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Abstract—Much progress has been made in reconstructing
garments from an image or a video. However, none of existing
works meet the expectations of digitizing high-quality animatable
dynamic garments that can be adjusted to various unseen poses.
In this paper, we propose the first method to recover high-quality
animatable dynamic garments from monocular videos without
depending on scanned data. To generate reasonable deformations
for various unseen poses, we propose a learnable garment
deformation network that formulates the garment reconstruction
task as a pose-driven deformation problem. To alleviate the
ambiguity estimating 3D garments from monocular videos, we
design a multi-hypothesis deformation module that learns spatial
representations of multiple plausible deformations. Experimental
results on several public datasets demonstrate that our method
can reconstruct high-quality dynamic garments with coherent
surface details, which can be easily animated under unseen poses.
The code will be provided for research purposes.

Index Terms—High-quality, animatable, dynamic, monocular.

I. INTRODUCTION

3D human digitization [1]–[3] is an active area in computer
vision and graphics, which has a variety of applications in

the fields of VR/AR [4], [5], fashion design [6] and virtual
try-on [7], [8]. A fundamental challenge in digitizing humans
is the modeling of high-quality animatable dynamic garments
with realistic surface details, which can be adjusted to various
poses. However, traditional methods require manual processes
that are time-consuming even for an expert. Therefore, it is
necessary to develop new methods that efficiently generate
visually high-quality animatable dynamic 3D clothing without
specialized knowledge.

Learning-based clothing reconstruction methods have been
demonstrated to be feasible solutions to this problem. Early
methods [9]–[16] adopt a 3D scanner or a multi-view studio,
but the high cost and large-scale setups prevent the widespread
applications of such systems. For users, it is more convenient
and cheaper to adopt a widely available RGB camera. There-
fore, some works [17]–[21] attempt to reconstruct high-quality
clothed humans from an RGB image or a monocular video.
However, these methods use a single surface to represent
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both clothing and body, which fails to support applications
such as virtual try-on. Layered representation with garment
reconstruction [22]–[26] is more flexible and controllable, but
related research works are relatively rare. Some methods [22],
[23] adopt explicit parametric models trained on the Digital
Wardrobes dataset [22], which can be adjusted to various
unseen poses, but they fail to reconstruct garments with high-
frequency surface details (e.g., wrinkles). Other methods [24],
[26] try to register explicit garment templates to implicit fields
to improve reconstruction quality. However, this design leaves
out the body pose, which makes it impossible to control
or animate the garments flexibly. In addition, all the above
methods not only rely on expensive data for training, but are
also bounded by domain gaps and cannot generalize well to
the inputs outside the domain of the training dataset. Most
importantly, none of these works meet the expectations of
digitizing high-quality animatable dynamic garments that can
be adjusted to various unseen poses.

Therefore, our goal is to reconstruct high-quality animatable
dynamic garments from monocular videos. There are major
challenges that need to be overcome to achieve this: 1) a
large amount of scanned data is needed for supervision, which
tends to result in domain gaps and limited performance for
unseen data; 2) the absence of strong and efficient human
priors increases the difficulty of estimating dynamic and
reasonably wrinkled clothing directly from monocular videos;
3) recovering dynamic 3D clothes from monocular videos is
a highly uncertain and inherently ill-posed problem due to the
depth ambiguity.

In this paper, we propose a novel weakly supervised frame-
work to reconstruct high-quality animatable dynamic garments
from monocular videos, aiming to eliminate the need to simu-
late or scan hundreds or even thousands of human sequences.
By applying weakly supervised training, we greatly reduce the
required time of both data preparation and model deployment.
To the best of our knowledge, our method is the first work to
reconstruct high-quality animatable dynamic garments from a
single RGB camera without depending on scanned data.

To handle dynamic garment deformation from monocular
videos, we propose a learnable garment deformation network
that formulates the garment reconstruction task as a pose-
driven deformation problem. In particular, we utilize human
body priors [27] to guide the deformation of the spatial points
of garments, which makes the garment deformation more
controllable and enables our model to generate reasonable de-
formations for various unseen poses. To alleviate the ambiguity
resulted from estimating 3D garments from monocular videos,
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Fig. 1. Given a video of a person, our method can reconstruct high-quality and animatable garments, which enables new deformations for various unseen
poses to be generated.

we design a simple but effective multi-hypothesis displacement
module that learns spatial representations of multiple plausible
deformation. We observe that it is more reasonable to conduct
multi-hypothesis estimation to obtain garment deformation
than direct regression, especially for monocular camera set-
tings, as this way can enrich the diversity of features and
produce a better integration for the final 3D garments. The
prior works [22], [23], [25] focus on the geometry of the
clothes and do not attempt to recover the garment textures,
which limits their application scenarios. Therefore, we design
a neural texture network to generate high-fidelity textures
consistent with the image. Experimental results on several
public datasets demonstrate that our method can reconstruct
high-quality dynamic garments with coherent surface details,
which can be easily animated under unseen poses. An example
is given in Fig. 1. The code will be provided for research
purposes.

Our main contributions can be summarized as follows:

• We design a weakly supervised framework to re-
cover high-quality dynamic animatable garments from
a monocular video without depending on scanned data.
To the best of our knowledge, no other work meets the
expectations of digitizing high-quality garments that can
be adjusted to various unseen poses.

• We propose a learnable garment deformation network
that formulates the garment reconstruction task as a
pose-driven deformation problem based on human body
priors. This enables our model to generate reasonable
deformations for various unseen poses.

• We propose a simple but effective multi-hypothesis dis-
placement module that learns spatial representations of
multiple plausible deformations. In this way, we can al-
leviate the ambiguity brought by estimating 3D garments
based on monocular videos.

II. RELATED WORK

A. Clothed Human Reconstruction

Clothed human reconstruction is inevitably challenging due
to complex geometric deformations under various body shapes
and poses. Some methods [18], [28]–[33] explicitly model 3D
humans based on parametric models like SMPL [27], and as
a result may fail to accurately recover 3D geometry. Zhu et
al. [34] combine a parametric model with flexible free-form
deformation by leveraging a hierarchical mesh deformation
framework on top of the SMPL model [27] to refine the 3D
geometry. These methods predict more robust results, but fail
to reconstruct garments with high-frequency surface details.
Contrary to parametric-model-based methods, non-parametric
approaches directly predict the 3D representation from an
RGB image or a monocular video. Zheng et al. [35] propose an
image-guided volume-to-volume translation framework fused
with image features to reproduce accurate surface geometry.
However, this representation requires intensive memory and
has low resolution. To avoid high memory requirements,
implicit function [19], [36] representations are proposed for
clothed human reconstruction. Saito et al. [19] propose a pixel-
aligned implicit function representation called PIFu for high-
quality mesh reconstructions with fine geometry details (e.g.,
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Fig. 2. Overview of our method. At the core of our method lies a learnable garment deformation network that predicts reasonable deformations for the input
video. For each frame, we first design an MLP to obtain a high-level embedding X based on the SMPL pose and define three learnable matrices G1, G2, G3

to get three deformations D1, D2, D3. Then, we connect them as the input of an MLP that outputs the final deformation D. This design can enrich the
diversity of features and help produce aggregated displacements for more reasonable garment deformation. These displacements are added to the garment
template, which is then skinned along the body according to pose parameters θ and blend weights Wc to produce the final result. We train the network using
Limg and Lcloth loss function in a weakly supervised manner, which removes the need for ground-truth data.

clothing wrinkles) from images. However, PIFu [19] and its
variants [37]–[43] may generate implausible results such as
broken legs. Feng et al. [20] propose a new 3D represen-
tation, FOF (Fourier Occupancy Field), for monocular real-
time human reconstruction. Nonetheless, FOF cannot represent
very thin geometry restricted by the use of low-frequency
terms of Fourier series. Recently, inspired by the success of
neural rendering methods in scene reconstruction [44], [45],
various methods [46]–[51] recover 3D clothed humans directly
from multi-view or monocular RGB videos. Although these
approaches demonstrate impressive performance, they fail to
support applications such as virtual try-on, because they use
a single surface to represent both clothing and body.

B. Garment Reconstruction

In comparison to clothed human reconstruction using a
single surface representation for both body and clothing,
treating clothing as separate layers on top of the human
body [22]–[26], [52]–[56] allows controlling or animating
the garments flexibly and can be exploited in a range of
applications. Some methods [22]–[26], [52], [53] address the
challenging problem of garment reconstruction from a single-
view image. Bhatnagar et al. [22] propose the first method to
predict clothing layered on top of the SMPL [27] model from a
few frames of a video trained on the Digital Wardrobes dataset.
Jiang et al. [23] split clothing vertices off the body mesh
and train a specific network to estimate the garment skinning
weights, which enables the joint reconstruction of body and
loose garment. SMPLicit [25] is another approach that builds
a generative model which embeds 3D clothes as latent codes
to represent clothing styles and shapes. As a further attempt,
Moon et al. [52] propose Clothwild based on SMPLicit [25]

to produce robust results from in-the-wild images. Although
these methods regard clothing and human body as independent
layers, they fail to recover high-frequency garment geometry.

Unlike previous works, to reconstruct high-quality garment
geometry, Deep Fashion3D [24] uses an implicit Occupancy
Network [57] to model fine geometric details on garment
surfaces. Zhu et al. [26] extend this idea by proposing a
novel geometry inference network ReEF, which registers an
explicit garment template to a pixel-aligned implicit field
through progressive stages including template initialization,
boundary alignment and shape fitting. Zhao et al. [53] utilize
the predicted 3D anchor points to learn an unsigned distance
function, which enables the handling of open garment surfaces
with complex topology. However, these methods cannot deal
with dynamic clothing, thus they are not suitable for dynamic
garment reconstruction.

Other methods [9], [58]–[61] try to reconstruct dynamic
clothing from video. Garment Avatar [58] proposes a multi-
view patterned clothing tracking algorithm capable of captur-
ing deformations with high accuracy. Li et al. [9] propose
a method for learning physically-aware clothing deforma-
tions from monocular videos, but their method relies on an
individual-dependent 3D template mesh [59]. SCARF [60]
combines the strengths of body mesh models (SMPL-X [62])
with the flexibility of NeRFs [45], but the geometry of clothing
is sometimes noisy due to the limited 3D geometry quality for
NeRF reconstruction. REC-MV [61] introduces a method to
jointly optimize the explicit feature curves and the implicit
signed distance field (SDF) of the garments to produce high-
quality dynamic garment surfaces. These solutions show their
strength in reconstructing high-fidelity layered representations
with garments that remain in consensus with the input person.
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However, this design leaves out the body pose, which makes
it impossible to control or animate garments flexibly.

In this paper, we design a weakly supervised framework
to recover high-quality dynamic garments from a monocular
video without depending on scanned data. In the meanwhile,
we propose a learnable garment deformation network which
enables our model to generate reasonable deformations for
various unseen poses.

III. METHOD

Our goal is to reconstruct high-quality animatable dynamic
garments from a monocular video, which effectively enables
personalized clothing animation. Previous works not only rely
on expensive data, but are also bounded by domain gaps
and cannot generalize well to inputs outside the domain of
the training dataset. Therefore, we propose to reconstruct
clothes in a weakly supervised manner, thus addressing the
main drawbacks of previous works in terms of cost. Given a
monocular video which consists of a clothed human under
random poses, we first extract human-centric information
such as segmentation maps and normal maps [63]–[66] to
help obtain consistent geometry details with the input video
(Sec. III-A). To enable the generation of animatable dynamic
garments for various unseen poses, we propose a learnable
garment deformation network based on human body priors
which formulates the garment reconstruction task as a pose-
driven deformation problem (Sec. III-B). In addition, different
from previous works which estimate a unique displacement
vector for each garment vertex, our method leverages a
multi-hypothesis deformation module to alleviate the depth
ambiguity and provide integrated deformations for the final
reconstructed garments (Sec. III-C). The overview of our
method is illustrated in Fig. 2.

A. Human-Centric Information Extracting

To get rid of costly data preparation, we design a weakly
supervised framework to recover high-quality dynamic gar-
ments from monocular videos, and we extract human-centric
information which is helpful to obtain consistent geometry
details with the input. Specifically, given a monocular video
I = {I0, ..., In−1}, where n is the number of frames, we
first use a state-of-the-art human pose estimation method [67]
to estimate the pose parameters θ ∈ R72 and the shape
parameters β ∈ R10 of a SMPL human body model [27],
as well as the weak-perspective camera parameters c ∈ R3 for
each frame. The pose parameters θ and the shape parameters
β represent 3D rotations of human body joints and PCA
(Principal Component Analysis) coefficients of T-posed body
shape space, respectively. Second, we obtain the binary masks
Ms = {Ms0, ...,Msn−1} of the input I using a robust human
parsing method PGN [68]. Note that the output of PGN is
a set of segmentation masks, where each pixel corresponds
to a human body part or clothing type. We remove the
masks of the human body, leaving only the ones of the
clothing, and transform segmentation masks to binary masks.
Third, we use PIFuHD [37] to estimate the image normals
Nor = {Nor0, ...,Norn−1} of the input I and multiply them

by the binary masks S to get the normal map of the garment.
Finally, we obtain the smooth garment template T of the first
frame under T-pose based on the work of Jiang et al. [23].
The information above helps reduce the complexity inherent to
our garment reconstruction. Our template supports six garment
categories, including upper garment, pants, and skirts with
short and long templates for each type.

B. Garment Deformation Network
The absence of strong and efficient human priors increases

the difficulty of estimating dynamic and reasonably wrinkled
clothing directly from a monocular video. Different from
previous works which extract features from images to generate
clothing deformations, we observe that the garment deforma-
tion is caused by changes in pose. Therefore, we design a
garment deformation network which enables our model to
generate reasonable deformations for various unseen poses.
To achieve this, we use a parametric SMPL model [27] to
guide the deformation of the spatial points of garments, which
enables explicit transformation from template space to current
posed space. With the SMPL model, we can map the shape
parameters β and the pose parameters θ to a body mesh Mb.
The mapping can be summarized as:

Mb(β, θ) = Wb(Tb(β, θ), J(β), θ,Wb),

Tb(β, θ) = B + Bs(β) + Bp(θ),
(1)

where Wb is the linear blend skinning function of the human
body, J(β) is the SMPL body’s skeleton, and Wb is the blend
weights of each vertex of SMPL. Bs(β) and Bp(θ) are the
pose blendshape and shape blendshape, respectively. As most
clothes follow the deformation of the body, we share garment
pose parameters θ with SMPL and use SMPL’s skeleton J(β)
as the binding skeleton of the garment. In this way, we define
our cloth mesh Mc as follows:

Mc(β, θ) = Wc(Tc(θ), J(β), θ,Wc),

Tc(θ) = T +Dθ,
(2)

where Wc is the linear blend skinning function of the garment,
Wc is the blend weights of each vertex of the garment, T is
the smooth garment template and Dθ is the high-frequency
displacement over the garment template.

For the pose θ of each frame, we design a four-layer
Multi-Layer Perceptron (MLP) with ReLU activation function
to obtain a high-level embedding X , and further obtain the
garment vertex deformations Dθ with a learnable matrix
G ∈ Rx×N×3 (where x is the dimensionality of the high-
level embedding and N is the number of vertices of the
garment mesh). This non-linear mapping from θ to Dθ allows
modeling high-frequency details, such as wrinkles caused by
different poses, which are beyond the representation ability of
the linear model. For each vertex on the garment template,
instead of directly using the skinning weights of SMPL, we
assign its blend weights equal to those of the closest body
vertex and allow the blend weights to be optimized during
training to make the garment mesh independent from the
SMPL. Our garment deformation network can reconstruct
pose-dependent garments, which enables the generation of
reasonable deformations for various unseen poses.
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Fig. 3. An overview of our neural rendering pipeline. Given the reconstructed mesh with the descriptors and the camera, we first project the mesh onto the
image plane, using descriptors as pseudo-colors. We then use the rendering network to transform the pseudo-color images into a photo-realistic RGB image.

C. Multi-Hypothesis Displacement

Recovering 3D clothes from monocular videos is a highly
uncertain and inherently ill-posed problem. We propose a
multi-hypothesis displacement module that learns spatial rep-
resentations of multiple plausible deformations in the learnable
garment deformation network. Since each pixel of the image
corresponds to innumerable points in the 3D space, it is
difficult to specify a unique 3D point corresponding to a given
pixel. To alleviate the depth ambiguity brought by estimating
3D garments from monocular video, different from previous
works which estimate a unique displacement vector for each
garment vertex, we design a cascaded architecture to generate
multiple displacements using the high-level pose embedding
X . More specifically, we first define three learnable matrices
to get three deformations and encourage gradient propagation
through residual connections. Then, we connect the three
hypothetical deformations as the input of an MLP that outputs
the final deformation. These procedures can be formulated as:

X = σ(FMLP1
(θ)),

D1 = σ(X ·G1 + b1),

D2 = σ(D1 +X ·G2 + b2),

D3 = σ(D2 +X ·G3 + b3),

Dθ = FMLP2
(D1, D2, D3),

(3)

where X is the high-level embedding mentioned in Sec. III-B,
σ denotes the ReLU activation function, G∗ and b∗ are the
learnable matrices and bias terms respectively, and FMLP∗

represents Multi-Layer Perceptron. For simplicity, we use * to
represent an arbitrary subscript. With this design, our model
can first predict multiple displacements, which can enrich the
diversity of features, and then aggregate them to produce more
reasonable displacements for the 3D garments. Finally, these
displacements are added to the garment template to obtain
the result in T-pose, which is then skinned along the body
according to pose parameters θ and blend weights Wc to
produce the final result.

D. Loss Function

The loss function of our weakly supervised network in-
cludes the constraints from the image and the geometric

constraints of the clothes, which not only produces image-
consistent details, but also keeps the garment stable. The
overall loss function is

L = Limg + Lcloth. (4)

• Image Loss. To generate garment geometry and shape
that are consistent with the input, we regularize the shape
of clothing by projecting it onto an image, and compute the
loss with the target mask Si and we utilize the predicted
normal map to further refine the geometry shape. We define
the following image loss:

Limg = λmask||Fmask(Mi, c)− Msi||2
+ λnormal||FVGG(Fnormal(Mi, c))−FVGG(Msi · Nori)||2,

(5)
where λmask and λnormal are the weights that balance the
contributions of individual loss terms. Fmask is a differentiable
renderer [69] that renders the mask of garment mesh Mi

corresponding to the i-th frame, given the camera parameters
c. Fnormal outputs the normal map in a similar way to Fmask,
Msi ·Nori is the normal map of the garment as mentioned in
Sec.III-A, and FVGG is the VGG-16 network used to extract
image features to help measure their similarity.
• Clothing Loss. Using only the image loss is inclined to
produce unstable results. Thus another clothing loss term is
added to enhance stability of the reconstructed garments:

Lcloth = λedge||E − ET ||22 + λface||∆(NF )||22

+ λangle||Θ||22 + λcollision

Vb∑
j=0

max(ε− dj · nj , 0)
2.

(6)

E is the predicted edge lengths, ET is the edge lengths on
the template garment T, NF is the face normals, ∆(·) is
the Laplace-Beltrami operator, and Θ is the dihedral angle
between faces. λedge, λface, λangle and λcollision are the balancing
weights. where dj is the vector going from the j-th vertex of
the body vertices Vb to the nearest vertex of the garment, nj

is the normal of the j-th body vertex, ε is a small positive
threshold. On the one hand, inspired by [70], [71], the first
three terms of Lcloth ensure the clothing is not excessively
stretched or compressed and enforces locally smooth surfaces.
On the other hand, the last item of Lcloth is used to handle the
collision between the clothes and the body.
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Fig. 4. Reconstructed garments by SMPLicit [25], MGN [22], BCNet [23] and our method on CAPE dataset [73]. The inputs are four frames of a motion
sequence.

E. Implementation Details

Our model is implemented using Tensorflow, and we train
our model for 10 epochs with a batch size of 8 using the
Adam optimizer [72] with a learning rate of 1 × 10−4. The
embedding dimensions of the MLP used to obtain the high-
level embedding are set to 256, 256, 512 and 512, respectively,
and the learnable matrix is initialized using the truncated
normal distribution. We choose the weights of the individual
losses with λmask = 500, λnormal = 1500, λedge = 100, λface =
2000, λangle = 1 and λcollision = 100. For a video of about 600
frames in length with a resolution of 512 × 512, we train our
model with a Titan X GPU in half an hour.

IV. NEURAL TEXTURE GENERATION

The prior works [22], [23], [25] focus on the geometry of
the clothes and do not attempt to recover the garment textures,
which limits the application scenarios. Texture is extremely
complex: it resides in high-dimensional space and is difficult to
represent. Therefore, to cope with the complexity of textures,
we propose a neural texture network to obtain photo-realistic
results. As different garment meshes have different topologies,
it is computationally expensive to generate a UV map every
time. Inspired by [74], [75], our main idea is to combine
the point-based graphics and neural rendering. Below, we will
explain the details of our method. An overview of our neural
rendering pipeline is illustrated in Figure 3.

Based on the multi-hypothesis displacement module, we
get the relatively accurate geometry of clothing mesh Mc,
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Fig. 5. Reconstructed garments by SMPLicit [25], MGN [22], BCNet [23] and our method on People-Snapshot [18] dataset (top four rows) and our captured
data (bottom two rows).

which allows the neural texture network to focus on texture
information. We first attach descriptors S = {S1, ...,SN}
which serve as pseudo-colors, to the garment mesh vertices

V = {V1, ...,VN}. We first project the mesh onto the image
plane to obtain pseudo-color image Rimg , then use the neural
texture network to transform the pseudo-color image Rimg
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Fig. 6. Reconstructed garments by REC-MV [61] and our method on People-
Snapshot [18] dataset.

into a photo-realistic RGB image Iimg . Specifically, given the
pseudo-color image and the ground truth image, we adpot a
UNet-based neural texture network to map the initial mesh
projections to the final output image. The neural texture
network consists of 8 blocks of downsampling and 8 blocks
of upsampling convolutional layers. Each downsampling block
consists of a convolution layer with BatchNorm operations
followed by ReLU activations; each upsampling block consists
of a transposed convolution layer with BatchNorm operations
followed by ReLU activations.

Using the ground-truth image Igt, we optimize our neural
texture network by minimizing the differences between the
rendered image Iimg and ground-truth RGB image Igt. to
obtain higher quality results, we adopt a two-stage training
strategy. In the first stage, we optimize the descriptor to obtain
a better initial value for the second stage. Specifically, during
the first stage, we train the model using the Adam optimizer
with a learning rate of 1 × 10−4 and the batch size of 4 for
25 epochs by minimizing the perceptual loss between pseudo-
color image and ground-truth image:

Lpse = ||FVGG(Rimg)−FVGG(Igt)||2, (7)

where FVGG is the image features extracted from the VGG-16
network which is used to ensure the perceptual similarity.

During the second stage, we train the model for 25 epochs
using the Adam optimizer with a learning rate of 1 × 10−4

which is decayed by a factor of 0.5 every 10 epochs:

Lrender = ||FVGG(Igt)−FVGG(Iimg)||2
+ λrender||Igt − Iimg||1,

(8)

where λrender is the balancing weight and is set to 100 in our
experiments. The overall training time is around 1.5 hours with
a Titan X GPU.

V. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our proposed method,
we conduct experiments on four different datasets: People-
Snapshot [18], CAPE [73], IPER [76] and our captured data.
People-Snapshot [18], IPER and our captured data contain dif-
ferent monocular RGB videos captured in real-world scenes,
where subjects turn around with a rough A-pose in front of
an RGB camera. In addition, IPER and our captured data
also contain videos of the same person with random motions.
CAPE [73] is a dynamic dataset of clothed humans which
provides raw scans of 4 subjects performing simple motions.
These four datasets are used to evaluate the quality of the 3D
reconstructions, IPER and our captured data are also used to
show the results of garment animation. The SMPL parameters
provided by CAPE [73] and People-Snapshot [18] are used.
For the input video, 80% is used for training (Reconstruction)
and 20% is used for testing (Animation).

B. Comparison

We compare our method against the state-of-the-art garment
reconstruction methods that release the codes: Multi-Garment
Net (MGN) [22], BCNet [23], and SMPLicit [25], both
qualitatively and quantitatively. Note that these methods all
apply supervised learning, either using 3D scans or synthetic
datasets to train the models, while we propose to reconstruct
clothes in a weakly supervised manner without 3D supervision.

TABLE I
QUANTITATIVE COMPARISON ON CAPE DATASET.

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

SMPLicit 1.611 - 1.866 - 1.811 - 1.599
MGN 1.328 2.927 1.850 2.055 1.345 2.959 1.452 2.983
BCNet 1.591 3.877 1.240 4.212 1.270 2.305 1.477 2.350
Ours 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

TABLE II
QUANTITATIVE EVALUATION FOR MULTI-HYPOTHESIS DISPLACEMENT

MODULE ABLATION STUDY (CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

w/o MHD 1.167 1.835 1.130 1.204 1.198 1.076 1.159 0.743
MHD2 1.105 1.828 1.051 1.203 1.090 0.968 1.079 0.719
MHD3 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713
MHD4 1.110 1.829 1.059 1.193 1.087 0.972 1.086 0.718
MHD5 1.106 1.820 1.057 1.194 1.083 0.960 1.089 0.720
MHD6 1.105 1.828 1.056 1.206 1.089 0.961 1.085 0.718
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Fig. 7. Qualitative results of multi-hypothesis displacement module ablation
study.

Input w/o Cloth Loss Fullw/o Image Loss

Fig. 8. Qualitative results of loss function ablation study.

Qualitative Comparison. In Fig. 4, we show the visual results
of the same person in three different poses. It can be seen
that for different poses, our reconstruction method produces
different deformations consistent with the image, while MGN
[22] and SMPLicit [25] can only produce smooth results.
BCNet [23] can generate some details, but not as rich as
ours. In Fig. 5, since the person maintains a rough A-pose
during rotation, we only show the results of the first frame of
the video. It can be seen that MGN [22] and SMPLicit [25]
cannot get accurate clothing styles. While BCNet [23] can
get visually reasonable shapes, it cannot produce geometric
details that are consistent with the input, or even produces
wrong details. On the contrary, our approach benefits from the
weakly supervised framework and reconstructs high-quality
garments which faithfully reflect the input appearances. The
elegant design of the multi-hypothesis displacement module
also enables back surfaces with reasonable details to be gener-
ated, given the input of the front view. To further demonstrate

TABLE III
QUANTITATIVE EVALUATION FOR LOSS FUNCTION ABLATION STUDY

(CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

w/o Cloth Loss 1.397 1.844 1.552 1.243 1.677 0.924 1.580 0.725
w/o Image Loss 1.172 1.808 1.128 1.275 1.174 0.967 1.158 0.781

Full 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

Input              Ours-MGN               Ours

Fig. 9. Qualitative results of garment template ablation study.

the effect of our model, we also compare our method with a
video-based method REC-MV [61]. In the current REC-MV
source code, there is an absence of data preprocessing code,
e.g., estimating the feature lines of the clothes from the input,
which is based on their previous work called Deep Fashion3D
[24] and is currently not accessible. Therefore, we can only
make a qualitative comparison on the People-Snapshot dataset,
because the preprocessing data of the People-Snapshot dataset
is released. In Fig. 6, since the person maintains a rough A-
pose during rotation, we only show the results of the first
frame of the video. It can be seen that our model can not only
reconstruct the garment geometry consistent with the image,
but also keep the garment stable. Compared to our method,
the training time of REC-MV is around 18 hours with an
RTX 3090 GPU, while we train our model with a TITAN
X GPU in half an hour. Besides, the results of REC-MV
could not be animated. More dynamic results can be found
in supplementary video.
Quantitative Comparison. We test our method and the state-
of-the-art methods with the rendered images from CAPE
[73] dataset. Note that we use all the subjects with raw
scans (‘00032-shortshort-hips’, ‘00096-shortshort-tilt-twist-
left’, ‘00159-shortlong-pose-model’, ‘03223-shortlong-hips’)
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AnimationReconstruction ReconstructionAnimation

Fig. 10. Garment animation results.

TABLE IV
QUANTITATIVE EVALUATION FOR GARMENT TEMPLATE ABLATION STUDY

(CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

Ours-MGN 1.246 1.896 1.078 0.968 1.135 1.039 1.201 0.979
Full 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

TABLE V
QUANTITATIVE EVALUATION FOR GARMENT ANIMATION (CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

reconstruction 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713
animation 1.103 2.543 1.081 2.065 1.097 1.076 1.112 0.743

from CAPE [73] dataset, and for brevity, only the ID of the
subject is kept in the table in the rest of this section. We first
align the garment meshes generated by different methods to
the ground truth meshes across all frames for a video and
then compute the the final average Chamfer distance between
the reconstructed garments and the ground truth meshes for
accuracy measurement. To evaluate the temporal consistency
of the reconstructed meshes, we measure the consistency of
corresponding vertices (CCV), which is the root mean squared
error of the corresponding vertices’ distances in adjacent
frames. As shown in Table I, our method outperforms other
methods in reconstruction accuracy, which indicates more
realistic reconstruction results from a single RGB camera.

C. Ablation Study

Multi-Hypothesis Displacement. To validate the effect of the
multi-hypothesis displacement module, we compare the per-
formances of using different numbers of hypotheses. Specifi-
cally, given the high-level embedding of the pose, we define
different numbers of learnable matrices to get deformations
and encourage gradient propagation through residual connec-
tions. Then, we connect these hypothetical deformations as the
input of an MLP to output the final deformation. Table II gives
the quantitative results on CAPE dataset [73]. We calculate the
average Chamfer distance between the aligned reconstructed
garments and the ground truth meshes across all frames for
a video and consistency of corresponding vertices (CCV)
between adjacent frames. As shown in Table II, different
numbers of hypotheses achieve similar accuracies, and all have
higher accuracies than w/o MHD. In the rest of this section,
we utilize MHD3 as our full model. Some visual results are
shown in Fig. 7. It can be seen that our full model addresses
the problems faced by w/o MHD, such as messy details and
over-smooth back surfaces. At the same time, it also proves the
effectiveness of our multi-hypothesis module, which can learn
the dynamic deformations of clothes well from monocular
video.
Loss Function. We study the effects of different loss functions
on garment reconstruction. Our method is compared with two
variants: one supervised without clothing loss function (w/o
Cloth Loss), and the other supervised without image loss
function (w/o Image Loss). In the same way as before, we
calculate the average Chamfer distance between the aligned
reconstructed garments and the ground truth meshes across
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Input      Reconstruction          Result Input       Reconstruction          Result

Fig. 11. Neural texture generation by our method on Cape dataset (left three columns) and People-Snapshot dataset (right three columns).

all frames for a video ywand consistency of corresponding
vertices(CCV) between adjacent frames. Table III gives the
quantitative results in terms of the Chamfer distance and
consistency of corresponding vertices (CCV). Our full model
achieves the best performance, which verifies the importance
of adopting both the image loss and the clothing loss. As
shown in Fig. 8, the variant without the clothing loss generates
messy meshes, while the variant without the image loss
generates smooth meshes. In contrast, our full model can not
only reconstruct the garment geometry consistent with the
image, but also keep the garment stable.

Garment Template. We study the effects of different paramet-
ric garment templates on garment reconstruction. We compare
our method with a variant template generated by MGN (Ours-
MGN). In the same way as before, we calculate the average
Chamfer distance between the aligned reconstructed garments
and the ground truth meshes across all frames for a video and
consistency of corresponding vertices (CCV) between adjacent
frames. Table IV gives the quantitative results in terms of the
Chamfer distance and consistency of corresponding vertices
(CCV). Our full model achieves slightly better performance
than Ours-MGN. Both Ours-MGN and our full model out-
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perform other state-of-the-art (SOTA) methods. As shown in
Fig. 9, Ours-MGN also reconstructs the garment geometry
consistent with the image, but at the neckline and cuffs, there
are a lot of messy triangle faces.

D. Garment Animation
We utilize a parametric body model of SMPL [27] which

makes the garment deformation more controllable, in order
to handle dynamic garment reconstruction from monocular
videos. Thanks to the design of the learnable garment defor-
mation network, our method can generate reasonable defor-
mations for unseen poses. Specifically, we train the model
using our captured videos and test it with random unseen
pose sequences. Table V gives the quantitative results in
terms of the Chamfer distance, as well as the consistency of
corresponding vertices (CCV) between adjacent frames. As
shown in the Table V, our method achieves similar accuracy
on unseen poses. Figure 10 shows that our method can still
produce garments with well-preserved personal identity and
clothing details of the subjects under various novel poses,
which enables dynamic garment animation. More dynamic
results can be found in supplementary video.

Input                       MGN                    BCNet                       Ours

Fig. 12. Reconstructed loose garment by MGN [22], BCNet [23] and our
method on our captured data.

Input                               Segmentation                                   Result                       
Fig. 13. An example of imprecisely reconstructed clothing due to wrong
segmentation result.

E. Texture Generation
Figure 11 shows some qualitative results by our neural

texture generation method. As shown in the figure, our method
can not only obtain high-quality garment geometry, but also
produce high-fidelity textures consistent with the image. More
dynamic results can be found in the supplementary video.

 

Reconstruction Animation

Fig. 14. Examples of failure cases for collars and extreme poses.

F. Discussion and Limitations

Although we have achieved high-quality animatable dy-
namic garment reconstruction from a single RGB camera,
there are still some cases that we cannot solve well:

Loose Clothing. The results of cases with loose clothes may
not be good, due to less relevance between body and clothing.
Figure 12 shows some comparison results. Our method can
obtain visually reasonable clothing shapes, but cannot recover
folded structures consistent with the image. In further work,
we will design a temporal fusion module that uses information
from adjacent frames to improve the representation of the
framework and generate higher quality animatable dynamic
garments.

Collars. While our method can reconstruct garment meshes
with high-quality surface details from a monocular video, it
fails to reconstruct collars due to the lack of supervision of
the collars. Fig. 14 gives some examples of such cases. We
will explore a post-processing to extend our method to address
this.

Extreme Poses. Although our method can generate reasonable
deformations for unseen poses, it may produce incorrect results
for extreme poses. Fig. 14 gives some examples of extreme
poses cases. This could be solved by adding garment priors
and training with more poses in the future work.

Segmentation and Normal Estimation. By applying weakly
supervised training, we eliminate the need to simulate or scan
hundreds or even thousands of sequences. Instead, our method
uses predicted clothing segmentation masks and normal maps
as the 2D supervision during training. The errors of segmen-
tation and normal estimation could have negative effects on
the training process and lead to imprecise reconstruction. Fig.
13 gives some examples of wrong clothing segmentation.
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VI. CONCLUSION

In this paper, we aim to solve a meaningful but chal-
lenging problem: reconstructing high-quality animatable dy-
namic garments from monocular videos. We propose a weakly
supervised framework to eliminate the need to simulate or
scan hundreds or even thousands of sequences. To the best
of our knowledge, no other work meets the expectations
of digitizing high-quality garments that can be adjusted to
various unseen poses. In particular, we propose a learnable
garment deformation network that formulates the garment
reconstruction task as a pose-driven deformation problem. This
design enables our model to generate reasonable deformations
for various unseen poses. To alleviate the ambiguity brought
by estimating 3D garments from monocular videos, we design
a multi-hypothesis deformation module that learns spatial
representations of multiple plausible deformation hypotheses.
In this way, we can alleviate the ambiguity brought by
estimating 3D garments based on monocular videos. The
prior works [22], [23], [25] focus on the geometry of the
clothes and do not attempt to recover the garment textures,
which limits their application scenarios. Therefore, we design
a neural texture network to generate high-fidelity textures
consistent with the image. Experimental results on several
public datasets demonstrate that our method can reconstruct
high-quality dynamic garments with coherent surface details,
which can be easily animated under unseen poses.
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