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Color-Guided Depth Recovery From RGB-D Data
Using an Adaptive Autoregressive Model
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Abstract— This paper proposes an adaptive color-guided
autoregressive (AR) model for high quality depth recovery
from low quality measurements captured by depth cameras.
We observe and verify that the AR model tightly fits depth maps
of generic scenes. The depth recovery task is formulated into a
minimization of AR prediction errors subject to measurement
consistency. The AR predictor for each pixel is constructed
according to both the local correlation in the initial depth map
and the nonlocal similarity in the accompanied high quality color
image. We analyze the stability of our method from a linear
system point of view, and design a parameter adaptation scheme
to achieve stable and accurate depth recovery. Quantitative and
qualitative evaluation compared with ten state-of-the-art schemes
show the effectiveness and superiority of our method. Being able
to handle various types of depth degradations, the proposed
method is versatile for mainstream depth sensors, time-of-flight
camera, and Kinect, as demonstrated by experiments on real
systems.

Index Terms— Depth recovery (upsampling, inpainting, denois-
ing), autoregressive model, RGB-D camera.

I. INTRODUCTION

ACQUIRING depth information of real scenes is an essen-
tial task for many applications such as 3DTV, augmented

reality, and 3D reconstruction. Generally, 3D information of a
scene consists of texture information and position information,
i.e., depth information in our context. While texture informa-
tion can be readily captured by popular color cameras, depth
information is not so easy to acquire. Until now, there are
mainly two categories of methods to obtain depth information:
passive methods and active methods.

In passive methods, depth information is computed from
two-view images or multiview images via correspondence
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matching and triangulation. Being an active area for several
decades, the accuracy of stereo matching has been significantly
improved. However, there are still some inherent problems for
practical application, e.g., the requirement of accurate image
rectification and the inefficiency for textureless areas [1], [2].

The alternatives to acquire depth information are the active
methods in which lights are intentionally projected to the
scene and the depth information is measured from the echoed
signals. Laser range scanner techniques are the earliest active
methods and usually achieve high accuracy [3]. However, the
slice-by-slice scanning of laser scanners makes them rather
time-consuming and inapplicable to dynamic scenes. Time-
of-flight (ToF) based technique is a recent advance in active
depth sensing [4]. In ToF cameras, depth information is deter-
mined by measuring the phase difference between the emitted
light and the reflected light. ToF cameras can capture depth
information for dynamic scenes in real time, but are noisy
and subject to low resolutions, e.g., 176 ×144 and 200 ×200,
compared with popular color cameras. Structured-light based
sensing technique is another breakthrough to achieve real-
time depth capturing for dynamic scenes, and the Microsoft
Kinect is a representative commodity device of this kind.
In Kinect, an infrared light source projects a dot pattern on the
scene and an offset infrared camera receives the pattern and
estimates the depth information. The generated depth maps
contain considerable holes due to the occlusion caused by the
relative displacement of the projector and infrared camera.

While the new depth capturing techniques are promising, the
use of depth cameras is limited by the low quality of produced
depth maps, e.g., low resolution, noise, and depth missing in
some areas. There have been some previous work on depth
recovery for depth cameras. To compensate the undersampling
of ToF cameras, an auxiliary color camera is equipped and the
resolution of depth maps is enhanced by joint image filtering
techniques from a low resolution depth map and a high reso-
lution color image [4]–[7]. Some depth recovery methods for
Kinect are adapted from image inpainting techniques [8], [9].
These methods achieve good quality for smooth regions, but
may introduce artifacts, e.g. jagging, blurring, and ringing,
around thin structures or sharp discontinuities. Both taking
a low quality depth map and a high quality color image as
input, depth recovery problems for ToF camera and Kinect
are essentially the same, but are treated separately in literature
before our preliminary results of this work [10].

This paper proposes an adaptive color-guided AR model to
construct a unified depth recovery framework for both ToF
and Kinect depth cameras. We first verify the fitness of AR
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model for depth maps, and then design pixel-wise adaptive
AR predictors based on the non-local similarity of both the
depth map and the accompanied color image. The depth map
is recovered by minimizing AR prediction errors subject to the
observation consistency. The stability of the proposed method
is analyzed from the linear system point of view. Inspired by
the stability analysis, parameters are adaptively set according
to the local characteristics of the depth-texture pair to achieve
stable and reliable recovery. Experiments demonstrate that our
method can handle various depth degradation modes and is
applicable to both ToF and Kinect cameras. Without resorting
to higher level tools such as segmentation used in [11], our
proposed method achieves the best quality among several state-
of-the-art depth recovery methods.

The contribution of our work is summarized into the
following three aspects:

• First Attempt at AR Modeling of Depth Maps: We
demonstrate that the AR model is able to tightly fit the
depth signals if AR coefficients are carefully designed
according to the signal characteristics. This accurate
depth model brings great success in depth recovery, and
also provides a promising tool for other depth-related
processing.

• A Unified Depth Recovery Framework With an
Efficient Color-Guided AR Model: We design high
performance AR predictors by fully exploiting
characteristics of RGB-D data: non-local correlations,
non-stationary nature of depth maps, and structural
correlations in RGB-D data. Several depth enhancement
problems are unified into an elegant depth recovery
framework with a versatile observation model that
includes four commonly-existed degradation modes. The
global formulation and optimization provide inherent
closed-loop interactions between observed pixels and
latent pixels. This prominent feature well complements
the open-loop nature of filtering-based schemes such as
JBF [12], guided filter [13], and their variants [14]–[16].

• Systematic Stability Analysis and Effective Parame-
ter Adaptation: The stability behavior of the proposed
method is systematically analyzed by the conditioning
of linear systems. The influence of parameters on the
stability and recovery quality is investigated. Based on
the analysis, we propose an effective parameter adaptation
scheme to achieve stable and accurate depth recovery.

II. RELATED WORK

There are mainly two types of mainstream depth cameras:
one is ToF cameras and the other is the structured-light based
depth cameras, e.g., Kinect. The recovery of high quality depth
information from measurements sensed by these devices is
a crucial step for subsequent processing in many computer
vision tasks, and many algorithms have been proposed in
literature. This section briefly reviews the related work.

A. Depth Recovery for ToF Cameras

As shown in Fig. 1(a), the depth map captured by ToF
camera has a much lower resolution than the color image.

Fig. 1. Illustration of RGB-D pairs captured by ToF camera and Kinect:
(a) noisy low-resolution depth map from ToF and high-resolution color image
from the coupled color camera, (b) the depth samples warped from the ToF
view to the color camera view, (c) Kinect color image, and (d) Kinect depth
maps in which structural (random) missing is marked by yellow (blue) ellipse.

Such degradation would impede their practical applications.
It seems impossible to recover high quality depth maps from
severely undersampled versions due to the loss of salient
information around notable discontinuities. However, the depth
information and texture information are two descriptions of
the same scene from different perspectives, and thus present
strong structural correlations [17]. In particular, as shown in
Fig. 1 (a) and (c), discontinuities often simultaneously present
at the same locations in a depth map and the corresponding
(registered) color image, and homogeneous regions in color
image tend to have similar depth. Although the viewpoints
between the depth sensor and image sensor are different,
as shown in Fig. 1(a) and (b), the ToF depth map can be
aligned with the color image via view warping with camera
calibration parameters. Then, the strong structural correlation
between the low-resolution depth map and high resolution
color image can be conveniently exploited. Therefore, the
common wisdom is to couple a color camera with a ToF
camera and to recover high quality depth maps with the help
of the accompanied color images [5], [6], [18]–[20].1

In an early work, Diebel and Thrun [20] proposed a
two-layer MRF to model the correlation between range
measurements and solve the MRF optimization with the
conjugate gradient algorithm. This method is able to improve
the quality of depth maps, but tends to produce oversmooth
results. To reduce oversmoothing, Hannemann et al. [22]
incorporated amplitude values generated by ToF into an
MRF model to improve the quality of interpolation. The
amplitude can be evaluated as a confidence measurement for
the depth values. Lu et al. [23] further extended this work
by designing a data term that fits to the characteristics of
depth maps. Huhle et al. [24] added a third layer to the MRF

1We also note that some methods, e.g., [21], use depth maps only.
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framework [20], where image gradients are encoded as nodes
in the graph. Zhu et al. [25] extended the traditional spatial
MRFs to dynamic MRFs so that both the spatial and the
temporal relationship can be propagated in local neighbors,
improving the accuracy and robustness of depth recovery for
dynamic scenes. Aodha et al. [26] presented an algorithm to
synthetically increase the resolution of a solitary depth image
using only a generic database of local patches. They match
against each low resolution input depth patch, and search
database for a list of appropriate high resolution candidate
patches. The training of data, matching, and fusion are quite
computationally intensive.

Another category for the recovery of ToF depth maps is
to use advanced filters such as bilateral filters and non-local
means (NLM) filters [14], [15], [27]. Garro et al. [28] used
an efficient graph-based segmentation method on color image
to interpolate the missing depth information. Joint bilateral
filtering [12] and its variations are readily available tools
for depth recovery using high quality auxiliary color images
[14]–[16]. Yang et al. [14] used the joint bilateral filtering
method for range images super resolution. Yang et al. [29]
also proposed a hierarchical joint bilateral filtering scheme for
depth map upsampling. Chan et al. designed an adaptive multi-
lateral upsampling filter to further address the noise in depth
measurements [30]. Min et al. [31] proposed a weighted mode
filtering method based on a joint histogram of depth video
and color video. He et al. [13] investigated guided filtering
to perform as an edge-preserving smoothing operator like the
popular bilateral filter. Park et al. [11] used a non-local term to
regularize depth maps and combined with a weighting scheme
that involves edge, gradient, and segmentation information
extracted from high quality color images, but jaggy artifacts
occur in some boundaries. Lu et al. [32] formulated the
filtering process as a local multipoint regression problem,
consisting of multipoint estimation within a shape-adaptive
local support, and aggregation of a number of multipoint
estimates available for each point. It models a zero-order or
linear relation between observed low resolution depth patch
and color patch. However, the low-order model is not accurate
for regions with complex color textures. Liu et al. [33] used a
geodesic distance to compute the filtering coefficients based on
the similarity between pixels. The algorithm is accelerated to a
low computational complexity by dynamic programming. The
geodesic upsampling method provides impressive recovered
results for most areas of depth maps, but also introduces some
annoying artifacts in regions where the associated color image
has rich textures. Ferstl et al. [34] modeled the smooth term
as a second order total generalized variation regularization,
and guided the depth upsampling with an anisotropic diffu-
sion tensor calculated from a high-resolution intensity image,
providing high-quality upsampling results. It is noted that the
moving least squares (MLS) method and its various variants
are powerful in 3D surface fitting [35] and image recov-
ery [36]. MLS schemes are also expected to have promising
performance in depth recovery as evidenced in the comparison
results in Section VI.

Generally, depth recovery schemes based on filtering
techniques are competitive to MRF-based methods in

recovery accuracy, but have lower asymptotic computational
complexities.

B. Depth Recovery for Kinect

Depth maps provided by Kinect contain numerous struc-
tural missing around depth discontinuities due to occlusions
between the build-in infrared projector and the infrared sensor.
This is clearly shown in a typical depth map captured by
Kinect in Fig. 1(d). Moreover, shiny objects or transparent
surfaces can lead to loss of depth information. These defects
correspond to the main degradations of structural depth miss-
ing for occlusion regions and random depth missing on the
background.

For low delay and low complexity, many methods focus on
the enhancement of Kinect depth within the spatial domain.
Abdul Dakkak et al. [37] proposed an iterative diffusion
method that incorporates RGB-D segmentation results to
recover missing depth information. Andrew et al. [38] devised
a fast modified two-pass median filter with dynamic window
scales, which is effective in filling small holes, but cannot
deal with large missing areas. Lai et al. [9] filled missing
depth values by recursively applying a median filter in the
construction of the RGB-D object dataset, but blurring occurs
for large occlusions. Berdnikov et al. [39] used the “deepest
neighbor” method and the simple spatial interpolation method
to handle two different kinds of depth missing. This method
achieves real-time processing, but the recovered depth maps
are not always consistent with the accompanied color image,
particularly around the boundaries between the background
and foreground. We also note that there are some work depart-
ing from the inpainting approach. For example, Yu et al. [40]
proposed refining noisy depth map in the framework of shape-
from-shading.

Noting that depth maps along the temporal present strong
correlations, another category is to use temporal information
besides spatial information. S. Lee et al. [8] filled out the
missing areas by an image inpainting algorithm [41], and
extended the joint bilateral filter to the joint multilateral
filter to improve depth quality and temporal consistency.
Matyunin et al. [42] proposed a depth restoration method via a
simple temporal filtering scheme. Camplani and Salgado [43]
reduced the depth noise with a joint-bilateral filter on the
spatial domain and repaired the depth value fluctuation on the
temporal domain. These methods mentioned above use both
the spatial and temporal information for depth recovery, but
quality of the filtered depth maps are not satisfactory around
depth discontinuities.

III. DEGRADATION MODES AND AR MODEL

A. Degradation Modes of Depth Maps

Current depth capturing systems are far from perfect.
A captured depth map is a degraded version of the underlying
groundtruth. Let d and d0 denote the vector form of the under-
lying perfect depth map and the captured one, respectively. The
observation model for depth capturing is described as

d0 = Pd + n, (1)
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Fig. 2. Prediction efficiency for four AR predictors: (a) the associated color image, (b) the input depth map, and prediction results of AR predictors constructed
by (c) average filter, (d) Gaussian filter, (e) bilateral filter, and (f) our proposed filter. The prediction error (MAD) between the predictions in (c), (d), (e) and
(f) against the original depth maps are 3.992, 3.131, 0.129, and 0.051, respectively.

where P represents the observation matrix and n is the
introduced additive noise.

There are mainly four types of degradations: undersam-
pling, random depth missing, structural depth missing, and
pollution with additive noise. For the former three ones, the
observed depth map d0 has a smaller number of elements
than d and P is a flat matrix to identify valid pixels with
depth values. However, P has different structures for different
degradation modes. For the degradation of undersampling,
P is a sampling matrix; while in structural and random
missing, P is constructed from an identity matrix by removing
those rows associated with the depth-missing pixels. Depth
capturing systems may suffer from different combinations of
the degradation modes. As shown in Fig. 1(a), the depth map
captured by ToF camera is undersampled (lower resolution
than the accompanied color images), and polluted by noise.
After viewpoint registration, the warped depth map contains
disoccluded regions around object boundaries, and thus suffers
from degradation of structural depth missing. As shown in
Fig. 1 (d) (see also more examples in figures in Section VI-B
on experiments), the Kinect depth map contains both random
and structural missing degradations. Our method is to recover
high quality depth maps from low quality observations, and
all the four kinds of degradations are handled in the proposed
unified depth recovery framework.

The observation model (1) considers degradation modes that
commonly present in depth sensing technologies. It should be
noted that there are other sources of degradation in real depth
sensors. Related investigations, see [4], [44], show that depth
cameras generally have some systematic errors for various
reasons, e.g., anharmonic LED modulation, integration time
offset, pixel offsets, intensity dependent response, and different
Lambertian reflectance properties. It is possible to consider
these degradations in the observation model. In applications
using depth cameras, these complex systematic errors are
usually calibrated and compensated as a preprocessing step
before subsequence processing [44], [45].

B. AR Model of Depth Maps

The AR model has been applied in many image process-
ing applications, such as detecting and interpolating missing
areas in image sequences [46], super-resolution, forecasting of
spatial-temporal data [47], [48], as well as backward adaptive

video coding [49]. This demonstrates that the simple AR
model is versatile for many applications as long as the AR
predictors are properly designed.

As shown in Fig. 7, Fig. 11, and Fig. 13, depth maps for
generic 3D scenes contain mainly smooth regions separated
by curves. The AR model can well describe such type of
2D signals. The key insight is that a signal can be regenerated
by the signal itself. Denote by D a depth map, and Dx
the depth value at location x. The predicted depth map
D̃ by the AR model from the depth map D is expressed
as

D̃x =
∑

y∈N (x)

ax,y Dy, (2)

where N (x) is the neighborhood of pixel x and ax,y denotes
the AR coefficient for pixel y in the neighborhood N (x). The
accuracy of the AR model can be measured by the difference
between D and D̃, e.g., mean absolute difference (MAD) or
root mean squared error (RMSE).

To verify the fitness of the AR model for depth maps,
we check the prediction errors between the predicted depth
maps and the groundtruth for a set of test depth maps. Four
AR predictors are tested: an average filter, a Gaussian filter,
a bilateral filter and our proposed filter, all with a 11 × 11
neighborhood. As shown in Fig. 2, all the four filters have
good prediction for smooth regions. However, when coming to
discontinuities, we can see that the results of the average filter
and gaussian filter are apparently of low quality and subject
to oversmoothing around the edges. Since the proposed filter
adapts the AR model to the nonlocal structures of signals,
it almost regenerates the depth map: the average prediction
error in MAD is only 0.051/pixel. These results demonstrate
that the AR model is quite effective in modeling the depth
maps, and thus encourage the application of this model to the
recovery of depth maps.

Depth-color pairs have strong correlation in terms of geo-
metrical structures, and are often acquired and used together
[4], [20]. As shown in Fig. 2(a) and (b), edges in the depth
map have their counterparts in color image. This suggests that
the locations of edges in depth maps can be inferred from the
accompanied color images, and motivates the proposed color-
guided AR model for depth recovery from low resolution and
incomplete observations.
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IV. COLOR-GUIDED AR MODEL FOR DEPTH RECOVERY

A. Depth Recovery Based on AR Model

Denote by D0 the observed depth map and O the set of
pixels with observed depth values. Given the observed depth
map D0, we propose the following depth recovery model
based on AR:

min
D

Edata
(

D, D0) + λEAR(D), (3)

where Edata(D, D0) is the data term to make the recovered
depth consistent with the observation, EAR(D) is the AR term
to impose AR model on the recovered depth map. The data
term and the AR term are weighted by λ.

The data term is expressed as

Edata
(

D, D0) �
∑

x∈O

(
Dx − D0

x
)2

, (4)

and the AR model is incorporated into the depth recovery as
the AR term

EAR (D) �
∑

x

⎛

⎝Dx −
∑

y∈N (x)

ax,y Dy

⎞

⎠
2

, (5)

where the AR coefficient ax,y is defined according to both
depth and color information in the following section. The
proposed method has a similar form, but is a departure
essentially, to the work in [11]. In [11], in addition to color
information, segmentation and edge saliency are taken into
account in confidence weights. Although such features can
be readily incorporated in our recovery model, we found that
the elegant AR model can well describe the characteristics of
depth maps. Therefore we insist on the low level processing
in depth recovery, and retain the simplicity of the model.

As shown in Section III-B, the AR model is powerful in
describing depth maps only when the AR coefficients are
properly designed. However, an accurate AR model is difficult
to infer from only the degraded depth map D0. Since the
depth-color pairs have strong structural correlations, the infor-
mation loss due to depth degradation can be complemented
by the accompanied color image. To achieve high quality
depth recovery, we design pixel-wise adaptive AR predictors in
Section IV-B using both the initial depth map and the auxiliary
color image.

B. Color-Guided AR Model

As demonstrated by the simulation results in Section III-B,
the AR model has very different performance with differ-
ent AR predictors. The common way in AR-based image
processing is to divide images into small units and each
unit shares an AR predictor. However, we observe that the
AR model cannot provide sufficient adaptivity when each
unit contains considerable variations. Therefore, we design
pixel-wise adaptive AR predictors: an AR predictor {ax,y},
y ∈ N (x) is constructed for each pixel x by considering both
the depth and color information.

A depth map is reliably recovered with the optimal AR
predictors, which can be derived only when the depth map is
available. To break this chicken-egg dilemma, we design AR

Fig. 3. Illustrations for contrast between the traditional predictors and
our proposed AR predictors: (a) patch-based neighborhood (b) shape-based
neighborhood.

predictors using the available depth map and the accompanied
color image. Note that the observed depth map D0 is not
directly applicable due to degradations such as the undersam-
pling or depth missing. Denote by D̂ the rough estimated depth
map obtained by bicubic interpolation from D0. Represent the
accompanied color image with I = {I i , i ∈ C}, where I i is
the intensity of the color channel with index i and C is the
index set of color channels in a certain color space. We had
investigated three color spaces (RGB, YUV, and Lab). All
three color spaces yield similar results, and we choose the
YUV color space due to its slightly better performance, i.e.,
C = {Y, U, V } in our implementation. The AR coefficient ax,y
consists of two terms:

ax,y = 1

Sx
a D̂

x,ya I
x,y, (6)

where Sx is the normalization factor, a D̂
x,y and a I

x,y are the
depth term and color term, respectively.

The depth term a D̂
x,y is defined on the initial estimated depth

map D̂ by a range filter:

a D̂
x,y = exp

(
−

(
D̂x − D̂y

)2

2σ 2
1

)
, (7)

where σ1 is the decay rate of the range filter. Qualitatively,
a D̂

x,y has a large value if D̂x is close to D̂y. This term is
also designed to avoid incorrect depth prediction due to depth-
color inconsistency: pixels of the same depth layers may have
very different colors; pixels of similar colors may belong to
different depth layers.

The color term a I
x,y is designed to take benefit of the

correlations in the depth-color pair. Edges in a depth map co-
occur with their counterparts in the accompanied color image.
The color term a I

x,y should be able to prevent the AR model
from predicting across depth discontinuities. Based on the non-
local principle, we propose the following color terms :

a I
x,y = exp

(
−

∑
i∈C ||Bx ◦

(
P i

x − P i
y

)
||22

2 × 3 × σ 2
2

)
, (8)

where σ2 controls the decay rate of the exponential function,
P i

x denotes an operator that extracts a w × w patch centered
at x in color channel i , “◦” represents the element-wise
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Fig. 4. Illustrations for the color term of AR predictors: (a) two pixels with
their neighborhoods, (b) and (c) present the enlarged versions (top row) and
AR predictors for the two pixels constructed from bilateral filter (2nd row),
standard NLM filter (3rd row), and the proposed filter (bottom row).

multiplication. The bilateral filter kernel Bx is defined in the
extracted w × w patch:

Bx(x, y)=exp

(
−||x − y||22

2σ 2
3

)
exp

(
−

∑
i∈C(I i

x − I i
y)

2

2 × 3 × σ 2
4

)
, (9)

where σ3 and σ4 are parameters of the bilateral kernel to adjust
the importance of the spatial distance and intensity difference,
respectively.

The difference between the proposed filter in the color
term and the standard NLM filter is that the proposed one
uses a bilateral kernel to weight the distance of local patches
while the standard one uses a Gaussian kernel. The bilateral
kernel Bx has a strong response for pixels of similar intensities
to x, and hence carries the shape information of local image
structures. This extends the NLM filter from patch-based to
shape-based in measuring the resemblance of local structures,
and has a significant impact on the structure of AR predictors
for pixels around edges. As shown in Fig. 3, two homogeneous
regions are separated by smooth curves and x is close to
a curve. To construct the AR predictor for x, the similarity
between x and each pixel y in the neighborhood Nx is
evaluated. Constrained by the patch structure, the standard
NLM filter produces large coefficients only for pixels that
are parallel to the edge, e.g. y1 and y2, and produces small
coefficients for other pixels, such as y3, even though they
have the same intensity as x. On the contrary, our bilateral-
weighted NLM filter has a shape-adaptive neighborhood, and
increases opportunities to exploit more correlations for pixels
around discontinuities. This is illustrated in Fig. 4. With the
shape-adaptive neighborhood, the proposed filter produces an
equally large coefficient for y3 as for y1 and y2. As verified
later in Section V, small supports of AR predictors would
underdetermine the recovery system and can lead to fail
recovery for related pixels; while the proposed AR predictors
of larger supports form a more well-determined system, and
achieve stable recovery.

V. STABILITY ANALYSIS AND PARAMETER ADAPTATION

The depth recovery system often works under perturbations:
1) observation perturbation: sensed depth measurements may
contain some noise; and 2) system perturbation: AR predictors
can be affected by highly-textured regions of the color image,
which can make the system ill-conditioned. So, it is quite nec-
essary to analyze the behavior of the depth recovery method
under perturbations for stable and high-quality recovery.

In this section, we formulate the quadratic minimization
(3) into a quadratic programming and analyze the stability
of the recovery model by the conditioning of linear systems
(Section V-A). Then we investigate how the parameters
affect the system stability, and design a parameter adaptation
scheme to achieve stable and high quality depth recovery
(Section V-B).

A. Stability of the Depth Recovery System

The depth recovery model (3) are quadratic with respect
to D. Therefore, it can be reformulated as an unconstrained
quadratic programming and analyzed with the conditioning of
linear systems. Let d and d0 be the vector form of D and D0,
respectively. Then, the depth recovery model is equivalent to
the following minimization with respect to d:

min
d

‖d0 − Pd‖2
2 + λ‖d − Qd‖2

2, (10)

where P is the observation matrix and Q is the prediction
matrix corresponding to AR predictors {ax,y}. In (10), the first
term is the data term and the second term is the AR term.

The unconstrained quadratic programming (10) is convex,
and its global minima can be obtained by solving the
first-order conditions:

(
P� P + λ(I − Q)� (I − Q)

)

︸ ︷︷ ︸
H

d = P�d0
︸ ︷︷ ︸

c

, (11)

where H is a squared matrix. Therefore, the stability of the
depth recovery model can be analyzed via the conditioning
of linear systems. Denote the condition number of H by
κ := σmax/σmin , where σmax and σmin are the maximal and
minimal singular values of H , respectively. Denote by δc the
noise in c, δH the perturbation in H , and δd the resulting
error in d . The sensitivity of the linear system can be obtained
by considering the perturbed system: (H + δH) (d + δd) =
c+δc [50]. The sensitivity of the linear system is described by:

‖δd‖
‖d‖ ≤ κ

(‖δH‖
‖H‖ + ‖δc‖

‖c‖
)

, (12)

which shows that the relative error of the recovery depth
map is proportional to the relative noise in H and c up
to a magnification of the condition number κ . When κ is
large, a small relative change in either H or c can cause
a large change in d , which would severely degrade the
performance of depth recovery. Therefore, the depth recovery
model should be carefully designed so that the matrix of
the resulting linear system has a low condition number. In
the linear equations of first-order conditions, the coefficient
matrix is the combination of the sampling matrix P , the
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Fig. 5. Condition number κ of the recovery system (left vertical axes in blue) and the recovery quality in MAD (right vertical axes in red) with respect to
the parameters: (a) λ, (b) σ1, (c) σ2, (d) σ3, and (e) σ4. For σ1, σ2, and σ4 that significantly affect the recovery quality, some representative recovered depth
maps are presented for comparison and analysis.

prediction matrix Q, and their transposes. Note that P� P is
a highly deficient diagonal matrix, e.g., the rank is only the
1/64 of the full rank for 8 × 8 super-resolution. Therefore,
the invertibility and stability of the linear system (11) are
determined by the prediction matrix Q governed by five
parameters: λ and {σi }4

i=1. The specific influences of the five
parameters on the stability as well as the parameter adaptation
are detailed in the following section (Section V-B).

B. Parameter Adaptation

To test the influence of the parameters on the stability and
the recovery quality, we randomly extract a large number
of patches from degraded depth maps, and perform 8 × 8
super-resolution (other upsampling rates also yield the same
conclusions). Instead of traversing the whole parameter space,
we perform depth recovery by varying each parameter while
setting other parameters at fixed reasonable values: λ = 0.01,
σ1 = 2, σ2 = 9, σ3 = 5, and σ4 = 2. The varying range for
each parameter is [0.01, 100] which covers the interest fraction
of the parameter space. For each test point, we evaluate the
condition number of the resulting matrix H and the quality of
recovered depth measured in MAD. Results for four test depth-
texture pairs are presented in Fig. 5. We analyze the sensitivity
of each parameter as well as its adaptation as follows.

1) λ: This parameter adjusts the importance of the data term
and the AR term. Note that both P� P and (I − Q)� (I − Q)
are rank-deficient matrices. Either a very small or a very large

λ will produce H of a large condition number. Fig. 5 shows
that λ ∈ [0.01, 100] yield condition numbers lower than 105,
which is stable for the recovery system. We observe that the
MAD of the recovered depth is monotonically increasing with
respect to λ. Therefore, we set λ = 0.01 in our implementa-
tion.

2) σ1: In the depth term, the weights for candidates are
assigned according to the closeness of their values to the
reference D̂x . σ1 controls the tolerance for two different depth
values to be considered close enough to assign a significant
weight. As shown in Fig. 5, the condition number would
dramatically increase when σ1 is small (e.g., below 0.5), and
depth around edges cannot be recovered due to the instability
of the recovery system. We also observe that too large a σ1
tends to produce oversmooth results. Therefore, we design an
adaptive scheme: σ1 is assigned to a large value for smooth
depth regions to include more depth values for stable and
accurate prediction, and is assigned to a small value for regions
around depth discontinuities to avoid prediction across depth
edges. To this end, σ1 is determined by the local smoothness:

σ1(x) = a1 + b1 exp
( − c1‖� D̂‖[x]

)
, (13)

where ‖� D̂‖[x] denotes the gradient magnitude of D̂ at x;
a1 and b1 determine the lower and upper bounds of σ1, and
are set at 0.5 and 2.5, respectively; c1 controls the decay rate
of the exponential mapping, and is set at 10.
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3) σ2: The most important role of the color term is to
provide clues of depth edges lost due to undersampling based
on the assumption of strong structural correlation between
color images and the associated depth maps. Being similar
to σ1 in the depth term, σ2 in the color term is the tolerance
for two patches to be considered similar enough to assign a
significant weight. The behavior of the stability and recovery
performance with respect to σ2 is quite similar to those with
respect to σ1. The recovery system become instable when σ2
is very small, and the depth recovery fails for pixels around
depth discontinuities. Also, σ2 should be large in flat depth
regions to have stable prediction and small around depth edges
to avoid prediction across discontinuities. Therefore, σ2 is
adapted according to the same strategy as for σ1:

σ2(x) = a2 + b2 exp
( − c2‖� D̂‖[x]

)
, (14)

where a2, b2, and c2 are parameters. Note that color images
are much more spatially-variant than depth maps. The lower
and upper bounds of σ1 are adapted to local characteristics of
the color image with the following piecewise function:

⎧
⎨

⎩

a2 = 1.9, b2 = 3.8,
a2 = 4.8, b2 = 2.9,
a2 = 6.7, b2 = 2.9,

‖�I‖[x] < 5,
5 ≤ ‖�I‖[x] < 8,
‖�I‖[x] ≥ 8,

(15)

where ‖�I‖[x] is the gradient magnitude of the Y-channel
image at x. The values of a2 and b2 in (15) are obtained
by numerically fitting the two parameters and the gradient
magnitude to have the best recovery performance.

4) σ3: The two parameters σ3 and σ4 of the bilateral
kernel in Formula (9) control the shape and the size of the
non-local patches. As shown in Fig. 5, the conditional number
and recovery accuracy with respect to σ3 are quite stable. For
example, the fluctuation of MAD is usually within 0.01 for
smooth regions and is within 0.15 for depth regions around
edges. Therefore, σ3 is fixed at 5 in our implementation.

5) σ4: In the bilateral kernel (9), σ4 controls the support
of the bilateral kernel. As σ4 increases, the bilateral kernel
Bx to define the shape of the patch tends to have equal
weights within the w×w window. This will reduce the shape-
adaptive patch to a squared patch, and thus the proposed non-
local kernel degenerates into a conventional non-local mean
filter. As shown in Fig. 3 and Fig. 4, for pixels around edges,
the squared patch produces AR predictors of small supports.
This would lead to the instability of the recovery system. As
verified by the results shown in Fig. 5, the conditional number
increases rapidly when σ4 is larger than 5; Accordingly, the
recovery performance is stable when σ4 < 10, but will severely
drop beyond this range. When σ4 has large values, depth values
cannot be reliably recovered due to the ill-conditioning of the
system. Therefore, we set σ4 = 3 in our implementation.

6) Neighborhood Size in AR Predictors: We investigate the
influence of neighborhood size Nx on the recovery quality
and computational complexity. To this end, low resolution
depth patches are recovered with various neighborhood size,
i.e., 3 × 3, 5 × 5, . . . , 17 × 17. As shown in Fig. 6, as the
neighborhood size becomes larger, more samples are included
into AR prediction, yielding more stable recovery. However,
the recovery accuracy does not significantly increase as the

Fig. 6. Influence of neighborhood size on (a) recover quality (MAD) and
(b) computational complexity in normalized time (relative to the 3 × 3 case
normalized to one).

neighborhood size beyond the size of 11 × 11. Moreover,
increasing the support size will also increase complexity.
The computation is approximately linear with respect to the
neighborhood size. Therefore, the neighborhood size of 11×11
is chosen in our implementation.

VI. EXPERIMENTS AND RESULTS

Our method is first evaluated on Middlebury datasets with
various synthetic degradations and compared with several
existing methods. Then, our method is applied on two real
depth sensing systems to obtain high quality depth maps. All
the datasets, results, and recovered depth maps are available
in the project website.2 We direct interested readers to the
website for more results on real datasets.

A. Experiments on Datasets With Synthetic Degradations

Six datasets, Art, Book, Moebius, Reindeer, Laundry, and
Dolls from the Middlebury’s benchmark [51] are used for
evaluation. Three kinds of typical degradations are simu-
lated: undersampling, ToF-like degradation (undersampling
with noise), Kinect-like degradation (structural missing along
depth discontinuities and random missing in flat regions).
Our method is compared with ten state-of-the-art methods
(if applicable): Bicubic interpolation, MRF-based method
(MRF) [20], improved MLS (IMLS) [36], joint bilat-
eral filtering on cost volumes (JBFcv) [14], guided image
filtering (Guided) [13], edge-weighted NLM-regularization
(Edge) [11], patch-based synthesis (PS) [26], cross-based
local multipoint filtering (CLMF) [32], joint geodesic fil-
tering (JGF) [33], total generalized variation (TGV) [34].
Upsampling results (Table I) on Art, Book, and Moebius
for MRF, JBFcv, Guided, Edge, and TGV are quoted from
[11] and [34]. The results for MRFs [20] and JBFcv [14] on
other three RGB-D pairs were not available; For the Patch-
based synthesis (PS) method [26], the released patch database
trained for 4× upsampling is poor for other upsampling rates.
Therefore, we only present its results at 4× upsampling. The
rest results in Table I, and results in Table II and Table III
are generated by the provided codes (if have) or our imple-
mentations. We improve the MLS scheme [36] by extending
the Gussian weighting to the cross bilateral weighting [7]
to avoid MLS fitting across depth discontinuities, hence
named improved MLS (IMLS). The CLMF method [32]

2http://cs.tju.edu.cn/faculty/likun/projects/depth_recovery/index.htm
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TABLE I

QUANTITATIVE UPSAMPLING RESULTS (IN MAD) FROM UNDERSAMPLED DEPTH

MAPS ON MIDDLEBURY DATASETS AT FOUR SUBSAMPLING RATES

TABLE II

QUANTITATIVE DEPTH RECOVERY RESULTS FROM TOF-LIKE DEGRADATIONS

(UNDERSAMPLING WITH NOISE) AT FOUR SUBSAMPLING RATES

has two versions: CLMF0 and CLMF1 for zero- and first-
order polynomial model, respectively. In visual comparisons
(Fig. 7, Fig. 8, and Fig. 10), regions highlighted by rectangles
are enlarged, and the error maps are shown by subtracting
between recovered depth and ground truth, for easy visual
inspection.

1) Undersampling Degradation: Depth recovery results
(in MAD) at four upsampling rates for each RGB-D pair are
reported in Table I. For our method, we present the results
with two configurations in Table I: 1) Ours_FP uses fixed
parameters that are manually tuned to avoid instable recov-
ery and also to obtain the best recovery performance, and
2) Ours_AP adopts the parameter adaptation schemes in
Section V-B. As shown in Table I, our method nearly obtains
the lowest MAD for most cases (especially for high upsam-
pling rates of 8× and 16× upsampling), which demonstrates
its effectiveness. The Edge method [11] provides slightly
better results for low upsampling rates on Reindeer, Laun-
dry, and Dolls. We also observe that the PS method [26]
achieves slightly better results for Book and Moebius at 4×
upsampling. However, it needs to train patch database at
each upsampling rate, and its computational complexity is
quite high: it takes about 40 minutes to super-resolve a depth
map.

TABLE III

QUANTITATIVE DEPTH RECOVERY RESULTS FROM KINECT-LIKE

DEGRADATIONS (STRUCTURAL MISSING AND RANDOM MISSING)

Fig. 7 shows 8× upsampled depth maps for Dolls and
Art. Upsampled depth maps by three state-of-the-art methods,
IMLS [36], Edge [11] and JGF [33], are also shown for
comparison. The Edge method generates comparable results
to ours for Moebius, but introduces some jaggy artifacts along
edges. The JGF method provides promising quality for most
areas of depth maps, but introduces annoying artifacts in
regions where the associated color image has rich textures,
e.g., the crayon of Art. The visual comparison show that our
method not only achieves low average recovery errors, but also
provides visually consistent results.
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Fig. 7. Visual quality comparison for depth upsampling on two Middlebury RGB-D pairs: (a) color image and depth ground truth, depth maps upsampled
(8×) by (b) IMLS [36] (MAD: 0.61; 1.04), (c) Edge [11] (MAD: 0.56; 1.03), (d) JGF [33] (MAD: 0.59; 0.78), and (e) our method (MAD: 0.50; 0.64).
The first and second MADs for each method are for Dolls and Art, respectively.

2) ToF-Like Degradation: To simulate the ToF-like depth
degradation, we first add Gaussian noise with a variance
of 25 to the original datasets, and then downsample the
polluted datasets at the four upsampling rates. Quantitative
depth recovery results of our method and other eight methods
are summarised in Table II. Our method obtains the lowest
MAD for all cases. The JGF method does not perform as
well as in pure upsampling due to the lack of denoising
capability. The IMLS, Guided, Edge, PS, and CLMF0 methods
provide comparative results thanks to their inherent denoising
capabilities. The minimization of total variation in TGV is
powerful in suppressing noise, and therefore yields promising
results. To compare visual results, Fig. 8 presents depth maps
on Book and Reindeer recovered by Bicubic, IMLS, Edge,
TGV, and our method. The depth maps recovered by two fitting
methods, Bicubic and IMLS, still contain significant redidual
noise. The Edge method tends to over-smooth out more useful
signal components. The TGV method provides cleaner depth
maps, but fails to preserve tiny structures such as the ears
of the reindeer. Our method is able to effectively remove

noise in upsampling while avoiding contaminating depth
content.

3) Kinect-Like Degradation: To simulate Kinect-like degra-
dation, structural missing is created along depth discon-
tinuities, and random missing is generated in flat areas.
Depth maps with Kinect-like degradation are presented in
Fig. 9. Recovery results from Kinect-like depth degradation
are reported in Table III. Five methods applicable for hole
filling are compared: Bicubic, IMLS [36], joint bilateral fil-
tering (JBF) [12], Guided [13], and CLMF0 [32]. As shown
in Table III, our method obtains the lowest MAD for all
cases, which shows its effectiveness in handling Kinect-like
degradation. For visual comparison, depth maps recovered
by IMLS, JBF, CLMF0, and our method are presented in
Fig. 10. All methods provide good recovery performance for
random missing in flat regions. However, most methods have
difficulties in correctly recovering sharp discontinuities within
missing areas. Our method is able to recover better geometrical
structures as suggested by the error maps.
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Fig. 8. Visual quality comparison for recovered depth maps from ToF-like degradation (8× upsampling with intense Gaussian noise): depth maps are
recovered by (a) Bicubic (MAD: 3.51; 3.82), (b) IMLS [36] (MAD: 2.68; 2.86), (c) Edge [11] (MAD: 1.81; 2.40), (d) TGV [34] (MAD: 1.49; 1.75), and
(e) our method (MAD: 1.15; 1.29). The two MADs for each method are for Book (first) and Reindeer (second), respectively.

Fig. 9. Depth maps contaminated by simulated Kinect-like degradations.

B. Experiments on Real Datasets

We apply our method on two types of depth sensors to
achieve high quality depth recovery from the low quality
sensor measurements.

1) ToF Depth Maps: We evaluate our method on datasets
captured by two ToF-based RGB-D sensing systems: a) one is
our depth-color camera rig and b) the other rig is constructed
by Ferstl et al. [34].

a) Our RGB-D sensing system: Our depth camera rig
is constructed by mounting a high resolution Point Grey
Flea2 color camera on a PMD[vision] CamCube3 ToF depth
camera. The ToF camera has a resolution of 200 × 200,
and the resolution of color camera is set at 640 × 480 to
obtain nearly the same field of view as the ToF camera.
To compensate misalignment of different viewpoints, depth
maps are warped to the viewpoint of the color camera using
intrinsic parameters and extrinsic parameters for both cameras
computed by the camera calibration module in the OpenCV
library [52]. We first reject outliers using the associated
amplitude images as confidence levels, and then rectify the
intensity-dependent error with a pre-measured look-up table,
similar to the approach in [45].

Two RGB-D pairs captured by our depth-color rig are shown
in Fig. 11(a). We compare our method on these datasets
with three representative methods: CLMF0 [32], JGF [33],
and IMLS [36]. As the recovered depth maps shown in
Fig. 11 (b)∼(d), CLMF0 and JGF tend to generate jaggy
artifacts due to rich color textures and the discontinuity
mismatch between the color images and depth maps, while
IMLS brings a little bit over-smoothing around edges although
we introduce a cross bilateral weighting for fair comparison.
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Fig. 10. Visual quality comparison for recovered depth maps from Kinect-like degradations: (a) degraded depth maps, depth maps recovered by (b) IMLS
(MAD: 0.76; 0.90), (c) JBF [12] (MAD: 0.76; 0.84), (d) CLMF0 [32] (MAD: 0.74; 1.01), and (e) our method (MAD: 0.69; 0.58). The two MADs for each
method are for Dolls (first) and Art (second), respectively. For visual inspection, regions highlighted by rectangles are enlarged, and the error maps are shown
by subtracting between recovered depth and ground truth.

By inspecting the color-depth accordance, our method achieves
quite promising recovery quality particularly around depth
discontinuities.

b) ToFMark RGB-D sensing system: We also test on
the ToFMark datasets [53] consisting of three RGB-D pairs,
Books, Shark, Devil, with ground-truth depth maps. The depth
maps are of size 120 × 160, and the intensity images are of
size 610 × 810, suggesting approximately 6.25× upsampling.
Table IV presents quantitative results. The recovery error is
measured by MAD in mm. Our method also obtains the lowest
recovery error for all the three test cases compared with other
seven classic or state-of-the-art methods. In Fig. 12, it is
observed that depth maps recovered by Bicubic, IMLS, and
CLMF0 still contain considerable amount of noise, while those
recovered by TGV and the proposed method are much more
clear. The TGV method in some cases introduces annoying
artifacts in regions where the associated intensity image has
rich textures, e.g., the bottom of cup and the edges of the book
in Books. By closer inspection, TGV is superior in recovering
slant planar surfaces that can be well characterized by the total
variation minimization, while our method shows advantages
in recovery high-order surfaces thanks to the powerful color-
guided AR model.

2) Kinect Depth Maps: Microsoft Kinect is an integrated
sensor array for natural user interaction, consisting of a depth

TABLE IV

QUANTITATIVE DEPTH UPSAMPLING RESULTS

FOR ToFMark DATASETS

camera and a color camera. The captured depth maps and
color images are of size 640 × 480, and registered to the
same viewpoint. We suppressed fake-color artifacts in color
images by re-demosaicing the color images with an advanced
method [54]. This experiment uses five RGB-D pairs, two of
which are captured in our lab while the other three are from
the NYU RGB-D dataset [55].

Fig. 13 shows depth recovery results for two RGB-D pairs:
one is captured in our lab while the other is from the NYU
RGB-D dataset [55]. It is observed that the depth maps
contain lots of holes around depth discontinuities due to occlu-
sions. This corresponds to the case of synthetic datasets with
structural missing areas in Section VI-A. Note that methods
designed for depth upsampling are not directly applicable to
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Fig. 11. Depth recovery results for our depth-color camera rig: (a) RDB-D pairs, recovered depth maps by (b) CLMF0 [32], (c) JGF [33], (d) IMLS [36],
and (e) our method. Captured depth maps are overlaid on the color images to save space.

Fig. 12. Visual quality comparison on depth recovery for Books from ToFMark datasets: (a) Bicubic, (b) IMLS [36], (c) CLMF0 [32], (d) TGV [34], and
(e) our method.

the recovery of Kinect degradations. Therefore, we compare
with the IMLS [36] and JBF [12]. JBF produces annoying
jaggy artifacts around depth discontinuities, while IMLS tends
to smooth out sharp depth edges as in previous experiments.
Our method outperforms the two methods, particularly in
preserving prominent geometrical structures in depth maps.

The results in this section demonstrate that the proposed
method is versatile for both the two types of mainstream depth
cameras, and is applicable in various applications involved
depth sensing.

C. Discussions and Future Work

1) Taxonomy-Based Discussions: Analogous to the taxon-
omy for stereo matching [1], most depth recovery methods

can be classified into two categories: the global methods
and local methods. Representatives of global methods include
MRF-based methods [20], [23], [25], the edge-based NLM
regularization [11], and our method. Most local methods use
joint filtering schemes [13]–[16], [27], [29], [32], [33].

The global methods have very different behaviors from
the local ones regarding the interactions between observed
pixels and the latent ones. In global methods, there are
closed-loop interactions between observed pixels and latent
pixels. For example, in solving the MRF energy function,
messages iteratively exchange between neighboring pixels.
Our AR-based method also has a similar mechanism as all
pixels including the observed ones should conform to the
autoregression. We call this type of iterations as closed-loop
prediction in global methods. On the contrary, in local filtering
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Fig. 13. Depth recovery results for Kinect datasets: (a) RGB-D pairs, recovered depth maps by (b) IMLS [36], (c) JBF [12], and (d) our method. The RGB-D
pair in the top row is captured in our lab, while the other is from the NYU RGB-D dataset [55].

methods, latent pixels the one-hit prediction of neighboring
observed ones, which is open-loop prediction. The closed-loop
prediction generally achieves better performance than open-
loop prediction with the same prediction scheme. However,
in literature, local filtering schemes usually outperform global
methods. The reason may be that prediction schemes in
previous global methods are not so flexible and adaptive as
those in local methods. Our work is a good example to show
the superiority of global methods if the inherent predictors
are properly designed.

However, the potential superiority of (closed-loop) global
methods comes at the price of higher computational complex-
ity than the (open-loop) methods, as their names imply. Gen-
erally, the running times of global methods are at the scale of
100 ∼ 101 minutes. For example, the MRF optmization in [26]
needs 12.5 minutes for 4× upsampling of a 200 × 200 depth
map. The quadratic optimization based method in [11] takes
nearly half minutes for 8× upsampling to size of 1376×1088.
There are two time-consuming parts in our methods: nonlocal
filtering in the construction of AR predictors, and quadratic
optimization as in [11]. Each has the similar computational
complexity. The plain Matlab implementation of our method
takes two minutes on average to super-resolve a low-resolution
depth map to the resolution of 1376×1088, being independent
of upsampling factors. A preliminary GPU version takes 2.8
seconds on average in a desktop (i5 3GHz CPU and 4GB
RAM) with an NVIDIA Tesla 2050 GPU card. For the
local filtering methods, the running time is at the scale of
100 ∼ 101 seconds. For example, the guided filter [13] (C++
implementation) takes about 0.48s to filtering a magepixel
color image; and the CLMF method [32] takes about 0.50
seconds in matching a stereo pair of size of 384 × 288.
Our purpose here is not to give a precise comparison, but to

grasp the scale of required computation for these two types of
methods. Clearly, we observe that the local filtering methods
use far less computation than global methods. An interesting
point is to develop approximate algorithms of global methods
to enjoy both the high accuracy of global methods and low
complexity of local filtering methods.

2) Future Work: Depth recovery for a single frame is
relatively well-investigated over the past few years. The
remaining challenges includes: 1) accurate recovery of shining
and transparent regions; 2) good complexity-quality tradeoff
(as discussed above), and 3) temporally-coherent depth video
recovery (e.g., the flicking issue). The first two have not been
seriously addressed in the literature. Regarding depth video
recovery, there have been some work to consider spatial-
temporal recovery of depth squences [25], [31], [56].

VII. CONCLUSION

This paper proposes a novel framework to recover depth
maps from low quality measurements with various types of
degradations. We show that depth maps are well described by
the AR model if the AR predictors can adapt to the charac-
teristics of depth maps. Based on this observation, we design
pixel-wise adaptive AR predictors using both the depth map
and the accompanied color image. The depth map is recovered
by minimizing AR prediction errors subject to the observation
consistency. We show that the proposed depth recovery method
is equivalent to a linear system, and its stability is analyzed
by the conditioning of the linear system. To achieve stable
and accurate depth recovery, the parameters are adaptively set
according to the local structures of the depth maps and the
accompanied color images. Experiments demonstrate that our
method achieves high quality depth recovery from low quality
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versions with various degradation. Experiments on two real
systems demonstrate that our method is versatile for various
depth capturing systems such as ToF cameras and Kinect.
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