset VirtualCrowd by
employing motion generation techniques [16] and datasets of
virtual humans [17] and scenes [18]. This dataset provides
eight 8K validation videos from four large-scale scenes, fea-
turing varying crowd densities and perspectives (high-angle
and low-angle), with detailed 2D/3D annotations, including
2D and 3D keypoints, global positions, and SMPL-X [19] pa-
rameters. VirtualCrowd is expected to facilitate future research
on large-scene dynamic crowd reconstruction and analysis.
Experimental results on both synthetic and real captured
videos demonstrate that our method achieves spatio-temporally
consistent 3D crowd reconstruction from a large-scene video,
as shown in Fig. 1 with an example. The code and dataset will
be publicly available for research purposes.

In summary, the main contributions of this paper are:

• This is the first framework for reconstructing the motion
of crowds from a large-scene video, achieving spatial
and temporal consistency, and continuous and natural
reconstruction of 3D positions, poses and shapes of
hundreds of people.

• We propose a coarse-to-fine group-guided motion opti-
mization strategy to fit crowd motion, by introducing a
VAE-based motion prior in optimization followed by a
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segment-level group-guided optimization.
• We design an asynchronous motion consistency loss that

measures the differences in motion segments within a
group. This helps in recovering motion under long-term
occlusions.

• We contribute a virtual dataset that includes four dynamic
scenes with an average of hundreds of people, equipped
with detailed 3D labels such as 3D joints, 3D positions,
and SMPL-X parameters to evaluate large-scene dynamic
crowd reconstruction.

II. RELATED WORK

A. Crowd Reconstruction in Large Scenes

In recent years, the field of imaging has made significant
advancements, producing gigapixel-level images with a wide
field of view and high resolution details. These images are
typically captured by a multi-scale camera array [20], [21].
A notable dataset in this domain is PANDA [22] which is
a human-centric large-scene video dataset, including high-
resolution (∼25,000×15,000) images of large-scale scenes
with hundreds of people, and has been applied across a
spectrum of visual tasks [23]–[27].

Particularly, building on the availability of large-scale scene
data, Wen et al. [1] introduce the task of crowd reconstruction
in a large scene, which aims to reconstruct 3D poses, shapes,
and positions of hundreds of individuals within a unified cam-
era space from a single large-scene image. They design a joint
local and global inference framework called Crowd3D, which
converts the complex crowd localization into pixel localization
with the help of Human-scene Virtual Interaction Point (HVIP)
and the parameters of pre-estimated scene-level camera and
ground plane, directly reconstructing human body meshes in
a large-scene camera system from cropped images. Moreover,
GroupRec [2] solves the task by incorporating group features
and positional information into network inference, accounting
for collective behaviors and interactions to derive relatively
accurate crowd positioning. However, these methods solely
focus on a single-image reconstruction and as a result, they
are unable to infer natural and smooth crowd motion from a
large-scene video.

B. Video-based Single-person Reconstruction

Typically, reconstructing a single person from a video is
a reasonable way to maintain the consistency of the pose
and shape over time. Previous research [3], [4], [6], [28],
[29] primarily focuses on exploring various temporal modeling
architectures. VIBE [3] and TCMR [4] rely on recurrent neural
networks (RNNs) for temporal information. VIBE builds a
bidirectional gated recurrent unit (GRU) time encoder and
enhances the plausibility of motion sequences through adver-
sarial training. However, the reconstruction results are more
heavily dependent on static features. To address it, TCMR
aggregates temporal features of the past, future, and current
frame to strongly constrain outputs with motion consistency.
Compared to using an RNN, MPS-Net [28] captures motion
continuity dependencies through attention mechanisms, en-
hancing temporal correlations. Due to the inability of attention

mechanisms to effectively capture local details, GLoT [6]
utilizes transformer architectures to encode videos, capturing
long-term temporal correlations while refining local details
through attention on nearby frames. Recent approaches [7],
[8], [30] focus on estimating the global human trajectory
from a monocular dynamic camera. GLAMR [7] utilizes
a transformer-based generative motion filler to fill missing
motion from regression. It optimizes global trajectories be-
tween multiple frames of individuals in the scene but ignores
the camera motion cues. Both WHAM [30] and TRAM [8]
recover camera motion with SLAM (Simultaneous Localiza-
tion and Mapping). WHAM recursively predicts the pose,
shape, and global motion parameters without optimization for
faster inference. However, it may have poor generalization
for novel posture as it learns human motion from MoCap
data. TRAM effectively captures more accurate human motion
by composing camera trajectory in the world frame and a
person’s body motion in the camera frame, achieving better
generalization to complex scenarios.

However, these methods struggle with large-scene videos
featuring hundreds of people because they estimate the pose
and shape of each person in local camera space, resulting in
an incoherent spatial distribution of the reconstructed multi-
person meshes. Additionally, they neglect interactions between
multiple individuals and struggle to handle scenarios involving
mutual occlusion.

C. Video-based Multi-person Reconstruction

Unlike methods that reconstruct humans on a person-by-
person basis, some approaches focus on recovering multi-
person meshes simultaneously. These methods demonstrate the
ability to reconstruct globally consistent positions and scale
relationships among individuals, offering greater robustness in
handling mutual occlusions and preserving spatial coherence
across the scene. Benefiting from the exploration of one-stage
multi-person pose and shape estimation [31]–[33], some meth-
ods [9], [10] have achieved end-to-end prediction of multiple
people in a video. Specifically, PSVT [10] employs a pro-
gressive video Transformer encoder to capture global feature
dependencies among subjects, enabling end-to-end estimation
of multiple people’s poses and shapes. TRACE [9] utilizes
optical flow as a motion cue and estimates multiple people by
a novel 5D representation that represents the temporal motion
of a person in both camera and global coordinates. Regrettably,
these methods are unable to directly regress humans from an
entire large-scene image because, compared to the image size,
the scale of humans is relatively small and varies greatly.

Other methods [11], [12] utilize multi-stage spatio-temporal
joint optimization, incorporating generative models [34], [35]
as motion priors, to reconstruct spatially and temporally con-
sistent multi-person poses and shapes from a video. PACE [12]
integrates SLAM and human motion priors into an optimiza-
tion framework, leveraging the strengths of both to jointly op-
timize the motions of humans and the camera. SLAHMR [11]
decouples camera and human motion by integrating relative
camera estimation and learned transition human motion priors
to address the scene scale ambiguity, thereby inferring the
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Fig. 2. Overview of DyCrowd framework. DyCrowd is a multi-stage optimization method that consists of three main components: global crowd motion
initialization, fundamental individual optimization, and coarse-to-fine group-guided motion optimization. The coarse-to-fine group-guided motion optimization
utilizes a VAE-based Human Motion Prior Optimization (VHMP-Optim) to enhance the temporal stability of crowd motion and employs a Segment-level
Group-guided Optimization (SG-Optim) to address long-term occlusion issues in large-scene videos. This process results in a spatio-temporally consistent 3D
reconstruction of crowd motion within a unified global space.

motion of multiple individuals in a shared coordinate sys-
tem. Although multi-stage optimization processes may appear
suitable for large-scene videos, these methods are typically
tailored for small scenes captured by hand-held cameras and
are not equipped to address the unique challenges of large
scenes, such as significant scale variations, complex spatial
extents, and frequent mutual occlusions.

In this paper, we introduce DyCrowd, the first framework
for reconstructing spatio-temporally consistent 3D positions,
poses, and shapes of hundreds of people in a unified global
space from a large-scene video. DyCrowd produces natural
crowd motion and addresses the problem of motion recovery
under long-term occlusion in large-scene videos through our
coarse-to-fine group-guided motion optimization strategy and
asynchronous motion consistency loss. We also contribute a
virtual dataset called VirtualCrowd to support the evaluation
of large-scene dynamic crowd reconstruction.

III. METHODS

The proposed DyCrowd aims to achieve precise and con-
tinuous 3D reconstruction of the global positions, poses,
and shapes of hundreds of people from a large-scene video.
Fig. 2 illustrates the framework of our proposed approach.
The core of our approach is a coarse-to-fine group-guided
motion optimization strategy that addresses temporal instabil-
ity through a human motion prior model and restores long-
term occluded postures by leveraging the collective behavior
of the crowd. DyCrowd employs a multi-stage optimization
process to achieve spatial-temporal consistent global crowd
dynamics reconstruction: 1) integrating estimations from data-
driven models to obtain the global crowd motion initialization
(Sec. III-A); 2) employing a fundamental individual optimiza-
tion for reliable positions, poses and shapes of individuals
(Sec. III-B); 3) addressing motion instability and dynamic
occlusions by our coarse-to-fine group-guided motion opti-
mization strategy (Sec. III-C), which progressively optimizes
natural and occlusion-robust dynamic crowd motion.

We take as input a large-scene video with T frames
of a scene with N individuals and represent their motion
sequence in a global large-scene coordinate system with
{Qn}Nn=1. We use SMPL [36] model and Qn = {Qn,t =
{θn,t,βn,t,γn,t, τn,t}}Tt=1. For each individual, the SMPL
model transforms body pose parameters θn,t ∈ R23×3, shape
parameters βn,t ∈ R10, rotation parameters γn,t ∈ R3 and
translation τn,t ∈ R3 into the human body mesh vertices
Vn,t ∈ R6890×3 and joint positions JSMPL

n,t ∈ R24×3 by
applying a differentiable function M:

[Vn,t,J
SMPL
n,t ] = M(γn,t,θn,t,βn,t) + τn,t. (1)

A. Global Crowd Motion Initialization

In large-scene crowd motion reconstruction, we begin by
obtaining an initial estimate of the global crowd motion to
facilitate subsequent optimization. This process involves indi-
vidual detection and pre-reconstruction, camera and ground
plane estimation, and temporal matching of individuals to
generate preliminary global motion results, which serve as
inputs for subsequent optimization.

In the process of individual detection and pre-
reconstruction, extracting individual features presents
significant challenges due to variations in pedestrian scale
caused by differences in their distance from the camera,
especially when individuals appear small. To address this
issue, we first employ an adaptive human-centric cropping
method [1], which divides each video frame into multiple
regions. Within each region, we apply the top-down detection
method, VitDet [37], to identify individuals. The detection
results from all regions are then merged to accurately obtain
the bounding boxes and masks of each individual. Based on
these predicted bounding boxes, we extract the 2D keypoints
J̄2D
n,t ∈ R17×2 for each individual using DWPose [38].

Additionally, we use the human mesh reconstruction method,
HMR2.0 [39], to obtain the locally reconstructed SMPL
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model’s shape parameters β̄n,t ∈ R10 and pose parameters
θ̄n,t ∈ R23×3 for each individual.

To estimate the ground plane Ḡ : {N̄g, D̄g}, and the
camera’s intrinsic parameters K̄, similar to Crowd3D [1],
we use walking and standing human poses as priors for
calibration. Here, N̄g represents the ground normal, and D̄g is
a constant. Furthermore, we also infer the 2D and 3D Human-
scene Virtual Interaction Points (HVIP) [1] for each individual
by a single-person HVIP regression network and estimated
camera parameters, which are denoted as: p̄hvip2D

n,t ∈ R2 and
p̄hvip3D
n,t ∈ R3. HVIP represents the projection point of a

person’s 3D torso center on the ground plane, and we use
it to locate the person’s initial position in the global space.

We employ the PHALP [40] to achieve inter-frame indi-
vidual matching. Unlike the original PHALP, we employ 3D
HVIP as the position representation to overcome the limita-
tions of the PHALP framework in large-scale scene tracking.
Specifically, PHALP matches individuals frame by frame
based on appearance (A), pose (P), and position information
(L), and compares these with the current frame’s detection
results to update trajectories, enabling continuous tracking.
However, due to the significant scale differences between small
and large scenes, the tracking performance of PHALP in large-
scenes is suboptimal, and the position information provided
by the framework underperforms in camera setups with a
global perspective. In contrast, 3D HVIP accurately locates
individuals on the ground, offering a more effective positional
feature. Furthermore, we confine the matching process to
spatially adjacent individuals based on the 3D HVIP positional
representation, enhancing computational efficiency.

After the global crowd motion initialization, the motion
sequence Q̄n for each individual is obtained and used as the
initial input for the optimization process.

B. Fundamental Individual Optimization

As Q̄n is obtained from local reconstruction inference, its
global position, including both rotation and translation, along
with the pose of the SMPL model, remain ambiguous. To
address this, the fundamental individual optimization process
focuses on root optimization and SMPL optimization for each
frame to ensure robustness and rationality in both position
and pose. Below, we provide a detailed explanation of the
optimization formulas and their corresponding objective func-
tions.

The primary objective of root optimization is to obtain a
reasonable positional representation by fitting the root joint of
the human body. The first set of variables we optimize includes
the global root translation τn,t and root rotation γn,t for each
individual. The objective function for this phase is as follows:

argmin
τn,t,γn,t : ∀n, t

Eroot, with

Eroot = E2D + Ehvip2D + Econtact + Et-trans.

(2)

The error term E2D is used to ensure the reconstructed human
motion is spatially reasonable and consistent with the image
evidence. E2D is measured by the 2D reprojection error

between the 3D motion estimation and the 2D body joint
observations:

E2D = λ2D

∑
n,t,j

σn,t,jδn,t

∥∥∥ΠK(J̃
3D
n,t,j)− J̄2D

n,t,j

∥∥∥2
2
, (3)

where λ2D represents the contribution weight of this term,
and λ∗ for the other terms mentioned later also indicates
their respective contribution weights. σn,t,j ∈ {0, 1} indicates
whether the j-th keypoint of the n-th individual in the t-th
frame is valid, J̃3D

n,t,j ∈ J̃SMPL
n,t is the 3D keypoint coordinates

to be optimized, δn,t is the inverse of scale (bounding box
size) of the n-th individual in the t-th frame, and ΠK is
the perspective projection with the camera intrinsic matrix K.
To address the limitation where the re-projection error based
solely on 2D human keypoints fails to capture the interaction
between the human body and the scene, we introduce a
2D HVIP loss term, Ehvip2D. This loss term optimizes the
spatial position of the human body by penalizing unrealistic
placements of keypoints in relation to the scene, thereby better
describing the interaction between the human body and the
environment. The specific formula is as follows:

Ehvip2D = λh

∑
n,t

ζn,tδn,t

∥∥∥ΠK(H(J̃3D
n,t, Ḡ))− p̄hvip2D

n,t

∥∥∥2
2
,

(4)

where ζn,t ∈ {0, 1} indicates whether the n-th individual in
the t-th frame is valid. The function H(·, Ḡ) is employed
to compute the 3D human virtual interaction point on the
ground plane Ḡ. This loss function primarily focuses on the
vertical projection point between the human body’s center of
mass and the ground plane, but it neglects the actual distance
between the human body and the ground. To address this, we
introduce Econtact to further determine a reasonable position by
minimizing the distance between the lowest point of the mesh
and the ground. The specific definition is as follows:

Econtact = λc

∑
n,t

ζn,t

∥∥∥∥∥min

{
|N̄T

g Ṽ
(i)
n,t + D̄g|

∥N̄g∥2
,∀i

}∥∥∥∥∥
1

, (5)

where ∥·∥1 denotes the L1 norm. Ṽ(i)
n,t denotes the i-th vertex

point of the mesh vertices of person n at time t. We also
use a penalty term Et-trans to penalize its movement in the
time domain (△t), thereby better fitting the root translation
τ̃n,t ∈ R3. The specific definition is as follows:

Et-trans = λt-trans

∑
n,t

ζn,t ∥△t(τ̃n,t)∥22 , (6)

where △t(τn,t) = τn,t−τn,t−1. This term allows us to obtain
temporally more stable root translation with significantly less
jitter.

The SMPL optimization obtains a plausible pose of human
body by fitting the parameters of SMPL model. In addition to
the root translation τn,t and root rotation γn,t variables, we
also optimize the shape parameters βn,t and pose parameters
θn,t. Due to the inherent ambiguity in mapping 2D features
to 3D poses, similar to [11], [19], we employ the VPoser
prior [41] to avoid generating impossible human poses. We
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optimize the latent variable zφ
n,t, which is obtained by trans-

forming pose parameters through the VPoser encoder, and use
its decoder to generate new pose parameters. The objective
function for this stage is defined as:

argmin
τn,t,γn,t,βn,t, z

φ
n,t : ∀n, t

Esmpl, with

Esmpl = Eroot + Epose + Eshape + Et-pose.

(7)

The pose regularization term Epose computes the loss of the
latent variable based on the prior assumption of a Gaussian
distribution, serving as a penalty term:

Epose = −λφ

∑
n,t

logN (z̃φ
n,t; 0, I), (8)

where z̃φ
n,t ∈ R32 is the latent variable to be optimized. The

shape regularization term Eshape penalizes overly large shape
parameters β̃n,t to maintain the model’s shape integrity and
prevent the generation of unnatural shapes, which is defined
as:

Eshape = λshape

∑
n,t

ζn,t

∥∥∥β̃n,t

∥∥∥2
2
. (9)

To minimize pose jitter in the time series and achieve smoother
motion, we introduce a temporal pose penalty:

Et-pose = λt-pose

∑
n,t

ζn,t

∥∥∥△t(J̃
3D
n,t)

∥∥∥2
2
. (10)

This term captures the essence of maintaining stability across
temporal poses by penalizing excessive changes in the 3D joint
configurations.

In the fundamental individual optimization process, we
implement a two-stage optimization strategy to progressively
enhance the accuracy of crowd motion in terms of position
and posture. This involves applying various position-related
constraints, such as 2D HVIP constraints, contact constraints,
and 2D pose loss of the human, thereby providing reasonable
initial values for subsequent optimization steps.

C. Coarse-to-fine Group-guided Motion Optimization

Our goal is to enhance the temporal stability of crowd
motion and to recover poses that have been occluded for
an extended period. To achieve this, we design a coarse-to-
fine group-guided motion optimization strategy. This strategy
initiates the optimization process with a Variational Autoen-
coder (VAE)-based human motion prior and continues with a
segment-level group-guided optimization, progressively recon-
structing the motion of the crowd.

Optimization with VAE-based Human Motion Prior. To
generate smooth and realistic human motion while addressing
short-term occlusions, we integrate prior knowledge of hu-
man motion by developing a transformer-based VAE [42] as
our motion prior model, denoted as V = Ep, Er,D. Unlike
transition-based motion priors [34], our approach enables
faster inference, which is crucial for handling large groups
of people in extensive scenes. We decompose human motion
into local and global components, where local motion refers
to body posture features, and global motion captures the root

trajectory. We segment an individual’s entire motion sequence
into multiple segments, with each segment delineated as a
distinct motion segment, each lasting 64 frames at a frame
rate of 30 frames per second (so approximately 2 seconds). For
an individual n in the s-th temporal segment, the local trans-
former encoder Ep and the global MLP encoder Er generate
the combined latent motion representation zϑ

n,s = (zp
n,s, z

r
n,s),

where zϑ
n,s ∈ R256+128. These representations serve as opti-

mization variables in the coarse-to-fine group-guided motion
optimization, allowing the decoder D to effectively recover
motion sequences. The state of a moving person is represented
as x = (xp,xr), x ∈ R330 at time t. The local motion state
xp = (Ĵ , ν̂, θ̂) is composed of joint positions Ĵ ∈ R21×3,
joints velocity ν̂ ∈ R21×3 and joint rotations θ̂ ∈ R21×9,
where the joints are in local coordinate system that the local
joints are relative to the current frame pelvis joint and retains
the position coordinates of the ground direction. The global
motion state xr = (r̂, τ̂ , γ̂) includes root positions r̂ ∈ R3,
the global translation τ̂ ∈ R3 and rotation γ̂ ∈ R9 of
SMPL [36]. An additional output is the contact probability c,
which represents the likelihood of each joint being in contact
with the ground. The contacts enable ground constraints in
optimization, promoting the coherence of interaction with
the ground. Consistent with prior approaches [43]–[46], we
employ KL divergence, and L2 loss of each state to achieve
training from AMASS dataset [47]. To enhance the occlusion
completion ability of our prior model to the occlusion com-
monly existing in large scenes, we define the visibility masks
mp ∈ {0, 1}330 of input motion state. During the training
phase, we synthesize various occlusion masks on the AMASS
dataset, including random joint occlusion and frame occlusion,
partial body occlusion, and random consecutive occlusion for
global or local input states. In the optimization phase, we set
the masks based on the confidence of the detected 2D joints.

We apply our motion prior model to optimization to obtain
reasonable motion trajectories and postures. The optimization
variables consist of the SMPL shape parameters for each
segment of the motion sequence, denoted as βn,s, and the
latent variables zϑ

n,s. The objective function for this stage is
defined as:

argmin
βn,s, z

ϑ
n,s : ∀n, s

Emotion, with

Emotion = Esmpl + EVAE + Eenv + Econnect.

(11)

In order to make the motion reasonable, EVAE optimizes the
latent variable based on the prior assumption of the Gaussian
distribution as a penalty term:

EVAE = −λvae

∑
n,s

logN (z̃ϑ
n,s; 0, I), (12)

where z̃ϑ
n,s represents the latent variables to be optimized.

The environmental energy Eenv ensures that each individual
maintains a specified height range from the ground upon
contact, with a velocity of zero at the moment of contact.
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Situation 2: Cross-sequence Optimization

G

Sliding

Sliding

Situation 1: In-sequence Optimization

Grouping by 
Trajectory

Optimized Motion 
Segment

Optimal Motion 
Segment

Poor Motion 
Segment

Fig. 3. Segment-level group-guided optimization. Motion segments are
grouped based on similar relative trajectories, with the optimal motion
segments in each group assisting in the optimization of heavily occluded
segments. It includes both in-sequence and cross-sequence optimization
situations, depending on whether the optimal motion sequence belongs to
the same individual.

This is expressed as:

Eenv =
∑
n,ts,j

λchcn,ts,j max(0, |J̃3D,z
n,ts,j

− h|)+

λcvcn,ts,j

∥∥∥△t(J̃
3D
n,ts,j)

∥∥∥2
2
,

(13)

where ts is the time frame of the s-th segment, cn,ts,j is the
contact probability of the j-th joint of the n-th individual in
the ts-th frame of the model output. The contact height term
consists of the z-coordinate component of the contacting joint
being no more than h above the ground in the standard frame.
Econnect serves as a penalty term to ensure motion consistency
between the end of one segment and the beginning of the
adjacent segment within the same sequence:

Econnect =λcon

∑
n,s

ζn,slζn,s+1

∥∥∥J̃3D
n,s+1

− J̃3D
n,sl

∥∥∥2
2
, (14)

where sl is the last frame of the current segment, and s+1 is the
first frame of the next segment. This constraint term ensures
continuous motion from segment to segment.

Segment-level Group-guided Optimization. The motion
prior model helps obtain temporally stable human motion
and can recover from short-term and sporadic occlusions, but
struggles to handle severe long-term occlusions. To address
this limitation, we propose a segment-level group-guided
optimization method that enhances the motion recovery of
long-term occluded sequences by leveraging the collectivity of
crowd behavior. As shown in Fig. 3, unlike the GroupRec [2]
method, which groups based on collective behavior in static
images, we first group the segments according to similar
relative motion trajectories. Following this, we jointly opti-
mize their motion sequences using our Asynchronous Motion
Consistency (AMC) loss (see below). Within each group, the
unoccluded segments are designated as the optimal motion
segments, serving to guide those with poor motion segments.
Based on whether the guiding and guided motion segments
belong to the same individual, we can categorize the scenarios
into two situations: in-sequence and cross-sequence. In the in-

sequence scenario, the sequence containing occlusions is re-
covered through guidance from its own unobstructed segments.

During the grouping process, the symmetric segment path
distance [48] is adopted as the distance metric between motion
trajectories. This approach allows us to focus more on the over-
all shape of the trajectories while accommodating variations
in trajectory lengths. For clustering, we employ the affinity
propagation clustering [49] algorithm, which eliminates the
need to predefine the number of clusters.

To achieve the guidance optimization between motion seg-
ments within a group, we design an asynchronous motion
consistency loss to quantify the differences in intra-group
motion. It includes a motion segment confidence to identify
the optimal and poor segments within a group. We calculate
the motion segment confidence cseg

n,s for each motion segment
in a group based on detection scores and joint importance:

cseg
n,s = vn,s ·

1− 1(
∑
j

wjFj(J̄
2D
n,s) > a)

 , (15)

where vn,s represents the proportion of visible joints (those
with high detection scores) in the motion segment, wj denotes
the predefined joint weight based on the importance of joint
occlusion, and Fj(·) is a decision function used to determine
whether the j-th joint is continuously occluded. The parameter
a is a threshold that signifies the need for repair. Based
on the scores of motion segment confidence, we adaptively
determine the segments that require repair and identify high-
quality segments in a group:

ξn,s =


1 if cseg

n,s = max({cseg
n,s}

Sg

s=1)

0 if cseg
n,s = 0

−1 otherwise
, (16)

where Sg is the number of segments within the group. When
the value of ξn,s is 1, it indicates the optimal motion segment;
a value of 0 denotes a poor motion segment; and -1 signifies
a segment that does not require optimization. The collective
nature of intra-group motion is utilized for motion recovery,
using unobstructed segments (i.e., those where ξn,s = 1) to
restore the motion of severely obscured segments (i.e., those
where ξn,s = 0). If there exists more than one ξn,s = 1,
we prioritize using the optimal segment in the in-sequence
scenario.

While the motions within a group appear similar in general,
they often exhibit temporal misalignments and rhythmic vari-
ations in their posture sequences. Innovatively, we treat each
individual’s motion sequence as a time series and propose our
asynchronous motion consistency loss EAMC as follows:

EAMC = λAMC

∑
n,s

wLs(θ̃n,s, θ̃n′,s′) · 1(ξn,s = 0, ξn′,s′ = 1).

(17)

Here, θ̃n,s and θ̃n′,s′ represent the pose parameters of the
poor segment and the optimal segment, respectively. The term
w denotes the predefined joint weights. To preserve the flexi-
bility of individual motions, we exclude joints associated with
expressive details, such as those in the head and hands. The
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Fig. 4. Eight validation videos in the VirtualCrowd dataset and the corresponding crowd distributions using the SMPL-X model. The first row is the high-angle
view, and the second row is the low-angle view.

function Ls corresponds to the Soft Dynamic Time Warping
(sDTW) [50] method, a differentiable variant of Dynamic
Time Warping (DTW) [51] . DTW is a dynamic programming
algorithm designed to measure the similarity between two
time series through nonlinear alignment, enabling it to handle
sequences with differing speeds or lengths. In our approach,
we employ sDTW to temporally stretch and align the joint
rotations of motion segments within the group. The proposed
asynchronous motion consistency loss measures the variance
in motion within a group, facilitating the transition from
occluded poses to high-quality poses, which is beneficial for
motion recovery during periods of long-term occlusion.

We set βn,s, and zϑ
n,s as optimization variables, and the

objective function for optimization is:

argmin
βn,s, z

ϑ
n,s : ∀n, s

Egroup, with

Egroup = Emotion + EAMC.

(18)

In our coarse-to-fine group-guided motion optimization pro-
cess, we first leverage prior knowledge of human motion to
address the issue of instability in human motion. Subsequently,
we employ a segment-level group-guided optimization with
asynchronous motion consistency loss to tackle the prob-
lem of pose loss due to long-term occlusions, progressively
reconstructing natural and complete human motion. As a
result, the optimized individuals, featuring spatio-temporally
consistent locations and accurate human poses, constitute the
reconstruction output of the DyCrowd framework.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Virtual Large-scene Dataset. To validate our proposed
method, we create a comprehensive large-scale dynamic crowd
dataset named VirtualCrowd. This dataset utilizes Blender’s
ICity plugin [18] to construct diverse scenes and extracts
ground plane information to generate human motion trajec-
tories. By employing SynBody [52] human models and the
DIMOS [17] algorithm, we generate a variety of motion
sequences. Subsequently, we render the dataset using Blender,
resulting in a large-scale crowd motion video dataset, as shown

in Fig. 4. The dataset consists of four scenes, each covering
an area larger than 2500 square meters. For each scene, two
configurations are provided, incorporating both high-angle and
low-angle perspectives, with varying numbers of people in
different configurations. The high-angle perspective offers a
broader field of view, while the low-angle perspective has
more severe occlusions and greater scale differences between
individuals. The dataset ultimately includes eight validation
videos, each with a resolution of 7680×4320 (8K) and a
frame rate of 30 frames per second, totaling 1600 frames.
The scenes exhibit varying crowd densities, with the number
of people ranging from 60 to 200. In total, there are 931
motion sequences and 186,200 poses. Furthermore, the dataset
is equipped with detailed 2D and 3D annotations, including 2D
joints, MOT annotations, 3D joints, 3D positions, and SMPL-
X parameters, for evaluating dynamic crowd reconstruction
in large scenes. VirtualCrowd provides essential foundational
data support for crowd reconstruction, behavior analysis, and
related research.

Furthermore, to further enrich the dataset and increase the
diversity of scenes, we have extended the dataset with two
videos of a sloped scene featuring different perspectives and
crowd distributions, based on simulation techniques from [53],
thus providing support for subsequent research. For more
details, please refer to the supplementary material.

Real Large-scene Dataset. PANDA [22] is a gigapixel-
level human-centric video dataset captured by a gigapixel
camera and covering real-world scenes. As PANDA does
not contain the poses of persons, we conduct qualitative
comparisons on the PANDA dataset.

Evaluation Metrics. To verify the consistency of the re-
constructed crowd in global space, we follow [1] and use
the Procrustes-aligned pair-wise percentual distance similarity
(PA-PPDS) to evaluate the location distribution of the crowd
based on the distances among people. We also use the per-
centage of correct ordinal depth (PCOD) [54] to measure the
correctness of ordinal depth relation. To evaluate 3D pose
estimation performance, we employ mean per joint position
error (MPJPE) and Procrustes-aligned MPJPE (PA-MPJPE).
We focus on the accuracy of pose sequences in the global
space and report two metrics: WA-MPJPE and W-MPJPE.
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TABLE I
QUANTITATIVE COMPARISON ON VIRTUALCROWD DATASET.

Method PA-PPDS↑ PCOD↑ MPJPE↓ PA-MPJPE↓ WA-MPJPE↓ W-MPJPE↓ ACCEL↓
Crowd3D [1] 87.98 91.11 122.99 73.70 - - -
GroupRec [2] 75.04 86.22 89.04 58.98 82.20 94.34 165.50

DyCrowd 89.10 92.20 69.74 48.57 68.99 83.39 15.72
SLAHMR-Large⋆ [11] 87.95 90.34 106.35 69.41 90.10 108.40 12.25

DyCrowd⋆ 91.23 95.38 68.81 45.34 65.91 80.34 15.53

The symbol ⋆ denotes the use of ground-truth object tracking, while ”-” means unavailable results. SLAHMR-Large
is a variant of SLAHMR modified for large scenes, and we compare it in the ground-truth object tracking setting.

TABLE II
ABLATION STUDY RESULTS ON VIRTUALCROWD DATASET.

Method PA-PPDS↑ PCOD↑ MPJPE↓ PA-MPJPE↓ WA-MPJPE↓ W-MPJPE↓ ACCEL↓
DyCrowd w/o C.G.M. 89.15 92.18 86.87 61.27 80.23 88.57 73.33
DyCrowd w/o AMC 89.12 92.19 70.22 49.02 69.41 83.35 15.08

DyCrowd 89.10 92.20 69.74 48.57 68.99 83.39 15.72

TABLE III
ABLATION STUDY RESULTS FOR OCCLUDED INSTANCES IN THE

VIRTUALCROWD DATASET.

Method MPJPE↓ PA-MPJPE↓
DyCrowd w/o C.G.M. 73.01 60.20
DyCrowd w/o AMC 67.17 56.77

DyCrowd 66.09 56.21

These metrics [11] align each output sequence with the
ground-truth data using the entire sequence and the first two
frames, respectively. To measure the motion smoothness, we
compute acceleration error (ACCEL) against the ground-truth
acceleration.

B. Implementation Details

We execute experiments using PyTorch [55], employing
the RMSprop [56] optimizer with a learning rate 0.01. We
progressively carry out root optimization, SMPL optimization,
optimization with a VAE-based human motion prior, and
segment-level group-guided optimization, iterating 100, 150,
200, and 200 times respectively. The weights λ used in the
experiments are empirically defined to balance the magnitude
of individual energy terms and remain constant throughout all
experiments. We use λ2D = 100, λh = 10000, λc = 50, λt-trans =
50, λφ = 0.5, λshape = 1, λt-pose = 10, λvae = 0.2, λch = 500, λcv
= 1000, λcon = 100, λAMC = 0.03. Optimizing a large-scene
video with 100 people and 200 frames takes approximately 4
hours on a workstation equipped with an NVIDIA 3090 GPU
and 128G memory.

C. Comparison

Currently available methods are not designed for spatio-
temporally consistent reconstruction of crowd motion in large-
scene videos. Thus, we compare our approach with two state-
of-the-art image-based large-scene methods: Crowd3D [1]

and GroupRec [2]. Additionally, we modify the state-of-the-
art video-based method SLAHMR [11], originally designed
for multi-person reconstruction in small scenes, to extend
its capabilities to large scenes, dubbing it SLAHMR-Large.
For fair comparison, we provide the scene-level camera focal
length and ground plane parameters estimated by our method
to them. For Crowd3D and GroupRec, we process each image
in the large-scene videos separately. To ensure consistency of
the human sequence during evaluation, we assign the results
of our object tracking to GroupRec, replacing its original
detection input. Crowd3D does not participate in sequence-
level evaluation because it lacks effective temporal matching
between multiple targets across frames. We modify SLAHMR
by replacing its initialization with our global crowd motion
initialization and using camera extrinsic parameters derived
from our estimated ground plane. We perform the optimization
of individuals in the scene in batches, due to the large
scene and the high video memory requirements of SLAHMR.
Since SLAHMR exhibits low tolerance for data noise, its
optimization process may be disrupted when dealing with
sequences that have poor detections or tracking. Additionally,
due to the high computational cost—requiring approximately 8
hours to process every 25 people—we restrict our evaluations
to scenarios with ground-truth object tracking.

As demonstrated in Table I, our method outperforms ex-
isting methods across all evaluation metrics except for AC-
CEL. Our method achieves the best PA-PPDS and PCOD
scores, indicating a superior spatial arrangement. Moreover,
benefiting from our coarse-to-fine group-guided motion op-
timization strategy, our method substantially surpasses ex-
isting methods in terms of pose estimation accuracy. The
small ACCEL value obtained by our method suggests smooth
and coherent human motion. We observe that SLAHMR-
Large yields even smoother predictions because it utilizes the
motion prior HuMoR [34], which favors smooth transitions
between consecutive frames. However, when processing long
or occluded sequences, it often generates nonsensical sliding
rather than accurate pose predictions. Fig. 5 and Fig. 6 show
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Fig. 5. Qualitative comparison on the VirtualCrowd dataset. The highlighted areas, including the camera perspective (A) and side perspective (B), demonstrate
that our method achieves spatio-temporally consistent crowd reconstruction with plausible motion. Individual instance images demonstrate that our method is
capable of restoring human motion even under severe occlusions.

the qualitative comparison on VirtualCrowd and PANDA [22]
datasets. Our method achieves spatio-temporal consistency
in the reconstruction of crowd motion, with reconstructed

individuals exhibiting more natural and plausible postures.
Particularly, by leveraging the collective behavior of crowds in
large scenes, our method is the only one capable of accurately
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Fig. 6. Qualitative comparison on the PANDA dataset.

restoring human motion in instances of long-term occlusion.

D. Ablation Study
We conduct ablation studies to investigate the effects of

key designed elements. For ease of reference, we abbreviate
DyCrowd without Coarse-to-fine Group-guided Motion op-
timization to DyCrowd w/o C.G.M. and DyCrowd without

Asynchronous Motion Consistency loss to DyCrowd w/o
AMC.

Coarse-to-fine Group-guided Motion Optimization. By
comparing DyCrowd w/o C.G.M. and DyCrowd without AMC
in Table II, it can be seen that our human motion prior
model yields more accurate pose estimations. Since the AMC
loss mainly focuses on dynamic occlusion recovery and local
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TABLE IV
ABLATION EXPERIMENTS ON DIFFERENT VAE-BASED MOTION PRIORS IN THE VIRTUALCROWD DATASET.

Method PA-PPDS↑ PCOD↑ MPJPE↓ PA-MPJPE↓ WA-MPJPE↓ W-MPJPE↓ ACCEL↓
w/ NeMF [35] 88.72 91.86 84.63 59.43 80.64 99.44 13.87

w/ DMMR-VAE [57] 89.09 92.16 84.13 58.71 78.14 87.08 157.69
Ours 89.12 92.19 70.22 49.02 69.41 83.35 15.08

sequence consistency, it may cause slight fluctuations in global
metrics such as PA-PPDS and W-MPJPE, and the introduction
of more realistic but not completely smooth motion details
leads to a slight increase in ACCEL. We further present
the pose metrics for severely occluded instances in Table
III, which demonstrate that our method achieves the best
performance under severe occlusion, significantly improving
robustness to occlusion.

Asynchronous Motion Consistency Loss. Our asyn-
chronous motion consistency loss enables high-quality un-
occluded motion segments to guide the motion recovery of
occluded ones within groups that exhibit similar motion tra-
jectories. This approach ensures robust and plausible motion
recovery even under severe occlusion. Although the results
in Table II indicate a slight compromise in performance
compared to DyCrowd w/o AMC, Fig. 7 demonstrates that
the motion under long-term occlusion is effectively restored by
AMC loss, which we consider more meaningful. Additionally,
Table III showcases that AMC loss further enhances the
robustness against occlusion.

VAE-based Motion Prior. To validate the effectiveness of
the VAE, we compared different VAE architectures. Specifi-
cally, we chose NeMF [35] and DMMR-VAE [57] as baselines,
as these methods have recently been shown to be effective
in human motion optimization tasks [12], [57]. As shown
in Table IV, our VAE exhibits a significant advantage in
pose reconstruction accuracy. These results stem from our key
design for crowd motion optimization in large-scale scenes.
Although the ACCEL index is slightly higher than that of some
methods in certain cases, it mainly reflects the smoothness of
motion. However, our method emphasizes retaining the real
dynamic motion in complex large-scale scenes to obtain more
motion details.

V. CONCLUSION AND DISCUSSION

Conclusion. We propose DyCrowd, the first framework to
reconstruct spatio-temporally consistent 3D positions, poses,
and shapes of crowd in a unified global space from a large-
scene video. Our method incorporates prior knowledge of
human motion and leverages the collective behavior of crowds
in large scenes to facilitate the optimization of occluded human
motion guided by visible human motion. This enables our
method to not only reconstruct natural and continuous human
motion but also achieve recovery of motion under long-term
occlusion. We also contribute a virtual large-scene evaluation
dataset named VirtualCrowd to facilitate future research on
dynamic crowd reconstruction and analysis in large scenes.

Limitations and Future Work. Although our method
achieves the reconstruction of crowd motion in large-scene

Fig. 7. Qualitative comparison of our key designs for occlusion.

videos, there are still some limitations. Firstly, our method may
be severely affected in cases of catastrophic failures in 2D key-
point detection and tracking. For instance, when a tracklet of a
person is interrupted due to occlusion, we cannot recover the
occluded individual’s motion. Secondly, although our method
can handle multi-ground scenes by region-level processing,
it falls short in accurately capturing human interactions with
complicated ground planes, such as climbing stairs. Lastly, our
method employs a multi-stage optimization framework, which
does not currently support real-time applications. In the future,
we plan to integrate scene and environmental information into
our framework. This will advance our ability to recover human
motion in complex scene interactions.
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