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PoNA: Pose-Guided Non-Local Attention
for Human Pose Transfer
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Abstract— Human pose transfer, which aims at transferring the
appearance of a given person to a target pose, is very challenging
and important in many applications. Previous work ignores the
guidance of pose features or only uses local attention mechanism,
leading to implausible and blurry results. We propose a new
human pose transfer method using a generative adversarial
network (GAN) with simplified cascaded blocks. In each block,
we propose a pose-guided non-local attention (PoNA) mechanism
with a long-range dependency scheme to select more important
regions of image features to transfer. We also design pre-posed
image-guided pose feature update and post-posed pose-guided
image feature update to better utilize the pose and image features.
Our network is simple, stable, and easy to train. Quantitative
and qualitative results on Market-1501 and DeepFashion datasets
show the efficacy and efficiency of our model. Compared with
state-of-the-art methods, our model generates sharper and more
realistic images with rich details, while having fewer parameters
and faster speed. Furthermore, our generated images can help
to alleviate data insufficiency for person re-identification.

Index Terms— Human pose transfer, generative adversarial
network (GAN), attention.

I. INTRODUCTION

HUMAN pose transfer, which synthesizes a new image
for a target person in a new pose, is a very significant

task in many applications such as data augmentation for
person re-identification [1], image processing [2], and video
generation [3]. Given a condition image of a person and an
arbitrary pose, human pose transfer system generates realistic
images of the same person in the specified pose, as illustrated
in Figure 1.

Many promising frameworks have been proposed for human
pose transfer [3]–[9]. In order to generate realistic images,
three main ideas are used in previous work. The first kind
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Fig. 1. Generated examples by our method based on different target poses.

of methods [4]–[6], [9] apply an encoder-decoder framework
to implicitly accomplish the transformation. However, they
fuse the pose and image information through simple guide
mechanism without utilizing the pose information for guid-
ance, which leads to blurry and implausible results. The second
kind of methods [7] break up the whole body into parts (each
body part as a rectangular region), transfer each body part
respectively by computing a set of affine transformations, and
finally combine the information of each body part to deliver
the final results. However, the rectangular regions of image
features are not precise for complex background and large
pattern, which sometimes causes implausible images to be
generated. The third kind of methods [8] propose to guide
the pixel-to-pixel transfer and texture transfer by 3D prior
knowledge, which can generate promising results. But their
results depend on the accuracy of the appearance flow and their
strategies require high computational cost and complicated
training procedure.

The aforementioned existing methods fail to synthesize
photo-realistic images due to the challenges of human pose
transfer. One challenge is how to transfer the information
of the condition image, including the style of clothes and
appearance of the person, from the condition pose to the
target pose. By comparing the image information to a student
and pose information to a teacher, the student should study
under the guidance of the teacher, while the teacher also
needs to change teaching methods according to the aptitude
and feedback of the student. On the one hand, under the
guidance of the teacher, the student will become stronger
and stronger. On the other hand, with the feedback from the
student, the teacher will adjust the way of guidance according
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to the state of student to better guide the progress of the
student. In fact, this is a chicken and egg problem between
pose features and image features: good pose features will
help to generate good image information while good image
features will contribute to extracting relevant and important
pose features. In previous network architectures, they ignore
the guidance function between image features and pose fea-
tures or use simple attention mechanism to deal with this
chicken and egg problem, which is difficult to make the utmost
of image and pose features. Besides, human pose transfer
is further compounded by self-occlusion and high variance
in poses, which induce ambiguities in inferring unobserved
pixels. Some methods deploy deeper networks or use 3D
prior knowledge to cope with this challenge. However, their
strategies require large computation budget and generate blurry
images especially when there is a lot of regions to be inferred
due to significant difference between poses.

The insight that takes human pose transfer as a chicken
and egg problem motivates us to design a cross-modal
block, named as Pose-guided Non-local Attention (PoNA)
block, with pre-posed image-guided pose feature update and
post-posed pose-guided image feature update to better deal
with the chicken and egg problem. With simplified cascaded
cross-modal blocks, the model contributes to gradually trans-
ferring image features from the condition pose to the target
pose. In the pre-posed image-guided pose feature update,
we use self-attention module to merge pose feature and image
feature. In the post-posed pose-guided image feature update,
we propose a pose-guided non-local attention mechanism to
alleviate ambiguities in inferring unobserved pixels, which
also helps to reduce the required number of blocks. With
our non-local attention mechanism, more important regions
of image features can be selected and deformed, which
is useful for inferring unobserved pixels and transferring
image features from the condition pose to the target pose.
Experimental results demonstrate that our method achieves
more photo-realistic human pose transfer results with fewer
parameters and faster speed, compared with five state-of-
the-art methods. Some examples generated by our method are
shown in Fig. 1. The code is available for research purposes
at https://github.com/Zhangjinso/PoNA.

Our main contributions are summarized as follows:
• We propose a simple yet effective generator with simpli-

fied cascaded blocks for human pose transfer, which is
easy to train with fewer parameters. We will make the
code publicly available online.

• We propose a cross-modal block with pre-posed image-
guided pose feature update and post-posed pose-guided
image feature update, to better deal with the chicken
and egg problem. This copes well with high vari-
ance between the source image and target image,
because the pre-posed image-to-pose transfer gives a
better initialization for image-based transfer, which
is similar to the effect of rigging for model-based
animation.

• We propose a pose-guided non-local attention mecha-
nism in the image feature update to help select and
deform important regions of image features, which deals

well with the information missing and self-occlusion
problems.

• We demonstrate the advantage of our method over the
state-of-the-arts by quantitative and qualitative evaluation,
and show the capability to alleviate data insufficiency for
person re-identification.

The rest of this article is organized as follows. Section II
presents a brief review of related work. Section III describes
the proposed network with pose-guided non-local attention
blocks. Experimental results are presented in Section IV, and
the paper is concluded in Section V.

II. RELATED WORK

A. Generative Adversarial Networks (GANs)

The Generative adversarial network (GAN) [10] is com-
posed of a generator and a discriminator where the discrim-
inator tries to identify real images and synthesized images
while the generator tries to fool the discriminator by generat-
ing realistic images. GANs usually generate realistic images
through training in an adversarial way [10]–[12]. Conditional
generative adversarial networks (CGANs) [13], which have
achieved remarkable success, are proposed for the purpose of
synthesizing realistic images with some condition constraints,
e.g., generating images at new viewpoints. Besides, as a
commonly used structure in generators, U-Net [14] captures
the input information of encoder and conveys it to decoder
using skip connection, which is suitable for pixel-wise aligned
tasks. However, human pose transfer is an unaligned task
due to the deformation between the condition pose and target
pose. Self-attention GAN [15] applies long-range dependency
instead of local spatial dependency, solving the limitation of
convolution operator. It calculates the attention map through
transforming image features into two feature spaces to gain
global information, and then acts on image features to get
new image features with long-range dependency. However,
self-attention mechanism can only gain the long-range depen-
dency of itself but can not guide the transformation of other
features, i.e., guiding the transformation of image features
using pose features. In this article, we propose an improved
attention mechanism for human pose transfer, which helps to
deal with missing information and self-occlusions.

B. Person Image Generation

Lassner et al. [16] combine variational auto-encoder [17]
and GAN to generate random person images with different
appearance for the full body. Xian et al. [18] present a model
for controlling the texture of synthesized image with input
sketch and texture patches. Zhu et al. [19] propose a novel
pipeline to synthesize novel views of human body from a
monocular image. Balakrishnan et al. [20] decompose the
person image generation task into multiple foregrounds with
different body parts and background generation. Si et al. [21]
adopt multi-stage adversarial losses for pose transformer net-
work, foreground transformer network and background trans-
former network to generate more realistic images. Several
methods [22]–[24] focus on the virtual try-on application and
make remarkable progress in transferring clothes of a given
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Fig. 2. Structure of our proposed generator.

person image while containing the condition pose and shape
of that person. Previous existing researches ignore the chicken
and egg problem in conditional generation. In this article,
we propose a cross-modal block with pre-posed image-guided
pose feature update and post-posed pose-guided image feature
update to cope with the chicken and egg problem in human
pose transfer.

C. Human Pose Transfer

Human pose transfer is an important part of person image
generation. Ma et al. [5] propose a coarse-to-fine framework,
which first generates a coarse image and then refines it.
However, this two-stage model is inefficient in computation
and complex to train. Ma et al. [6] improve their previ-
ous work using a decomposition strategy. Esser et al. [4]
combine a variational auto-encoder to sample appearance
and a U-Net [14] to preserve shape information, modeling
the interplay of shape and appearance. Neverova et al. [25]
propose to form a warping module to preserve texture and
a prediction module to generate plausible images and then
use a blending module to deliver final results. Their work
exploits a dense pose estimation system, which maps body
pixels to UV surface coordinates, to generate pose presen-
tation. Li et al. [8] use a 3D flow map and a visibility
map from the condition pose and target pose to guide the
transformation of image features and pixels. However, they
need a flow regression module pre-trained by the dataset
obtained through fitting a SMPL [26], a 3D human model
with 6890 vertices and 13766 faces. Liu et al. [27] use a 3D
body mesh recovery module [28] to disentangle the pose and
shape, and propose a novel block to propagate the source
information. However, the 3D body mesh recovery method
cannot estimate pose and shape precisely, which leads to
some blurry results. Zhu et al. [9] propose a progressive pose
attention transfer network to utilize pose features to guide the

image features transfer. They consider the guidance role of
pose features, but local attention mechanism cannot capture
long-range dependency to transfer the precise regions of the
image features. In this article, we cascade several pose-guided
non-local attention blocks for better pose transfer using fewer
parameters.

III. METHOD

A. Notations

Given a person image, we aim at generating an image for the
person in another pose. To transfer pose arbitrarily, we adopt
the commonly used pose representations to guide the transfer.
Specifically, we use 18 human keypoints extracted by Human
Pose Estimator (HPE) [29] and represented by heatmaps. The
heatmap includes 18 channels, and each channel encodes the
location of each joint of human body. Denote Pc and Pt as the
heatmaps of the conditional pose and the target pose, Ic and It

as the condition image and the target image.
Instead of directly using the keypoints Kc and Kt that are

extracted from the condition image Ic and the target image It

using HPE, we encode the pose as 18 heatmaps to provide
widespread information about each joint location. Specifically,
the condition pose Pc and the target pose Pt are represented
as two tensors Pc = P(Kc) and Pt = P(Kt ), where the slice
Pi (1 ≤ i ≤ 18) is a 2D matrix with the same dimension as
Ic and It . Mathematically,

Pi = exp − (k − ki )
2

σ 2 , (1)

where ki is the i -th joint location and σ = 6 pixels, which is
the same as that in Deform [7] and PATN [9]. During training,
the model takes a pair of the condition and the target images
(Ic, Ip) and a pair of the condition and the target pose (Pc, Pt )
as inputs. The generator is fed with a triplet (Ic, Pc, Pt ) and
outputs Ig as close as possible to It .
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B. Encoders

Figure 2 shows the architecture of our generator. The
generator has two encoders, several pose-guided non-local
attention blocks and one decoder. The input of the generator
is (Ic, Pc, Pt ), a triplet of the condition image, condition pose
and target pose. The output is our generated image Ig , which
is expected to be similar to the target image It . The task is
transferring the information in condition image Ic, including
texture, body shape, clothes style, etc., from condition pose Pc

to target pose Pt . The encoders, pose encoder and appearance
encoder, have the same structure with two down-sampling
convolution layers. We concatenate condition pose and target
pose as the input of the pose encoder. The pose encoder
encodes the transformation between condition pose and target
pose and preserves the information of both. The appearance
encoder takes a condition image as input and encodes the
information of the condition image. After going through two
encoders, pose code C P

0 and image code C I
0 are obtained.

C. Pose-Guided Non-Local Attention Block

We propose pose-guided non-local attention (PoNA) blocks,
which are cross-modal blocks, to make pose features truly
guide the transformation of image features. With several PoNA
blocks, image features can be transferred by pose features from
the condition pose to the target pose gradually. Each PoNA
block is separate and has the same structure. The inputs of
the tst PoNA block are image code C I

t−1 and pose code C P
t−1

from the (t −1)st PoNA block, and the outputs are image code
C I

t and pose code C P
t . Several PoNA blocks finally output the

final image code C I
T which is put into the decoder to generate

the final image, while the final pose code C P
T is discarded.

As explained before, PoNA block is used to make pose fea-
tures guide the transformation of image features. In each PoNA
block, two pathways, image pathway and pose pathway, are
designed for pose code and image code, respectively. Image
pathway and pose pathway are connected with our improved
non-local attention mechanism, which can accomplish the task
of pose-guided transformation. As shown in Figure 2, image
code C I

t−1 and pose code C P
t−1 from the t − 1st PoNA block

are first concatenated along the depth (channel) axis to get
the fusion code. Pose code is updated with the fusion code
as C P

t , which contains both image features and pose features,
and then attention map is computed using the updated pose
code. Besides, image code is updated by going through four
convolution layers. To get the final image code C I

t , the atten-
tion map is modulated on the updated image features, which
accomplishes the transformation of image features guided by
pose features. Details about PoNA block is described in the
following.

1) Image-Guided Pose Code Update: Before going through
image pathway and pose pathway, we concatenate the image
code and the pose code along the depth (channel) dimension
as fusion features to make pose features know the information
about transformation of image features. With fusion code,
we deploy a self-attention module [15] to better integrate
fusion features and select more important regions for the

guidance. Mathematically:
C F

t−1 = sel f _attention(C P
t−1||C I

t−1). (2)

where || is cited as concatenation along the depth (channel)
dimension.

For pose pathway, a block with four convolution layers is
used to encode the information of fusion features and prepare
for the following guidance. The four convolution layers (each
layer with a normalization layer [30], [31] and a ReLU [32])
help the pose code know about the transformation of image
features, which benefits for the following guidance. These four
convolution layers are capable of extracting useful features
from the fusion code. One of these layers also reduces the
number of channels to half, making the size of the output
equal to the input. The pose code is updated by:

C P
t = convP(C F

t−1). (3)

2) Pose-Guided Non-Local Attention: The pose transfer is
to move patches from the condition pose to the target pose and
to deal with the relationship between different patches. From
this point of view, the pose guides the transfer by finding
where to extract condition patches and where to put target
patches and meanwhile maintaining the relationship between
patches. In our PoNA block, such transformation is realized
by the attention map denoted as αt , which are values between
0 and 1 calculated by softmax, indicating the importance of
every element in the updated pose code and the extent to which
the model attends to one location when synthesizing other
locations.

Traditional non-local attention mechanism embeds query,
key and value from the same feature, calculates the attention
map by computing the similarity between key and query,
and updates the value with this attention map to select more
important regions. For the guided attention mechanism, key
and value are embedded from the feature to be guided, and
query is embedded from the feature as guidance. However,
in our task, the pose feature and the image feature are in the
different latent spaces, and it is hard to compute similarity
between image feature and pose feature. To get a reliable
attention map, we embed key and query from the updated pose
feature. The map αt is calculated from the pose code C P

t−1.
The pose code C P

t−1 is transformed into two feature spaces,
key and query space, by two different 1 × 1 convolutional
layers, denoted as mappings f and g, where f (x) = W f x
and g(x) = Wgx . Mathematically:

αt, j,i = sof tmax(mt,i, j ), (4)

where αt, j,i indicates the relationship between the i th location
and the j th location in the t th PoNA block, and mt,i, j is
calculated as

mt,i, j = f (C P
t i )

T · g(C P
t j ). (5)

3) Pose-Guided Image Code Update: Image code is updated
by going through four convolution layers and embedded into
value space by a 1 × 1 convolutional layer. The attention
map αt from the pose-guided non-local attention mecha-
nism can select important regions from the image code
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and deform the original image code by rearranging the
image feature. The output of the attention layer is ot =
(ot,1, ot,2, . . . , ot, j , . . . , ot,N ), where

ot =
N∑

i=1

αt, j,i Wt (conv I (C
I
t−1)i ),

h(xi ) = Wh xi . (6)

In the above formulation, N is the number of locations of the
features from the previous hidden layer, and Wh and Wt are
the learned weight matrices, which are implemented as 1 × 1
convolution layers.

In addition, we combine the output of the attention layer
with the input image code by a learnable parameter γ which
is initialized as 0. Therefore, the final output is given by

C I
t = γ ot + conv I (C

I
t−1). (7)

The learnable coefficient γ enables the block first to rely
on local features and then gradually to learn to combine the
non-local evidences.

D. Discriminator

We adopt two discriminators, appearance discriminator DA

and pose discriminator DP , to judge how likely Ig contains
the same person as Ic (appearance consistency) and how well
Ig aligns with the target pose Pt (pose consistency). The two
discriminators are similar in structures, where the inputs of
them are Ig concatenated with either condition image Ic or
target pose Pt along the depth axis. These inputs go through
a convolutional layer (with normalization and ReLU after it)
and several residual blocks (with self-attention module) after
down-sampling. The outputs of the discriminators are the
appearance consistency score S A and the pose consistency
score S P , calculated by softmax layers.

E. Loss Function

Previous methods on human pose transfer [4]–[9] utilize
multiple loss functions to supervise the training process. In this
work, we adopt a combination of three loss functions as the
full loss function L f ull , including a conditional adversarial
loss LCG AN , an L1 loss LL1 and a perceptual loss Lpercep ,
which are described in details as follows.

The full loss function is defined as

L f ull = λ1LCG AN + λ2LL1 + λ3Lpercep, (8)

where λ1, λ2, λ3 represent the weights of LCG AN , LL1,
Lpercep that contribute to L f ull , respectively.

1) Conditional Adversarial Loss: The conditional adver-
sarial loss is defined as

LCG AN = E Pt∈P,(Ic,It )∈I{log[DA(Ic, It ) · DP (It , Pt )]}
+ E Pt∈P,Ic∈I,Ig∈Î{log[(1 − DA(Ic, Ig))

· (1 − DP(Ig, Pt ))]}, (9)

where P , I and Î denote the distributions of person poses,
real person images and fake person images, respectively.

2) L1 Loss: LL1 loss represents the pixel-wise differences
between the generated image Ig and the ground truth It , which
is defined as

LL1 = ||Ig − It ||1. (10)

3) Perceptual Loss: Previous work [4]–[9] shows that
L1-distance between feature maps extracted from two images
by a pre-trained CNN could make the generated images look
more natural and reduce the structural differences, which
performs well in style transfer [11] and pose transfer [5]–[8].
The perceptual loss is defined as

Lpercep =
Cμ∑

i=1

||φμ(Ig)i − φμ(It )i ||1, (11)

where φμ denotes the outputs of the μth layer from the
VGG-19 model [33] pre-trained on ImageNet [34], and φμ(·)i

denotes the i th feature map of the outputs of φμ .
In practice, we find that it is good enough to use the features

from Conv1_2 of VGG-19.

F. Training Procedures

We train the generator and the discriminators alternately.
When training, the input of the generator is a triplet (Ic, Pc,
Pt ), and the output is a generated image Ig which has the same
pose as the target image It . Specifically, Ic is fed to the image
stream and (Pc, Pt ) are fed to the pose stream. To train the
discriminators, the appearance discriminator DA takes (Ic, It )
and (Ic, Ig) as inputs to calculate the appearance consistency
score S A , and the pose discriminator Dp takes (Pt , It ) and
(Pt , Ig) as inputs to calculate the pose consistency score S P .

G. Implementation Details

We use 3 PoNA blocks in the generator. For images from
Market-1501 dataset that are low resolution, we apply batch
normalization [30] in the generator for all the normalization
layers. Instance normalization [31] which is a better choice
for the transfer task, is applied for DeepFashion dataset. The
coefficients in the loss function (λ1, λ2, λ3) are set to be
(5,10,10) for Market-1501 dataset and (5,1,1) for DeepFashion
dataset. Leaky-ReLU [32] is adopted after each convolution
layer or normalization layer in the discriminators, and its
negative slope coefficient is set to be 0.2. For all models,
we adopt the Adam optimizer [35] with β1 = 0.5 and β2 =
0.999 to train for 90k iterations.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets and the metrics
in Section IV-A, and compare our method with the state-of-
the-art methods in Section IV-B, and then we perform an
ablation evaluation to study the importance of the different
components of our approach in Section IV-C. We show the
application on data augmentation for person re-identification
which helps to improve the performance in Section IV-D and
finally analyze the limitations of our model in Section IV-E.
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Fig. 3. Qualitative comparisons on Market-1501 dataset. From left to right are the results of PG2 [5], VUnet [4], Deform [7], PATN [9] and ours, respectively.

A. Datasets and Metrics

1) Datasets: Person re-identification dataset Market-
1501 [36] and the In-shop Clothes Retrieval Benchmark
DeepFashion [37] are commonly used datasets for the eval-
uation of human pose transfer. Images in Market-1501 are
low resolution (128 × 64) with large variation in pose and
background, which makes human pose transfer more challeng-
ing. Compared with Market-1501, the images in DeepFashion
are higher resolution (256 × 176) with clean background.
Zhu et al. [9] use HPE [29] as pose joints detector and collect
263632 training pairs and 12000 testing pairs for Market-
1501 and 101966 training pairs and 8570 testing pairs for
DeepFashion, when proposing their PATN method. In both of
these datasets, the person identities in the test set are different
from those in the training set. In order to ensure the fairness
of the comparison results, we adopt the training pairs and the
testing pairs used in PATN [9] for both datasets.

2) Metrics: Ma et al. [5] use Structural SIMilarity (SSIM)
and Inception Score (IS) as their metrics. SSIM can measure

the similarity between synthesized images and ground-truth
images, and IS is a common method used to measure
the quality of image generation. For Market-1501 dataset,
Ma et al. [6] further introduce the mask version of SSIM
(mask-SSIM) and the mask version of IS (mask-IS) by
masking the background out, which reduces the influence of
blurry background of images. Besides, Zhu et al. [9] intro-
duce the slightly modified version of Percentage of Correct
Keypoints (PCKh) [38], which measures shape consistency
by computing pose joints alignment using pre-trained Human
Pose Estimator (HPE) [29]. Moreover, we use Peak Signal to
Noise Ratio (PSNR) to measure the difference between the
synthesized image and the ground-truth image in pixel level.

B. Comparison With Previous Work

1) Qualitative Evaluation: We evaluate the visual results
of our method on Market-1501 and DeepFashion datasets,
compared with five state-of-the-art methods: PG2 [5],
VUnet [4], Deform [7], PATN [9], and LWG [27]. Because
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Fig. 4. Qualitative comparisons on DeepFashion dataset. From left to right are the results of PG2 [5], VUnet [4], Deform [7], PATN [9], LWG [27] and
ours, respectively.

LWG [27] does not provide pre-trained model on the
Market-1501 dataset, we compare with LWG [27] only on the
DeepFashion dataset.

For poor quality images in Market-1501, as shown
in Figure 3, our method generates clearer images than the
other methods. It is worth noting that our method gives the
correct leg layouts even when the legs are crossed in the target
pose (in the first and third rows). Besides, even if the condition
image is blurred (in the second row) or has complex clothing
patterns (in the third row), our method can learn the style of the
garments and maintain these features in the generated images.
Moreover, our method also keeps appearance consistency,
e.g., the bag is preserved in our results (in the first and third
rows). For high quality images in DeepFashion, as shown
in Figure 4, our method yields the sharpest person images with
better facial details while the generated images of the other

methods have some blur contents (in the third and fifth rows).
Besides, the texture (in the first and third rows) and clothing
styles (in the first, second and fifth rows) in condition images
are preserved in our generated images, which indicates that
our model has the power of capturing global styles and local
details for generation. Although LWG preserves fine details in
the condition image (in the fifth row), it fails to generate sharp
and plausible images with precise pose. Moreover, our method
keeps appearance consistency, e.g., the hat in the third row.

To further validate the performance of our model, we try
to generate person images based on the same condition
image and several different poses from the testing sets of
Market-1501 and DeepFashion, respectively. Some examples
are shown in Figure 5-7. We only compare with PATN [9] and
LWG [27] since they are the latest state-of-the-art methods
and the space is limited. LWG [27] cannot generate good
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Fig. 5. Image generation results conditioned by different poses on the Market-1501 dataset. For each condition image, the first row shows the images
generated by PATN [9], and the second row shows our results.

TABLE I

QUANTITATIVE COMPARISON WITH FIVE STATE-OF-THE-ART METHODS ON MARKET-1501 AND DEEPFASHION

results on the Market-1501 dataset, and hence we do not
compare this method on that dataset. Because LWG [27]
fails to generate sharp image when the condition image and
reference image have different camera coordinates, we select
some full-body images that have similar camera coordinates
as condition images and reference images from DeepFashion
dataset. As shown in Figure 5 and Figure 6, for images in
Market-1501 dataset, our model can generate more realistic
and plausible images even for poses with large variation.
Moreover, our generated images keep shape consistency while
the results of PATN [9] lose some details and are blurry.
Compared with PATN [9] on DeepFashion dataset, our model
generates sharper images with better facial details and less
noise. As shown in Figure 7, the results of LWG are blurry
and sensitive to different camera coordinates, although LWG
can preserve some details. Besides, due to its dependency on
3D mesh recovery module to get pose and shape information,
the persons in the generated images from different condition
images have different shapes and inaccurate pose when the
results of 3D mesh recovery module are not precise. As shown

in the third and last columns of the second example, LWG
cannot cope well with large differences of camera coordinates
between the condition image and the estimated image, which
explains why the quantitative results of LWG are not good
(see Table I). Besides, we compare with five state-of-the-art
methods on DeepFashion dataset in Figure 8 to show the per-
formance conditioned by different poses for the same person.
Our model generates more realistic images and preserves the
pattern of clothes. Moreover, the unseen regions synthesized
by our model are more reasonable with less artifacts.

2) Quantitative Evaluation: Table I gives quantitative
results compared with five state-of-the-art methods: PG2 [5],
VUnet [4], Deform [7], PATN [9] and LWG [27]. We use
the same training set and testing set used in PATN. Because
other methods do not give their data split scheme, we run
their well-trained models on our testing set. It is inevitable
to have some test images in their training sets. Even in this
case, our method still outperforms them on most metrics. For
Market-1501, although our IS metric is slightly lower than
Ma et al. [5], our mask-IS metric, which is more convincing
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Fig. 6. Image generation results conditioned by different poses on the DeepFashion dataset. For each condition image, the first row shows the images
generated by PATN [9], and the second row shows our results.

for Market-1501, is the highest score. The quantitative results
on Market-1501 demonstrate that the images generated by our
method maintain structure similarity and shape consistency
even if the condition images are low resolution and vary
significantly in the pose and background. For DeepFashion,
our method has the best results in terms of SSIM, which
means that our generated images keep structure similarity to
the ground truth. Our PSNR value is the highest on both
Market-1501 and DeepFashion datasets, which demonstrates
that our generated images have the minimum pixel-level errors.

3) Efficiency Evaluation: Table II shows our computation
complexity and efficiency compared with five state-of-the-art
methods: PG2 [5], VUnet [4], Deform [7], PATN [9], and
LWG [27]. We test all the methods on the same desktop
with one NVIDIA Titan Xp graphics card. We discard the
time of data preparation, and compute the testing time on

DeepFashion dataset. Through the comparison of model size
and speed, our model significantly outperforms the other
five state-of-the-art methods. Compared with PATN [9], our
method has fewer parameters and faster running speed, but get
better results, especially for our model with 2 PoNA blocks.
Note that the results of our model with 2 PoNA blocks are
slightly lower than PATN (with 9 blocks) in SSIM and mask-IS
metrics, but higher than their model in IS and mask-SSIM
metrics, as shown in Table I and Table III. In a word, our
model has the fewest parameters and the fastest speed, even
when using 3 PoNA blocks.

C. Ablation Study

1) Effectiveness of Cascaded PoNA Blocks: The generator
we proposed has several cascaded PoNA blocks with improved
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Fig. 7. Image generation results conditioned by different poses on the DeepFashion dataset. For each condition image, the first row shows the images
generated by LWG [27], and the second row shows our results.

TABLE II

COMPARISON OF MODEL SIZE AND SPEED ON DEEPFASHION DATASET

non-local attention mechanism, to deal with the challenging
cases of human pose transfer. In order to demonstrate the
effectiveness of cascaded PoNA blocks, we test different
numbers of PoNA blocks on Market-1501 dataset. Table II
and Figure 9 show the quantitative and qualitative results
using different numbers of PoNA blocks, respectively. When
we only use 1 PoNA block in our model, the quantitative
results decrease in all metrics except mask-IS, and slightly
lower than the other state-of-the-art methods (please refer to
Table I). This verifies the effectiveness of our pose-guided
non-local attention mechanism. As shown in Figure 9, even

using 1 PoNA block, our model can still obtain reasonable
results. For simple clothing patterns, e.g., uniform color skirt
(in the third row) and knapsack (in the fourth row), 1 PoNA
block is enough. Using 2 or more PoNA blocks, our model
can capture fine details of complex appearance and generate
plausible images, especially for 3 PoNA blocks. With the
increase of PoNA blocks, some artifacts may appear (in
the second and third rows). Therefore, in our experiments,
we use 3 PoNA blocks to generate plausible and robust results.
The images in the last column of Figure 9 are generated by
PATN [9] with 9 blocks, which has the best performance
in their article. Compared with PATN [9], our PoNA blocks
can capture more details and generate more realistic images.
With non-local attention mechanism, our network can transfer
the details in the condition image, even for the images with
complex clothing patterns, and hence our network generates
sharper and more realistic images.

2) Effectiveness of Different Components of PoNA Block:
The PoNA block is composed of self-attention module and
cross-modal attention module. To validate the effectiveness of
these two components, we conduct experiments on Market-
1501 dataset by training the model without cross-modal mod-
ule and the model without self-attention module. Table IV and
Figure 10 show the quantitative and qualitative results. It can
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Fig. 8. Image generation results conditioned by different poses on the DeepFashion dataset. From left to right are the results of PG2 [5], VUnet [4],
Deform [7], PATN [9], LWG [27] and ours, respectively.

TABLE III

RESLUTS OF DIFFERENT NUMBERS OF PONA BLOCKS

be seen that the cross-modal attention module plays a key
role in improving the performance. The cross-modal attention
module is designed for post-posed pose-guided image feature
update, and it is the only way that pose feature plays a role
in guiding the transformation of image feature. Without the

TABLE IV

QUANTITATIVE RESULTS WITHOUT DIFFERENT

COMPONENTS OF THE PONA BLOCK

cross-modal attention module, our model cannot obtain pose
information, which causes that the generated person does not
have the similar pose to the ground truth. Besides, there are
some different target poses and target images for the same
source image as paired training data, which means that the
same source image has different target images. Therefore,
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Fig. 9. Results on Market-1501 dataset with different numbers of PoNA blocks.

without pose information, the model may learn to synthesize
images with mean shape and mean pose to minimize the loss.
In our model, the self-attention module is used to merge pose
feature and image feature to select more important features.
Without self-attention module, the pre-posed image-guided
pose feature update cannot select important features to embed
key and value to obtain the attention map, and hence generates
some wrong estimates in the final image. Our full model
achieves the best performance.

3) Place and Importance of Fusion Code: This section
will demonstrate our design of the cross-modal block with
pre-posed image-guided pose feature update and post-posed
pose-guided image feature update. The improved attention
mechanism can make pose features guide the transfer of image
features after getting fusion code and updating pose code,
as illustrated in Section III. However, because concatenating
pose code and image code is the only way to let pose features
know the process of image feature transfer, when and where to
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Fig. 10. Generated images without different components of the PoNA block.

Fig. 11. Structures of different places of fusion code. Note that the legend
is as the same as Figure 2.

concatenate image code and pose code to update fusion code is
important for the follow-up operations. Images in Market-1501
dataset are more challenging for human pose transfer and
suitable for validating the place and importance of fusion code.
We call the fusion code before and after pose code updating as
the head and tail fusion, and deploy fusion code in the middle
of four convolution layers in pose code updating as middle
fusion. To validate the importance of fusion code, we also
remove it from PoNA block as none fusion. We test our model
with 3 PoNA blocks. Figure 11 shows the structures of head,
middle and tail fusions.

Table V shows the quantitative results of different places
of fusion code. It can be seen that the head fusion,

TABLE V

RESULTS OF DIFFERENT PLACES OF FUSION CODE

i.e., pre-posed image-guided pose feature update, has the best
performance, because the head fusion can fuse pose features
and image features before pose code updating and help to
understand the structured information of image features. The
tail fusion cannot maintain the structured information and
understand the image features compared with head fusion and
middle fusion. Even though we remove the fusion code, owing
to our improved attention mechanism, our model can obtain
promising results, which are higher or slightly lower than
the other state-of-the-art methods illustrated in Table I in
all metrics. This verifies the effectiveness of our post-posed
pose-guided image feature update.

The qualitative results are shown in Figure 12. The model
with head fusion generates more plausible results based on
condition images (in the fourth and fifth rows), especially
when the legs in the target image are crossed (in the second
row). PATN [9] with 9 blocks (in the last column), with local
attention mechanism, is not able to capture the details in the
condition image, e.g., the white hat (in the first row), the bag
(in the third and fourth rows) and the white collar (in the
fifth row). Note that the images generated by our model are
sharper and have rich details, even if we remove the fusion
code updating. This further proves the effectiveness of our
improved attention mechanism.

4) Visualization of Features in Our Model: In this section,
we visualize all the core features of our model to get an
intuitive understanding on the transformation of pose feature
and image feature. Figure 13 shows the visualization of
features in our model. In pre-posed image-guided pose feature
update, the images represent the features before and after
the encoder and the features before and after the pose code
update in each PoNA block from top to down. It can be seen
that the pose feature becomes denser, which is beneficial to
obtain a reliable attention map to deform the image feature.
In post-posed pose-guided image feature update, the first row
gives the input image and the output feature of image encoder,
and the middle three rows show the image features before and
after deforming by cross-modal attention module. As shown
in Figure 13, the cross-modal attention module deforms the
image feature from condition pose to target pose gradually
and focuses on different regions in each block.

D. Data Augmentation for Person Re-Identification

Human pose transfer is able to generate images of the same
person in different poses, which is useful to augment person
re-identification (re-ID) [39] dataset to solve the problem of
lacking training data and improve the performance of person
re-ID. To some degree, the performance of augmenting dataset
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Fig. 12. Generated images using different places of fusion code.

depends on the performance of human pose transfer model.
In order to illustrate the performance of our model, we test
on Market-1501 dataset [36], which is a main person re-ID
dataset. We exploit our generated images to replace the images
in Market-1501. Specifically, we first obtain a reduced training
set by selecting a portion p to randomly preserve the images in
the whole training set. Then, we use our human pose transfer
method to generate missing images conditioned on preserved
images and the pose of missing images. Finally, we combine
the reduced training set and the generated training set to obtain
the new training set. Note that the images in the new training
set has the same identities and each identity has the same
number of images with the same pose as original images.
We select the portion from 20% to 80% at intervals of 20%,
and get four reduced training sets and four new augmented
training sets. We use the Person re-ID baseline Framework [40]
based on ResNet-50 [41] as our training and testing protocols.

The training sets we created are suitable for showing the per-
formance of data augmentation using our human pose transfer
method. First, the reduced training set provides an environment
with insufficient data and helps us know the lower bound of
performance. Second, the original training set with realistic

images gives the upper bound of performance. With lover
bound and upper bound, we can measure the performance
of data augmentation using the human pose transfer method.
Table VI shows the re-ID results using the reduced training
sets (referred to as None) and the new training sets generated
by VUnet [4], Deform [7], PATN [9], and our method. We did
not compare PG2 [5] and LWG [27] since they cannot generate
good results on this Market-1501 dataset. For fair comparison,
we use the same settings (e.g., condition images and target
poses) to generate the images for all the methods. We use
mean Average Precision (mAP) as the metric to measure
the re-ID performance. With the same model and the same
parameters, the re-ID performance relies on the photorealism
of generated images and the texture consistency of the same
identity. As shown in the table, the model augmented by our
method achieves the most accurate re-ID estimation, which
indicates that our method generates more realistic images with
consistent textures.

E. Limitations

Our model can deform the image feature from the con-
dition pose to the target pose by pose-guided attention
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TABLE VI

RESULTS OF RE-ID

Fig. 13. Visualization of features in our model.

Fig. 14. Examples of failure cases using our method.

mechanism, which also alleviates the negative effects of
occlusion. Although our model generates impressive results,
the quality of generated images can be further improved,
especially for occlusion cases. Figure 14 shows some failure
cases using our method. Our model treats large areas of
occlusion as part of the texture, resulting in blurry areas
and incorrect textures (e.g., dress and shorts). Pose-guided
attention mechanism, as a non-local attention mechanism, can
select and deform important regions, but cannot cope well
with the invisible areas in the condition image by the weighted
sum. In future work, we will try to use human parsing map to
extract semantic information to deal with occlusion and add
local attention mechanism to enhance the quality of texture.

V. CONCLUSION

In this article, we propose a pose-guided non-local atten-
tion (PoNA) block with an improved attention mechanism
to deal with the challenging human pose transfer. With the
improved attention mechanism, each block selects precise
regions of image features to transfer based on pose fea-
tures. The generator of our network is composed of sev-
eral PoNA blocks and transfers image features progressively.
Compared with previous work, our network generates more
realistic and sharper images with rich details, and get the
highest scores in the reasonable mask-SSIM and mask-IS
metrics. At the same time, our network has fewer parameters
and faster speed. Moreover, the proposed network can generate
training images for person re-identification to alleviate the
data insufficiency. Our improved attention mechanism with
pre-posed and post-posed fusion is suitable for other con-
ditioned generation tasks. In the future, we will deploy the
improved attention mechanism to other conditioned generation
tasks, such as facial animation.
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