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Abstract—Depth sensing is essential for intelligent computer
vision applications, but it often suffers from low range precision
and spatial resolution. To address this problem, we propose a
novel framework that combines non-uniform sampling and recon-
struction based on graph theory. Our framework consists of two
main components: (1) a graph Laplacian induced non-uniform
sampling (GLINUS) scheme that samples depth signals more
densely around edges and contours than in smooth regions, and
(2) an ensemble of priors (EoP) model that reconstructs the high-
quality depth map using adaptive dual-tree discrete wavelet pack-
ets (ADDWP) transform, graph total variation regularizer, and
graph Laplacian regularizer with color guidance. We solve the
reconstruction problem using the alternating direction method
of multipliers (ADMM). Our experiments demonstrate that our
framework can capture fine structures and global information in
depth signals and produce superior depth reconstruction results.

Index Terms—Graph signal processing, non-uniform sampling,
depth reconstruction.

I. INTRODUCTION

MANY applications, such as 3DTV, action recognition,
and robot navigation, require high-quality depth im-

ages/videos. However, most existing depth acquisition devices
using time-of-fly (ToF) or structured light can only provide
low-resolution depth maps that are much lower than color
image sensors. Therefore, effective depth super-resolution
(SR) techniques are needed to produce high-resolution output
from low-resolution input. Recent approaches can achieve
high-quality results for 4× SR and acceptable results for 8×
SR, but they would introduce significant artifacts for higher
upsampling rates [1], [2].

Most depth sensors use rectangular patterns, which allow
equal interval sampling on a uniform 2D grid without complex
post-adaptation of the sampling grid. However, this may not be
the optimal method for depth map reconstruction with limited
sampling resources. From a signal processing perspective,
related studies have shown that non-uniform sampling can
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achieve more efficient sensing and avoid frequency aliasing
[3], [4]. Some works have also verified the benefits of non-
uniform sampling on depth maps [5], [6]. Moreover, computa-
tional depth estimation methods, e.g., stereo matching, can be
regarded as a form of non-uniform sampling. They estimate
depth values by computing the disparities between a pair of
stereo images through their effective matching pixels/features
distributed more densely around high-frequency regions than
smooth regions.

As discussed, the sampling density and pattern are the two
key factors in depth reconstruction. Instead of finding an ap-
propriate regularization to invert the under-sampling problem,
another approach for better recovery of depth signals is to use
non-uniform sampling, which captures more prominent signal
features with a set of sparse samples. As we observe, the main
challenge in depth reconstruction is the ambiguity in locating
the discontinuities such as edges and contours in depth maps.
Depth maps can be reconstructed more accurately with the
same sampling rate if more samples are allocated to areas
around depth discontinuities. Given the limited related work
[5], non-uniform sampling and reconstruction on depth maps
deserve more investigation and evaluation.

This paper proposes a novel depth sampling and reconstruc-
tion framework based on graph signal processing [4], [7]. Our
method has two main components: a graph Laplacian induced
non-uniform sampling (GLINUS) scheme and an ensemble
of priors (EoP) framework. The GLINUS scheme adapts the
sampling rate to the graph filtering response of depth maps
as band-limited graph signals. It preserves the spatial saliency
of depth and avoids the rank reduction problem that general
active sampling faces in the graph Fourier domain. We also
provide theoretical justification for our sampling scheme. The
EoP framework reconstructs the depth maps from the GLINUS
samples using multiple priors: 1) an adaptive dual-tree discrete
wavelet packets (ADDWP) transform to encode the depth
maps and capture their multi-directional features, 2) a graph
total variation regularizer to enforce piece-wise smoothness,
and 3) a non-local fine-tuned graph Laplacian regularizer
to exploit the structural correlation between the depth and
auxiliary color images. To solve the reconstruction problem,
we develop a numerical algorithm based on the alternating di-
rection method of multipliers (ADMM) with variable splitting
strategy. The main contributions are summarized as follows:

• We propose a graph Laplacian induced non-uniform
sampling method based on the theory of graph signal
processing, avoiding the rank reduction problem for more
accurate and stable reconstruction.
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• We propose a reconstruction framework based on en-
semble of priors that leverages multiple sources of prior
information, i.e., the ADDWP transform, graph total
variation, and the non-local fine-tuned graph Laplacian
regularizer. We develop a numerical algorithm based on
the ADMM framework.

• Experimental results show that our sampling scheme
capture fine structure and efficient global information in
depth signals, and our reconstruction algorithm outper-
forms the state-of-the-art methods for various depth maps
at different sampling ratios.

II. RELATED WORK

In this section, we review recent graph sampling methods,
including spectral-domain and vertex-domain approaches. We
also summarize popular depth reconstruction (DR) algorithms
that are relevant to our proposed methods.

A. Graph Sampling Theory

In [8], a sampling theory for graph signals was developed
to establish a sufficient condition for the unique reconstruction
of signals from a given sampling set. Based on this condition,
Narang et al. [9] derived a bound on the maximum bandwidth
that a signal can possess to be uniquely recoverable from
its samples on a subset of nodes. Anis et al. [10] improved
this bound by considering a necessary and sufficient condition
for sampling. They introduced a direct sampling set selection
method that approximately maximizes this bound, enabling the
unique reconstruction for a larger class of graph signals.

Previous methods for sampling set selection in graphs fall
into two categories: spectral-domain methods and vertex-
domain methods. We review them as follows.

1) Spectral-Domain Approaches: We classify the methods
that rely on the explicit knowledge of a portion of the
graph Fourier basis as spectral-domain approaches. These
methods involve computing the spectrum of the variation
operator (such as the graph Laplacian or adjacency matrix)
[11]. Shomorony et al. [12] constructed a sampling set that
guarantees a unique (but not necessarily stable) reconstruction
for any signal spanned by the first r eigen-vectors of the
graph Laplacian. Chen et al. [13] proposed a greedy algorithm
that selects stable sampling sets for a given band-limited
space by a spectral-domain criterion. Tsitsvero et al. [14]
established a connection between the uncertainty principle for
graph signals and sampling theory, and derived criteria for
selecting sampling sets in the presence of sample noise.

2) Vertex-Domain Approaches: Instead of relying on graph
spectral information, another category for sampling set selec-
tion uses vertex-domain characteristics. For instance, Narang
et al. [15] and Nguyen et al. [16] selected sampling sets
based on maximum graph cuts and spanning trees, respec-
tively. However, these methods are more suitable for designing
downsampling operators required in bipartite graph multi-
resolution transforms [17], rather than optimizing the sampling
sets to improve reconstruction quality. Unlike most existing
methods that sample signal values at some nodes, Marques
et al. [18] proposed to sample band-limited graph signals by

aggregating local information at one node after successively
applying graph-shift operator. However, this strategy requires
a large neighborhood size equal to the dimension of the band-
limited space for aggregating the sample values, which can
cover a large portion of the graph.

Besides the deterministic methods of approximating optimal
sampling sets, there is also a randomized sampling strategy
[19] that guarantees a bound on the worst case reconstruction
error in the presence of noise. This strategy samples nodes
independently based on a carefully designed distribution over
the nodes. However, it requires much more nodes than the
dimension of the band-limited space to achieve the bound.

B. Depth Reconstruction From Subset of Samples

Depth reconstruction (DR) and depth super-resolution
(DSR) are closely related problems. Many methods for en-
hancing depth maps can address both problems. The DR
and DSR tasks are equivalent when the low-resolution (LR)
depth map pixels are uniformly distributed on a regular high-
resolution (HR) grid with a fixed spacing between observed
pixels. The common goal is to estimate the missing depth val-
ues on the HR grid. In this section, we refer to them broadly as
DR problems with uniform or non-uniform sampling patterns.

1) DR from Uniform Samples (DRUS): DRUS is a chal-
lenging task that has attracted considerable interests in re-
cent years. A common strategy is to leverage the structural
correlation between the low-resolution depth map and the
corresponding high-resolution color image. This strategy relies
on the assumption that the depth map and the color image
share similar edge features, which is plausible as modern depth
sensors can simultaneously capture registered depth maps and
color images.

Many image filtering schemes with guidance [20], [21] have
been adapted to reconstruct depth maps using their associated
color images. These schemes predict the depth value at each
missing pixel (linearly or non-linearly) from its neighboring
depth values with weights derived from both depth and color
information. Yang et al. [22] proposed an iterative joint
bilateral filter (JBU) for depth SR. However, this method often
introduces texture-copy artifacts in the reconstructed depth
maps. Chan et al. [23] developed a noise aware filter that
mitigates the texture-copy problem of JBU by dynamically
adjusting between JBU and bilateral filter based on the noise
level of the depth image. Ferstl et al. [24] constructed an
anisotropic diffusion tensor based on the guidance image to
preserve detailed structures. Liu et al. [25] estimated depth
values of unknown pixels by finding the shortest geodesic
paths to known pixels on the HR grid. Hua et al. [26] leveraged
the structure and gradient information from the guidance
image to generate a HR depth map.

In addition to the filtering-based methods, optimization-
based methods have also been proposed for depth SR [1],
[2], [27]–[29]. These methods use various priors, such as
Markov random fields (MRF) [30]–[32], total variation model
[24], truncated Huber penalty [33] , and autoregressive model
[1], [34], to regularize the depth reconstruction problem. The
priors are usually incorporated into minimization tasks, which
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are solved by optimization techniques such as (weighted)
least squares [1], [35], ℓ1-norm minimization [2], [36], graph
cut [32], half-quadratic optimization [33]. Yang et al. [34]
analyzed the connection between the filtering-based methods
and quadratic optimization methods, and proposed a fixed-
point iteration algorithm to efficiently solve the large-scale
quadratic programming, achieving state-of-the-art reconstruc-
tion performance. Under the framework of sparse represen-
tation, dictionary learning has been also introduced to learn
efficient reconstruction of depth maps [6], [37].

With the advent of deep learning, many end-to-end neural
network models have been proposed to enhance low-resolution
(LR) depth maps using high-resolution (HR) intensity images
or other priors. For example, Zuo et al. [38] used multi-
scale global and local residual learning to exploit the guidance
of HR intensity images at different scales. Liu et al. [33]
introduced a novel truncated Huber penalty function that can
adapt to different image smoothing preferences and achieve
superior depth SR performance. Guo et al. [39] developed
a residual U-Net architecture to generate HR depth maps
by constructing an input pyramid to capture multiple level
receptive fields. Ye et al. [40] proposed a progressive multi-
branch aggregation network to recover the degraded depth
maps gradually. Yao et al. [41] designed a texture-depth
transformer that can learn the structural information of HR
texture images and the corresponding interpolated depth maps
for depth SR task. These learning-based methods rely heavily
on data with some specific distribution characteristics or
pre-trained models, which makes them lack flexibility and
adaptability to different scenarios and data.

2) DR from Non-uniform Samples (DRNS): Many DRUS
methods [1], [2], [34], [35] can cope with some degree of
non-uniformity and sparsity in the samples. For example,
the depth measurements warped to the color camera are
not uniformly distributed near depth edges. However, these
methods fail to handle more challenging cases, and there is
a lack of literature that addresses these challenges. Liu et
al. [5] made an initial attempt to study the sparse sampling
and reconstruction of depth maps, and demonstrated that a
carefully designed sampling scheme can greatly enhance the
reconstruction quality.

Instead of using heuristics such as the two-stage sampling
scheme [5], this paper investigates the non-uniform sampling
of depth maps from a graph signal processing perspective
(as the non-uniform samples can be naturally described on a
graph), and proposes a depth reconstruction method to recover
depth maps from severely-undersampled non-uniform samples
(up to the sampling rate of 1% in our experiments). Prelimi-
nary results of our work were reported in a conference paper
[42]. This paper further improves the sampling scheme by
introducing a distribution bias towards smooth regions, which
enhances the reconstruction stability. Moreover, it strengthens
the reconstruction model by incorporating the more powerful
EoP prior and provides a comprehensive analysis of both
method development and experimental results.

III. GRAPH LAPLACIAN INDUCED NON-UNIFORM
SAMPLING

This section introduces GSP preliminaries following the
notations in [11], analyzes the characteristics of depth maps as
band-limited graph signals, and presents the graph Laplacian
induced non-uniform sampling (GLINUS) algorithm.

A. Preliminaries

An undirected graph G = (V,W) consists of a set of nodes
V = {v1, v2, . . . , vN} and an adjacency matrix W ∈ RN×N

, where wij denotes the weight between nodes vi and vj , if
they are connected. The degree matrix D is a diagonal matrix,
in which the diagonal element is the sum of each row of W,
i.e., dii =

∑
j wij . The graph Laplacian matrix is defined as

L = D−W, (1)

which plays an important role in revealing underlying struc-
tures of the graph. Since L is a real, symmetric, and pos-
itive semi-definite matrix, it can be decomposed into a set
of orthogonal eigen-vectors, denoted by {ui}Ni=1, with the
ascending order of associated real and non-negative eigen-
values 0 = α1 ≤ α2 ≤, . . . ,≤, αN . Concretely, the eigen-
decomposition of L is written as

L = UAU⊤, (2)

where the diagonal matrix A contains the eigen values {αi}
as its diagonal. U ≜ (u1 . . .uN ) and U⊤ are the matrices
of inverse graph Fourier transform (GFT) and forward GFT,
respectively.

A graph signal is a function, denoted by f : V → R, defined
on the vertices of the graph, where a scalar value is assigned
to each vertex. For compact notation, the graph signal can
be represented in a vector form, i.e., x ∈ RN where xi is
the function value of vi. Similarly to the standard Fourier
transform, the graph signal x can be transformed to the graph
frequency domain by

f = U⊤x, (3)

where f is the vector of GFT coefficients associated with
generalized frequencies {αi}.

A signal x ∈ RN is ω-band-limited if its GFT coefficients
are supported within the frequency range of [0, ω], i.e., fi = 0
for all i with αi > ω. Let N ≜ {1 . . . N}, and denote by
R = {1 . . . R} the indices of eigen-values such that ηi ≤
ω, i ∈ R. The bandwidth, denoted by ω (x), is defined as the
largest eigen-values in {αi, i ∈ R}, i.e., ω (x) = αR. Denote
by UNR the sub-matrix of U, whose rows and columns are
indexed by N and R, respectively, i.e., UNR ≜ (u1 . . .uR).
An arbitrary ω-band-limited signal can be written as a linear
combination of eigen-vectors:

x = UNRfR, (4)

where fR is a sub-vector of f indexed by R. Such ω-band-
limited signals lie in the column space of UVR, known as the
Paley-Wiener space denoted by PWω (G) = range (UVR) [8].
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Assuming a linear observation model, sampling M mea-
surements from signal x can be formulated as

y ≡ xM = Ψx, (5)

where y is the vector of samples, Ψ ∈ {0, 1}M×N is the
sampling operator, xM is the equivalent representation with
the set of sample indices M = {i1 . . . iM}. For a more
general formulation, we use a probabilistic sampling setting.
Concretely, Ψ is a linear mapping from RN to RM defined
as

ψij =

{
1, with probability pj ,
0, with probability 1− pj ,

(6)

where {pj}Nj=1 is a sequence of probabilities for xj to be
sampled as yi. Denote by ξ the sampling rate and assume the
independent and identically distribution of samples. We have∑N

j=1 pj = Nξ.
A sampling scheme Ψ should be designed so that x can be

reconstructed or approximated up to a tolerance from y. For
an (approximately) ω-band-limited signal x, an intuitive way
to reconstruct x from y is to minimize the squared error [4].

f̂R = argmin
fR

∥y −UMRfR∥22 , (7)

where UMR = ΨUNR. Then, we have the reconstructed
signal x̂ = UNRf̂R = UNR (UMR)

†
y , where (UMR)

† ≜(
U⊤

MRUMR
)−1

U⊤
MR is the pseudo-inverse of UMR.

UNR (UMR)
† is the reconstruction matrix. To perfectly re-

construct x ∈ PWω (G), there are two sufficient and necessary
conditions: 1) the number of samples M is no less than the
bandwidth R (M ≥ R), and 2) the rank of UMR = Ψ⊤ UVR
is not less than R. While UVR is of full column rank,
condition (2) explicitly impose a constraint on the sampling
scheme Ψ so that the sampled M rows from UVR should have
a largest linear independent group of R rows. This provides a
upper bound on the required number of measurements and a
distribution of samples on the graph G [4].

It should be noted that the derived sampling bound assumes
a least square reconstruction. In practice, image reconstruction
algorithms, including ours, often incorporate a variety of priors
to effectively solve the reconstruction problem, which may
reduce the number of samples needed. Nonetheless, this bound
serves as a useful benchmark and provides valuable insights
for designing efficient sampling schemes when images are
represented as graphs.

B. Depth Maps as Approximately band-limited Graph Signals

Depth signals are a family of signals that can be tightly
described by the piecewise-smooth image model: depth maps
are usually smooth with small variations within each seman-
tic object, and are non-smooth with large variations around
object contours of different depths. In a graph representation
G = (V,W), the adjacency matrix W of the vertices V could
capture significantly different characteristics between vertices
in smooth regions and those around depth discontinuities. To
encode the correlation between neighboring vertices, we define
the adjacency matrix W similarly to the bilateral filter [22],
considering both the spatial proximity and range similarity.

Fig. 1: The NLA results in RMSE by using different cut-off
ratios (R/N) of graph frequency through the least squares
reconstruction Eq. (7) for four typical depth signals.

Let Ni be the neighborhood of vi. Then, the weight of the
edge between vi and vj is defined as

Wij = exp

(
−
α ∥pi − pj∥22 + ∥xi − xj∥

2
2

σ2
d

)
, j ∈ Ni, (8)

where pi and xi denote the coordinate and the depth value of
pixel i, respectively, α is a constant to balance the weights
between the spatial proximity and range similarity, and σd is
a parameter to shape the mapping of spatial-depth proximity.

To verify the fitness of band-limited graph signal model for
depth maps, we construct graphs for four typical depth patches
of size 128× 128. The depth signals are transformed into the
GFT domain by Eq. (2) and Eq. (3), and then approximated by
Eq. (4) with only the first R spectral components. Fig. 1 shows
the nonlinear approximation (NLA) performance in root mean
square error (RMSE) with respect to R/N . The NLA curves
show a sharp decline at first, and level off after knee points,
indicating that depth maps can be effectively represented by a
few components in the graph frequency domain.

C. Graph Laplacian Induced Non-uniform Sampling

Since depth maps as approximately band-limited graph
signals, they can be reconstructed from a small number of
samples as discussed in Sec. III-B. One possible approach
is to sample depth signals according to the graph frequency
response as the example in Fig. 1. However, this would
require the eigen-decomposition of the graph adjacency matrix
and the selection of eigen-vectors, which is computational
expensive in large signal-dependent graphs and impractical
for depth sensing. To avoid this issue, we turn to design an
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Fig. 2: (a) Reconstructed depth maps from measurements
sampled by GLINUS0.2 (top row) and GLINUS0.0 (bottom
row); (b) Normalized rank rank(UK(Ψ⊤ΨUK)†)/R curves
with respect to normalized bandwidth (R/N) of depth signals
on the graph frequency domain.

efficient non-uniform sampling scheme that can ensure reliable
reconstruction.

Note that the major difficulty in depth reconstruction is the
ambiguity in identifying the locations of discontinuities such
as edges and contours given only a small fraction of samples.
Under the same sampling rate, it would be easier to reconstruct
the depth maps more accurately if more samples are assigned
to areas around depth discontinuities. Thus, we assign higher
probabilities for samples around discontinuities identified by
a graph high-pass filter. The normalized graph Laplacian,
denoted by L̂ = D−1L = I−D−1W, can be considered as a
high-pass filter [43], which essentially computes the prediction
error of the autoregressive filter D−1W defined on the graph
G. Let e be the response of L̂ on x. The auto-regression error
as the Laplacian response is defined as

e = x−D−1Wx, (9)

which can be used to design the non-uniform sampling.
Specifically, depth value xi associated with small prediction
error ei is able to be regressed from its connected neighbors
on the graph, and thus should have a low sampling probability;
otherwise, it should be assigned a high sampling probability.
With the probabilistic sampling setting, the probability of pixel
i being sampled, denoted by pi, is defined by the normalized
auto-regression error.

pi =
|ei|∑
i |ei|

(10)

Given a target sampling rate, the depth map x is sampled
randomly according to the distribution {pi}.

However, sampling M ≥ R measurements guided by
the response of L̂ might not ensure the full column rank
requirement on UMR, which would affect the reconstruction

quality as well as the numerical stability [11]. The sampling
scheme in Eq. (9) focuses on only pixels near edges and
contours of objects, but leaves large smooth areas severely
undersampled. For stable reconstruction, we include depth
samples also distributed in smooth areas. Specifically, we
reshape the probability distribution by adding a constant bias
to the response of the normalized graph Laplacian as follows.

e = (1− α)
(
x−D−1Wx

)
+ α1, (11)

where α is the bias and 1 is the all-one vector of the same size
as x. As a result, samples drawn according to the distribution
defined by Eq. (10) and Eq. (11) can cover both smooth
regions and texture regions.

To show the merit of such an improvement, Fig. 2(a)
presents the visual comparison for two configurations:
GLINUS0.2 (α = 0.2) and GLINUS0.0 (α = 0.0). The results
show that GLINUS0.0 cannot recover depth values for smooth
regions, while GLINUS0.2 is able to achieve successful depth
reconstruction for both depth continuities and smooth areas.
We also present normalized rank of the reconstruction matrix,
i.e., rank

(
UNR

(
UMR

)† )
/R, for the two sampling schemes.

The results show that GLINUS0.2 has higher ranks than
GLINUS0.0 for various cut-off graph frequencies, indicating
more stable reconstruction. Note that other α values around
0.2 also yield similar results. A large α would reduce our
sampling scheme to random sampling. Hence, we finally set
α = 0.2 in our implementation.

IV. GRAPH-BASED DEPTH RECONSTRUCTION
ALGORITHM

The reconstruction of a high-quality depth map from a
sparse set of non-uniform samples is a severely ill-posed
problem, and requires strong regularization. Previous depth re-
construction methods designed for (nearly) uniform sampling
do not adapt well to heavily non-uniform undersampled depth
measurements (verified in Sec. VI). To reconstruct high-quality
depth map from sparse non-uniform samples, we propose
an ensemble of priors (EoP) model to fully exploit signal
correlation from multiple perspectives.

A. Depth Reconstruction Model with Ensemble of Priors

The observation model for depth sampling is described as

y = Ψx+ n, (12)

where x ∈ RN denotes the vectorized form of the depth map
with N pixels, y ∈ RM denotes the observed M samples,
Ψ ∈ RM×N represents the sampling matrix and n ∈ RM

denotes additive noise. In depth reconstruction from highly
sparse and non-uniform samples, the sampling matrix Ψ is flat,
and makes our task highly ill-conditioned and challenging.

To tackle this problem, we propose the following depth
reconstruction with an ensemble of priors (EoP):

min
x
ED (x,y) + EEoP (x) , (13)

where ED (x,y) is the data term to guarantee the observation
consistency between x and y. The ensemble of priors (EoP)
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EEoP is designed to exploit high-order correlation from three
aspects. Specifically, the EEoP term consists of three terms:

EEoP (x,y) = λ1Etr (x) + λ2Els (x) + λ3Enls (x) , (14)

where the Etr (x) exploits the sparseness on transform do-
main, Els (x) models local smoothness within the depth maps,
and Enls (x) non-local smoothness across the color image and
depth map. λ1, λ2, and λ3 are the weighting parameters to
balance the three terms. The design of the three priors are
detailed in the following subsections.

B. Sparseness Prior on Multi-scale Directional Transform

Seeking effective signal representations is a well-studied
subject in image processing, and wavelet transform has been
proved to be an effective tool for image representation. Of
various wavelet transforms, the dual-tree discrete wavelet
transform (DDWT) [44], with directionality (six orientations:
±75◦, ±15◦, and ±45◦) and (approximate) shift invariance,
provides efficient representation for directional features in
images, such as edges and contours. By introducing adaptive
anisotropic decomposition on DDWT subbands, adaptive dual-
tree discrete wavelet packets (ADDWP) [45], [46] contains
a much larger family of directional and elongated basis
functions. We note that depth maps are piece-wise smooth
with edges and contours as directional features, and thus
can be efficiently represented by ADDWP. Therefore, we use
ADDWP [46] in our transform-domain regularizer Etr (x).
Since ADDWP is imposed as an analysis prior, the low-pass
subbands is be excluded so that the regularizer focuses more
on directional features in high-pass subbands.

Let Φ ∈ RM×N denote the partial transform matrix of AD-
DWP, excluding the basis functions of the low-pass subbands.
The ADDWP prior is formulated as:

Els (x) = ∥Φx∥1 , (15)

where ∥·∥1 is the ℓ1 norm as the measurement of sparseness.
Ablation results validating the effectiveness of this regularizer
are presented in Sec. VI-D2.

C. Prior of Internal Local Smoothness

Depth reconstruction from only a sparse set of observed
samples is severely ill-conditioned. Thus, it is desirable to
further enforce internal local smoothness of the reconstructed
depth map. Therefore, we introduce a total variation regular-
ization on graph signals.

Let S denotes the shift operation defined on the graph [7]
and a shifted version of x over the graph is denoted by Sx. The
normalized version of graph shift is defines as S̃ := S/ |ηmax|,
where ηmax is the maximum eigen-value of S. Similarly to the
calculus on discrete signals that defines the discrete derivative,
the derivative of a graph signal at the ith vertex is defined as

∇i(x) = xi −
∑
j∈Ni

S̃ijxj (16)

where the normalized shift operator S̃ is to guarantee that the
shifted signal is properly scaled for the comparison with the
original signal.

While the local variation at the ith pixel can be measured
by ∇i(x), the total variation of the graph signal x is the sum
of variations for all vertices [7]:

Els (x) =

N∑
i=1

∣∣∣∣∣∣xi −
∑
j∈Ni

S̃ijxj

∣∣∣∣∣∣
=
∥∥∥x− S̃x

∥∥∥
1

= ∥Vx∥1 ,

(17)

where the variation operator V = I − S̃ has the same eigen-
vectors as S with eigen-values ξi = 1− ηi/ |ηmax| [7].

D. Prior of Color-guided Non-local Smoothness

In depth super-resolution, one important signal prior is the
correlation between the depth map and the associated color
image [1], [34], [47]. Although the textures of color image
are usually much more complex than depth maps and could
mislead depth reconstruction, depth-color pairs have strong
correlation in terms of geometrical structures, i.e., edges in
the depth map often correspond to edges in color image
[1], [47]. This implies that the locations of edges in depth
maps can be inferred from the accompanying color images,
and inspires us to exploit color-guided non-local graph-signal
smoothness. For a depth map x, in our method, a graph is
constructed by connecting each pixel with its neighbours. Note
that the adjacency matrix W cannot be calculated from the
high quality depth map x to be reconstructed. Therefore, we
estimated the adjacency matrix from the under-sampled depth
information and its associated high-resolution color image.

Instead of simply taking a square neighborhood, we use
the k-nearest-neighbourhood (kNN) method to determine a
neighborhood for each pixel. Specifically, for each pixel, we
first calculate its proximity to neighbouring pixels using the
weighting scheme in Formula (8), and select those pixels
with k largest weights as neighborhood (k = 10 in our
implementation). In this way, the shapes of neighbourhoods, or
equivalently the adjacency relationship, can more adapt to the
content. To capture the cross depth-color correlation, we refine
the weighting scheme (8) by incorporating high-resolution in-
formation from the associated color image. Without ambiguity,
the adjacent matrix is formulated as

Wi,j =exp

(
−∥pi − pj∥2

2σ2
1

)
exp

(
−∥x̄i − x̄j∥2

2σ2
2

)
exp

(
−
∑
k∈K

∥Bk,i ◦ (Pk,i − Pk,j)∥2/6σ2
3

)
,

(18)

where x̄i denotes the initially-estimated depth pixel (via
bicubic interpolation in our implementation). In the color
filter, Pc

i denotes an operator that extracts a w × w patch
centered at pixel i from color image C = {ck}, where
k ∈ K ≜ {red, green,blue}, ◦ represents the element-wise
multiplication, and B denotes the bilateral filter kernel defined
on the extracted w × w patch:

Bk,i
m,n =exp

(
−∥pm − pn∥2/2σ2

4

)
exp

(
−∥(Pk,m − Pk,n)∥2/6σ2

5

)
.

(19)
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In Eq. (18) and (19), {σi} are decay rates of the range filter,
depth filter or color filter.

Then, the graph Laplacian regularizer is formulated as

x⊤Lx =

N∑
i=1

∑
j∈Ni

Wi,j (xi − xj)2 , (20)

where the graph Laplacian is constructed from the adjacent
matrix, i.e., L = D−W. However, the graph Laplacian L is
un-normalized, and is sensitive to the vertex degrees of graph.
As a remedy, we choose the random walk graph Laplacian
[48] Lr = D−1L, which is essentially a high-pass filter. We
therefore propose the graph Laplacian regularizer as follows.

Elp (x) = ∥Lrx∥22 . (21)

Note that the random walk graph Laplacian Lr estimated
from the undersampled depth cannot accurately reflect the cor-
relation among connected vertices. Therefore, we periodically
update Lr as in Formula (18) by using the newly update depth
map through the iterations, detailed in Algorithm 1.

V. NUMERICAL ALGORITHM

By assembling the three priors, our depth reconstruction task
is written as the following regularized optimization problem

x∗ = argmin
x

1

2
∥Ψx− y∥22 + λ1 ∥Φx∥1

+λ2 ∥Vx∥1 +
λ3
2
∥Lrx∥22 .

(22)

We solve the model via the alternating direction method
of multipliers (ADMM) with Nesterov acceleration [49]. To
handle the non-differentiable terms, i.e., ∥Vx∥1 and ∥Φx∥1,
we introduce auxiliary variables, i.e., (u = Φx and v = Vx),
and obtain the following augmented Lagrangian function.

L (x,u,v,w, z) =
1

2
∥Ψx− y∥22 + λ1 ∥u∥1 + λ2 ∥v∥1 +

λ3
2
∥Lrx∥22

+ ⟨w,u−Φx⟩+ ⟨z,v −Vx⟩

+
µ

2
∥u−Φx∥2 + ρ

2
∥v −Vx∥2 ,

(23)

where vector w and y are Lagrange multipliers, µ and ρ are
half quadratic penalty factors. The Lagrangian (23) is mini-
mized by alternatively solving the following sub-problems.

1) x-subproblem: We initially set x(0) as the bicubic
interpolation version of the input depth map y. In the (k + 1)

th

iteration, we update x(k+1) by sovling the following x-
subproblem, given u(k) and v(k) from the last iteration.

x(k+1) = argmin
x

1

2
∥Ψx− y∥22 +

λ3
2
∥Lrx∥22

+
〈
w(k),u(k) −Φx

〉
+
〈
z(k),v(k) −Vx

〉
+
µ(k)

2

∥∥∥u(k) −Φx
∥∥∥2
2
+
ρ(k)

2

∥∥∥v(k) −Vx
∥∥∥2
2
,

(24)

which is quadratic in terms of x, and is equivalent to solving
the normal equation:(

Ψ⊤Ψ+ µ(k)Φ⊤Φ+ ρ(k)V⊤V + λ3L
⊤
r Lr

)
x(k+1) =

S⊤y +Φ⊤(w(k) + µ(k)u(k)) +V⊤(z(k) + ρ(k)v(k)).
(25)

TABLE I: Parameter Settings.
λ1 = 2× 10−4 λ2 = 1× 10−3 λ3 = 0.001 ∼ 0.01 µ = 0.001 ρ = 0.01
σ1 = 50 σ2 = 20 σ3 = 20 σ4 = 5 σ5 = 4

This can be efficiently solved via the preconditioned conju-
gate gradient method [50] instead of direct inversion.

2) u-subproblem: Ignoring irrelevant terms, the u-
subproblem is written as

u(k+1) = argmin
u

λ1 ∥u∥1 +
〈
w(k),u−Φx(k+1)

〉
+
µ(k)

2

∥∥∥u−Φx(k+1)
∥∥∥2
2
.

(26)

It has the following closed-form solution

u(k+1) = soft

(
Φx(k+1) +

w(k)

µ(k)
,
λ1
µ(k)

)
, (27)

where soft(·) is the element-wise soft-thresholding function:

soft(x, τ) =


x+ τ, if x < −τ,
0 , if |x| ≤ τ,

x− τ, if x > τ.

(28)

3) v-subproblem: Similarly, the v-subproblem is written as
the following standard ℓ1-norm minimization problem.

v(k+1) = argmin
v

λ2 ∥v∥1 +
〈
z(k),v −Vx(k+1)

〉
+
ρ(k)

2

∥∥∥v −Vx(k+1)
∥∥∥2
2
,

(29)

which has the following closed solution

v(k+1) = soft

(
Vx(k+1) − z(k)

ρ(k)
,
λ2
ρ(k)

)
. (30)

Other parameters are updated as

w(k+1) = w(k) − µ(k)
(
u(k+1) −Φx(k+1)

)
,

z(k+1) = z(k) − ρ(k)
(
v(k+1) −Vx(k+1)

)
,

µ(k+1) = γµ(k),

ρ(k+1) = γρ(k),

(31)

where γ is set at 1.05 to ensure the increase of the penalty
parameters.

We further accelerate the convergence of the algorithm by
adding a Nesterov correction step [49] for each iteration.

αk+1 =
1 +

√
1 + 4α2

k

2
,

x(k+1) = x(k+1) +
αk − 1

αk+1

(
x(k+1) − x(k)

)
,

u(k+1) = u(k+1) +
αk − 1

αk+1

(
u(k+1) − u(k)

)
,

v(k+1) = v(k+1) +
αk − 1

αk+1

(
v(k+1) − v(k)

)
,

(32)

where the parameter α0 is usually set to 1. The overall ADMM
reconstruction algorithm is summarized in Algorithm 1.
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TABLE II: Depth reconstruction results in RMSE (↓) / PE (%↓) recovered by the same algorithm to compare sampling schemes.

Method Sampling Rates
1.56% 2.78% 4.00% 6.25% 11.10% 25.00% average

uniform 5.24/2.53 2.95/0.70 2.70/0.57 2.47/0.46 2.17/0.34 1.88/0.23 2.90/0.805
random 5.75/3.61 3.15/0.84 2.86/0.65 2.56/0.52 2.18/0.36 1.70/0.22 3.03/1.033

IPCA [5] 4.81/2.42 2.52/0.50 1.99/0.31 1.46/0.19 0.76/0.056 0.32/0.010 1.98/0.581
GLINUS0.0 2.41/1.16 1.90/0.80 1.67/0.62 1.45/0.55 1.37/0.50 1.19/0.45 1.67/0.680
GLINUS0.2 1.99/0.39 1.39/0.17 0.93/0.060 0.63/0.030 0.37/0.012 0.21/0.0091 0.92/0.112

Algorithm 1 ADMM reconstruction algorithm

Input: Observed depth map y, observation matrix Ψ, aligned
color image C.

Output: Reconstruction depth x∗

1: Construct the graph Laplacian Lr;
2: Initialize k = 0,the maximum number of iterations K, and

the stopping criterion tol;
3: Initialize x(0) = bicubic(y), u(0) = Φx(0),v(0) = Vx(0)

4: while k < K and ∥x(k+1) − x(k)∥2/∥x(k)∥2 ≥ tol do
5: Update x(k+1) by solving Eq. (25)
6: Update u(k+1) by Eq. (27)
7: Update v(k+1) by Eq. (30)
8: Update w(k+1), z(k+1) by Eq. (31)
9: if (k + 1)%10 == 0 then

10: Update Lr by Eq. (18) with x(k+1)

11: end if
12: Perform Nesterov acceleration by Eq. (32)
13: end while
14: return x∗ ← x(k+1)

VI. EXPERIMENTAL RESULTS

This section evaluates the proposed sampling scheme in
Sec. VI-B and depth reconstruction method in Sec. VI-C.
To comprehensively investigate the behavior of the proposed
algorithm, we presents ablation results in Sec. VI-D.

A. Settings

Testing depth maps in our experiments are from the Mid-
dlebury Stereo dataset [51]. Root mean square error (RMSE)
is used to measure the reconstruction quality.

RMSE(x,xgt) =

√√√√ 1

N

N∑
i=1

(
xi − xgti

)2
, (33)

where x and xgt are the reconstructed image and ground truth,
respectively.

We also use the percentage of bad pixels , denoted by
PE(x,xgt) to measure the depth quality [52]. Given a thresh-
old τ > 0, the percentage of bad pixels is defined as

PE(x,xgt; τ) =
100

N

N∑
i=1

Γ

(
max

(
xgt

xi
,
xi
xgt

)
> τ

)
, (34)

where Γ(·) is an indication function to return one if the
operand is true and return zero otherwise.

Parameters are set empirically in Table I. While other
parameters are fixed, the regularization parameter λ3 for the

non-local smoothness term is chosen from the range of [0.001
∼ 0.01] according the sampling rate. For low sampling rates,
λ3 is set to 0.01 for strong regularization, and is decreased up
to 0.001 as more measurements are sampled at higher rates.

B. Results on Depth Sampling Schemes

Five sampling strategies are compared, including uniform
sampling, random sampling, IPCA (improved principal com-
ponent analysis) [5], and two variants of our proposed sam-
pling methods: GLINUS0.0 and GLINUS0.2, where α = 0 and
α = 0.2, respectively. For fair comparison, we use our depth
reconstruction algorithm for all the tested sampling schemes.

Table II shows depth reconstruction results in RMSE and
PE at six sampling rates averaged over the test depth im-
ages. IPCA and our GLINUS are significantly better than
the uniform sampling and random sampling in both metrics,
which suggests that adaptive sampling schemes is better
than fixed ones. Among the two variants of our sampling
scheme, GLINUS0.2 outperforms GLINUS0.0 in both metrics,
which is in line with the stability results shown in Fig.
2. Our GLINUS0.2 consistently outperforms IPCA, which
shows the effectiveness of the proposed GLINUS scheme.
For example, GLINUS0.2 reduces average RMSE error by
53.54% (from 1.98 to 0.92) compared with IPCA. Our method
also significantly reduces the proportion of depth pixels with
large reconstruction errors (down to 0.112%). This would
make our algorithm more appealing in depth-based rendering
applications that are sensitive to large depth errors.

Fig. 3 shows depth maps reconstructed from sparse depth
pixels with a sampling rate of 2.78% for these sampling
schemes. The uniform and random sampling schemes pro-
duce significant artifacts around depth discontinuities. IPCA
[5] produces less artifacts, but fails to preserve sharp depth
edges. Our proposed GLINUS0.0 and GLINUS0.2 schemes
achieve better results with more details, which demonstrate
the effectiveness of our sampling scheme over other schemes.

C. Results on Depth Reconstruction

We further evaluate the performance of proposed EoP
model for depth reconstruction. Ten methods are compared:
bicubic interpolation, Wavelet-based method [5], the PFitDR
method [53], the fast guided global interpolation (FGI) [27],
robust color guided depth map restoration method (RCG) [28],
edge-preserving and structure-preserving image smoothing
(EPSP) [33], hierarchical features driven residual learning for
depth map super-resolution (DepthSR) [39], progressive multi-
branch aggregation network for scene depth super-resolution
(PMBANet) [40], texture depth transformer network (TDTN)
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Fig. 3: Visual results of depth reconstruction for “Dolls” (top) and “Laundry”(bottom) with different sampling schemes at a
ratio of 2.78%: (a) GT RGB-D pair, (b) uniform sampling, (c) random sampling, (d) IPCA [5], (e) our GLINUS0.0, and (f)
our GLINUS0.2. For better visualization, we show two cropped patches and the associated error maps.

[41], and the primary version of our method (named GND-
GRR) [42]. Depth samples are generated by our GLINUS0.2

scheme as the input for algorithms with sparse depth input.
Uniform sampling for compatible sampling rates is used for
six super-resolution algorithms, including three optimization-
based methods: FGI [27], RCG [28], and EPSP [33], and three
deep learning based methods: DepthSR [39], PMBANet [40],
and TDTN [41].

The RMSE results in Table III show that the proposed
EoP model has much lower depth reconstruction error than
Wavelet and PFitDR. The proposed model also significantly
outperforms its primary version GNDGDR thanks to the
elaborated design of the depth reconstruction algorithm. Note
that Wavelet and PFitDR, which use non-uniform sampling,
perform worse than generic optimization-based superresolu-
tion methods that use uniform sampling, such as FGI, RCG,
and EPSP, for low sampling rates. This indicates that an
effective depth reconstruction algorithm is also crucial for
improving the overall reconstruction performance. For most
cases of applicable sampling rates, our method outperforms
deep learning based superresolution methods, i.e., DepthSR,

PMBANet, and TDTN. This verifies the effectiveness of our
non-uniform sampling and reconstruction method.

Fig. 4 shows visual results of different depth reconstruction
schemes at the sampling ratio of 1.56% for “Art”, “Rein-
deer” and “Aloe”. The visual results are consistent with the
RMSE results reported in Table III. The two super-resolution
methods, i.e., FGI [27] and RCG [28], achieve acceptable
reconstruction quality for smooth areas, but present annoying
artifacts around depth boundaries. With the same non-uniform
sampling scheme, Wavelet [5] and PFitDR [53] are able to
recover sharp edges, but present significant artifacts in smooth
areas: Wavelet introduces texture-copy artifacts while PFitDR
presents cloud-like artifacts. In contrast, our EoP model can
preserve sharp edges and boundaries with high accuracy while
avoiding visible degradation in smooth areas.

D. Ablation Results

1) Algorithm Convergence: We compare the convergence
performance of our EoP algorithm with Nesterov acceleration,
the variant without Nesterov acceleration, and the wavelet-
based method [5], which also uses an iterative optimization
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Fig. 4: Visual comparison results under different sampling schemes at the sampling ratio of 1.56% for image “Art”(top),
“Reindeer”(middle) and “Aloe”(bottom). The results are generated by (a) GT, (b) FGI [27], (c) RCG [28], (d) Bicubic, (e)
PFitDR [53], (f) Wavelet [5], and (g) our EoP model. For better visualization, for each image, we show two cropped patches
as well as the associated error map in absolute difference.

TABLE III: Comparison results in RMSE with other methods.
The (2nd) best results are marked in (underline) bold.

Method Percentage of samples
1.00% 1.56% 2.78% 4.00% 6.25% 11.1% 25.0%

FGI [27] − 3.47 2.90 − 2.62 − 1.92
RCG [28] − 3.04 2.97 − 2.27 − 1.56
EPSP [33] − 2.97 2.63 − 2.21 1.89 1.50
DepthSR [39] − 1.50 − − 0.89 − 0.48
PMBANet [40] − 2.19 − − 1.21 − 0.43
TDTN [41] − 1.40 − − 0.79 − 0.32

Bicubic 10.64 7.60 4.49 3.79 2.76 1.60 1.05
PfitDR [53] 8.87 8.53 8.13 4.85 4.60 4.49 3.33
Wavelet [5] 8.77 5.35 3.49 2.55 1.71 0.92 0.42
GNSGDR [42] 5.53 3.31 2.75 1.74 1.08 1.25 0.48
Proposed EoP 2.52 1.86 1.15 0.79 0.57 0.34 0.22

framework. Fig. 5 shows the RMSE errors of the reconstructed
depth maps compared to the ground truth. The convergence
curves indicate that our EoP algorithm with Nesterov acceler-
ation significantly reduces the reconstruction error in the early
iterations, quickly reaches the knee point, and converges after
sixty iterations. This demonstrates that our algorithm achieves
faster convergence and more stable reconstruction than the
other two algorithms.

2) Advantages of the ADDWP sparseness Prior: To evalu-
ate the effectiveness of the sparseness prior, we compare three
multiscale transforms: wavelet transform (WT), contourlet
transform (CT), and the ADDWP. We use the Daubechies
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Fig. 5: Convergence curves of our EoP algorithm with Nes-
terov acceleration, the variant without acceleration, and the
wavelet-based algorithm [5].

Fig. 6: Depth maps reconstructed by our algorithm with (a)
a fixed graph Laplacian (RMSE = 4.34) and (b) an adaptive
Laplacian (RMSE = 2.83).

TABLE IV: RMSE results of depth maps reconstructed by our
EoP model with three different transforms.

Transform Sampling Rates
1.56% 2.78% 4.00% 6.25% 11.10% 25.00% average

WT 3.41 1.92 1.42 0.86 0.47 0.29 1.40
CT 3.37 1.89 1.40 0.84 0.47 0.28 1.38

ADDWP 2.92 1.71 1.24 0.77 0.42 0.26 1.22

DB4 for wavelet transform, the CDF 9/7 filters for pyramid
decomposition in contourlet, and the filters of ADDWP as in
[46]. For all the transforms, we use similar filter lengths and
two-level decomposition. We also remove the external non-
local smoothness (i.e., λ3 = 0) to reduce the influence of its
strong regularization, and set λ2 = 1×10−3. For the parameter
of the transform regularizer, we set λ1 to 4×10−5 for wavelet,
to 2×10−4 for contourlet, and to 2×10−4 for ADDWP. Table
IV shows that the ADDWP achieves the lowest RMSE results
averaged over the test image set among the three transforms,
thanks to the rich family of directional basis functions.

3) Parameter Adaptation: In our algorithm, the Laplacian
Lr is periodically updated using the reconstructed depth map
so that correlation among pixels can be better captured. Fig. 6
shows two depth maps recovered by our algorithm with a
fixed graph Laplacian and the adaptive version, respectively.
The adaptive Laplacian achieves lower reconstruction error
with less artifacts than the fixed Laplacian, which verifies the
effectiveness of our parameter adaptation.

E. Algorithm Complexity

The amount of computation in the proposed GLINUS sam-
pling scheme mainly lies in the calculation of the adjacency
matrix W, which is a sparse matrix with non-zero elements
proportional to the neighborhood size. Therefore, our GLINUS
scheme has a computational complexity of O(N).

For the reconstruction side, the computational cost is mainly
dominated by x-subproblem, as the other two subproblems
are of O(N) complexity by exploiting the spare structure of
the matrices involved. Since Eq. (25) is a Toeplitz system,
the preconditioned conjugate gradient method to solve the
x-subproblem has a complexity of O(N log3N) [54]. The
overall complexity of the algorithm increase proportionally by
a constant due to the number of iteration for convergence.

VII. CONCLUSIONS

This paper presents a novel framework for non-uniform
sampling and reconstruction of depth maps based on graph
signal analysis. We propose a GLINUS sampling scheme that
allocates most of the sampling budget to pixels around depth
discontinuities based on the response of the graph Laplacian
filter, so that prominent features are sampled with higher prob-
abilities. We also assign a small fraction of samples to other
areas to ensure the successful reconstruction of the complete
depth map. To reconstruct depth maps from highly undersam-
pled measurements, we propose a depth reconstruction model
with an ensemble of priors (EoP), which includes an ADDWP-
based sparseness prior, a local smoothness prior with graph
total variation, and a non-local smoothness prior with color-
guided graph Laplacian regularizer. We solve the EoP model
efficiently under the ADMM framework. Experimental results
demonstrate that the GLINUS sampling scheme provides bet-
ter depth reconstruction results than other sampling schemes
when using the same reconstruction algorithm. Our EoP depth
reconstruction algorithm also outperforms several state-of-the-
art algorithms. The proposed framework offers a new paradigm
for achieving more efficient sampling and reconstruction of
depth maps.
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