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a b s t r a c t

This paper proposes a new video super-resolution method based on feature-guided
variational optical flow. The key-frames are automatically selected and super-resolved
using a method based on sparse regression. To overcome the blocking artifacts and deal
with the case of small structures with large displacement, an efficient method based on
feature-guided variational optical flow is used to super-resolve the non-key-frames.
Experimental results show that the proposed method outperforms the existing bench-
mark in terms of both subjective visual quality and objective peak signal-to-noise ratio
(PSNR). The average PSNR improvement from the bi-cubic interpolation is 7.15 dB for four
datasets. Thanks to the flexibility of designed automatic key-frame selection and the
validness of feature-guided variational optical flow, the proposed method is applicable to
various practical video sequences.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Video super-resolution is a hot topic in computer vision
and video processing [1–4]. In the case of video super-
resolution, almost all of the approaches are based on
image super-resolution methods. For the last few decades,
many image super-resolution methods have been devel-
oped to display high quality images and provided a
remarkable progress.

With the development of image super-resolution meth-
ods, video super-resolution approaches are basically clas-
sified into three categories: (1) using the single image
super-resolution approaches to super-resolve each video
frame independently; (2) constructing the high-resolution
frames using motion compensation techniques and the
information extracted from multiple views of the same
@tju.edu.cn (K. Li),
object along frames (usually known as reconstruction-
based methods) [5–9]; and (3) generating the high-
resolution frames using codebooks derived from key-
frames in mixed-resolution-video (usually known as
learning-based or example-based methods) [4,10,11].

The methods of super-resolving each frame indepen-
dently can use the newest and most effective single image
super-resolution approaches to get high quality results.
But these methods do not take advantage of the great
similarity and interrelationship between adjacent frames.
In addition, they usually take a very long time when the
video contains a large number of frames. Introducing
motion compensation techniques to video super-
resolution is more popular in the last few decades.
It constructs the high-resolution frame by searching the
best matching patches from adjacent key-frames. Recently,
Song et al. [5] propose an improved algorithm to get
higher quality results, which uses bi-directional over-
lapped block motion compensation and on-the-fly dic-
tionary training. However, the essence of these methods is
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block matching, which may incur blocking artifacts and
information missing. Moreover, constructing patch-pairs
increases the complexity and the patch matching is not
always accurate. To avoid the above-mentioned problems,
a method using codebooks derived from key-frames is
proposed by Hung et al. [4] and achieves high quality
results. It combines low-resolution information with high-
resolution information that is extracted from codebooks to
generate high-resolution frame. However, this method
usually requires to train multiple large codebooks, in the
order of hundreds of thousands or even millions. Further-
more, the high-resolution results largely depend on the
similarity between the input frame and the samples in the
codebooks, and new noise may be introduced from the
training set.

In this paper, we propose a new video super-resolution
method to overcome the above-mentioned problems. The
key-frames are automatically selected and super-resolved
by a method based on sparse regression and natural image
prior (SRNIP). Considering the case of small structures
with large displacement, the non-key-frames are super-
resolved by a method based on feature-guided variational
optical flow (FVOF). The missing part is effectively recov-
ered by an inpainting method. Experimental results prove
that our method obtains better visual quality and higher
peak signal-to-noise ratio (PSNR) than the existing
methods.

The rest of this paper is organized as follows: Section 2
reviews related work on video super-resolution and opti-
cal flow. The proposed video super-resolution method is
described in Section 3. Validation experiments and results
are presented in Section 4. Finally, we conclude this paper
in Section 5.

2. Related work

2.1. Video super-resolution

Video super-resolution based on image super-
resolution approaches has been developed to display high
quality scaled images in the last few decades [12–14].
In traditional interpolation methods, such as bilinear
interpolation, bi-cubic [15], and cubic convolution [16],
the information is local and local structures dictate how
the missing information is filled. This kind of interpolation
methods usually suffers from visual degradation, e.g.,
jagging and stair-case artifacts. Although many improved
interpolation methods [17,18] appear lately to overcome
this problem, in essence, interpolation methods rarely
introduce any new high frequency information to increase
the image resolution.

Many example-based or learning-based super-resolu-
tion methods have been developed to avoid this problem
in the past few years. The example-based methods [10,19]
construct the codebooks composed of a huge number of
patch pairs, and recover the high-resolution image by
finding the best matched patch pairs in the codebooks.
Therefore, the computation complexity of these methods
is very high due to the complex patch matching in a
huge codebook. Furthermore, wrongly matched patches
usually lead to incorrect reconstructions. Learning-based
methods [20–22] are proposed assuming that the super-
resolved image is a sparse representation of raw patches,
which achieve significant improvements over other meth-
ods. In this model, each patch of the image to be super-
resolved is represented by a linear combination of a very
few dictionary elements. The method proposed by Yang
et al. [21] is a typical method based on this model, which
achieves significant improvements for both visual quality
and PSNR. However, the running time of learning-based
methods is long because of the time-consuming diction-
ary-training.

Recently, Kim et al. [23] generalize a super-resolution
method using sparse regression and natural image prior.
The underlying idea is to learn a map from input low-
resolution images to target high-resolution images based
on the pairs of input and output images. By using a sparse
solution for kernel ridge regression and a prior natural
image model, it reduces the computation complexity, and
shows the effectiveness for image super-resolution com-
pared with existing algorithms.

Block-based motion compensation is the most widely
accepted approach used in standard video coding algo-
rithms [24,25]. In case of video super-resolution, motion
compensation based on block matching is also a popular
method to generate a high-resolution frame by finding the
best matching blocks from its adjacent frames [26–28].
However, this motion compensation method uses an
implicit assumption that each block of pixels moves with
uniform translational motion. Since this assumption is
usually invalid, the method is well-known to produce
blocking artifacts. Recently, Song et al. [5] have proposed
a new video super-resolution algorithm using overlapped
block motion compensation (OBMC) to reduce the block-
ing artifacts, and get better results. However, this method
is also poor for de-blocking and the quality of the inter-
polated frame may be degraded because the overlapped
block motion compensation is applied to all blocks
uniformly.

Using codebooks derived from key-frames is another
basic approach to super-resolve a video sequence [29,30].
It constructs high-resolution frame by using codebooks
derived from key-frames in mixed-resolution video.
Recently, Hung et al. [4] propose a method based on this
kind of approaches. By using multiple overlapped variable-
block-size codebooks instead of fixed-codebooks, this
method gets better results than other codebooks-based
super-resolution methods. However, the high-resolution
results of this method largely depend on the similarity
between the input frame and the patches in the code-
books, and may introduce new noise from the training
set.

2.2. Optical flow

Optical flow estimation is one of the key problems in
computer vision. It estimates the displacement field
between two images and can be applied to motion
estimation, 3D reconstruction, and image registration.
Since the optical flow method can provide motion and
structure information, it has two significant advantages:
(1) its calculation accuracy is higher and can detect
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Fig. 1. The framework of the proposed method.
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sub-pixel displacements and (2) it can be applied to
relatively complex movement. In the last two decades,
the quality of optical flow estimation methods has
increased dramatically [31–33]. One of the predominant
methods to estimate optical flow is proposed by Horn et al.
[32] based on variational methods. It combines a gradient-
based matching of pixel gray values with a global smooth-
ness assumption. However, this method shows many limita-
tions in practice. Later, a lot of modified and extended
methods are proposed to get higher quality results. Memin
et al. [34] employ non-quadratic penalizers in the smooth-
ness term and the data term to estimate discontinuous and
occlusive motion. Some methods use photometric invariant
constraints to solve the violation of constant brightness
assumption problem, such as Papenberg's method [35] using
higher order derivatives and Zimmer's method [36] using
color models with photometric invariant channels. But these
methods cannot deal with large displacements and introduce
global smoothness. Brox et al. [37] propose a method with-
out linearizing the constancy constraints and design a model
to deal with large displacements. By combining the non-
linearized models with a continuation method, it leads to
coarse-to-fine warping schemes. However, coarse-to-fine
warping schemes have somehow relaxed the constraint
mentioned above, and there is an inherent dependency
between the scale of structures and the velocity that can
be estimated. This particularly affects the estimation quality,
since the displacements of the small structures are usually
large in most images. Recently, Brox et al. [38] propose a
large displacement optical flow to solve this problem by
integrating rich descriptors into the variational optical flow
framework. It estimates a dense optical flow field and
achieves new domains of motion analysis. By using this
method, it can estimate the motion between two images
with high accuracy.

In this paper, we propose a new automatic video super-
resolution method. Instead of using motion compensation
or codebooks, we formulate the non-key-frame super-
resolution problem as a warping system, in which a
feature-guided variational optical flow method is used to
ensure high accuracy of the warping process. In addition, a
method using sparse regression and natural image prior is
employed to super-resolve the key-frames. Our method
can be straightforwardly applied to the video in which all
frames are low-resolution.
3. The proposed method

In this section, we present the details of our method as
depicted in Fig. 1. For an input low-resolution video, the
key-frames (frames with the red border in the figure) are
first automatically selected and super-resolved with SRNIP
(Section 3.1), and then the non-key-frames (frames with
the blue border in the figure) are super-resolved based on
feature-guided variational optical flow (FVOF) (Section 3.2).
3.1. The key-frame selection and super-resolution

The key-frames are automatically selected according to
the motion errors with respect to the previous nearest
key-frame. For a low-resolution video, we set the first
frame as the initial key-frame, and super-resolve it using a
method based on sparse regression and natural image
prior (SRNIP) [23]. Then, the motion error is calculated for
each low-resolution frame. If the motion error is larger
than a threshold T, this frame is selected as a new key-
frame and super-resolved by the SRNIP method. Other-
wise, it will be treated as a non-key frame and super-
resolved by the FVOF method (Section 3.2).

To calculate the motion error, we first up-scale the
current frame by a bicubic method [15] and subtract this
frame from the previous nearest key-frame. Then, we get a
difference matrix which represents the difference between
the two frames. The average of the non-zero entries in the
difference matrix is calculated as the motion error, which
is formulated as

e¼ f NZðPðyÞ�PðypreÞÞ
k

; ð1Þ

where y and ypre are the current frame and the previous
nearest key-frame, respectively. Pð�Þ is an operator that
converts an RGB image into a gray image. f NZ is a function
which selects non-zero entries from the matrix, and k is
the number of non-zero entries in the difference matrix.

We use an iterative method to select the threshold T
automatically. First, we define a constant C, which repre-
sents the lower bound of the threshold T. The ratio of non-
key-frames in the video sequence is represented by con-
stant R0. The mean value e of motion errors between
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adjacent frames can be calculated by

e ¼ ∑
N�1

i ¼ 1
ei;iþ1

 !,
ðN�1Þ; ð2Þ

where ei;iþ1 is the motion error between frame i and frame
iþ1, and N is the number of frames in the video. The
iterative process is run in the following manner. If the
mean error eoC, we set T ¼ e as an initial value of the
threshold T and execute the key-frames selection process
based on this threshold. Then, we examine the number of
key-frames n and calculate the ratio r of the non-key-
frames by r¼ ðN�nÞ=N. If r is smaller (or larger) than the
initial setting value R0, we set the threshold T ¼ Tþ
ðor�Þ0:1, and repeat the above process until rZ
ðor r ÞR0. Finally, we get the ultimate threshold T subject
to r� R0 by this iterative process. Otherwise, if eZC, we
set the ultimate threshold T ¼ e. The algorithm for the
automatic threshold selection is detailed in Algorithm 1.
The initial definition of the parameter C uses a statistical
approach. We set C to be 3.0 based on large amounts of
experimental data analysis and statistics. The definition of
parameter R0 is dependent on the request of super-
resolution quality and time cost. Obviously, when R0

becomes smaller, the video super-resolution quality
becomes higher and the running time becomes longer.

Algorithm 1. Algorithm for automatic threshold selection.

Require: lower bound C, the ratio of non-key-frames R0,
and video mean motion error e.

if eo ¼ C then
T ¼ e .
Count the number of key� frames n by executing key�

frame selection process based on threshold T .
Calculate the ratio of non� key� frames r by r¼ ðN � nÞ=N.
if roR0 then

while roR0 do
T ¼ Tþ0:1
Calculate a new r based on the new threshold T .

end while
else if r4R0 then

while r4R0 do
T ¼ T�0:1
Calculate a new r based on the new threshold R.

end while
Output the ultimate threshold T .

end if
else if e4C then

T ¼ e .
Output the ultimate threshold T .

end if

The super-resolution of the selected key-frame is
in essence a single image super-resolution problem.
As described in Section 2.1, many approaches have been
developed to generate high quality scaled images in recent
years. The image super-resolution that is applied to the
video super-resolution, need have two main advantages:
(1) low computation complexity and short running time
and (2) easy to accomplish and can generate high quality
result. Therefore, example-based super-resolution meth-
ods are the most appropriate. In this paper, we adopt
SRNIP [23] to super-resolve the key-frames. The reasons
are that (1) it uses sparse regression to reduce the
computation complexity which satisfies the time require-
ment of the video super-resolution and (2) it uses a natural
image prior model to deal with the discontinuity of images
which satisfies the quality requirement of video super-
resolution. The simpleness and flexibility make it suitable
for various applications.

3.2. The non-key-frame super-resolution

For the input low-resolution non-key-frame, we first
interpolate it into the desired scale using the bi-cubic
interpolation method [15]. Assume that K and I are the
key-frame and the non-key-frame to be aligned, respec-
tively, and p¼ ðx; yÞT denotes a pixel in the frame. Then,
the non-linear optical flow model can be presented as

EðOÞ ¼
Z
ΦðjIðpþOðpÞÞ�KðpÞj2Þ dx

þ
Z
Φðj∇IðpþOðpÞÞ�∇KðpÞj2Þ dx

þ
Z
Φðj∇uðpÞj2þj∇vðpÞj2Þ dx; ð3Þ

where O represents the optical flow. ∇KðpÞ ¼ ð∂K=∂x;
∂K=∂yÞ and ∇IðpþOðpÞÞ ¼ ð∂I=∂ðxþOðxÞÞ; ∂I=∂ðyþOðyÞÞÞ are
the gradients of the key-frame and the non-key-frame at
pixel p, respectively. ∇uðpÞ and ∇vðpÞ are the gradients
of the horizontal and perpendicular components of optical
flow at pixel p, respectively. The function Φðt2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þε2

p
; ε¼ 0:001, which yields a TV regularization. This

regularization corresponds to an ℓ1 norm minimization,
but is still differentiable everywhere. As we can see in the
equation, in contrast to the predominant linear model,
there is no linearization here. Combining this non-linear
model with a continuation method leads to a coarse-to-
fine warping scheme, which works well in almost all the
large displacement case [37]. Considering the case of small
structure with large displacement, a feature-guided varia-
tional model is adopted, which fully exploits the temporal
correlations between frames and can be expressed as [38]

E0ðOÞ ¼ EðOÞ

þ
Z
θðpÞωðpÞΦðjOðpÞ�O1ðpÞj2Þ dx

þ
Z
θðpÞjFnonðpþO1ðpÞÞ�FkeyðpÞj2 dx; ð4Þ

where O1ðpÞ denotes the correspondence vectors obtained
by feature matching at pixel p. θðpÞ denotes whether there
is a feature available in the key-frame K at point p, whose
value is 0 or 1. ωðpÞ is the weight function of correspon-
dence optical flow. FkeyðpÞ and FnonðpÞ are the feature
vectors in the key-frame K and the non-key-frame I,
respectively. By integrating the correspondences from
feature matching into the variational optical flow model,
the solution is guided towards large displacements of
small structures.

The operation of warping the previous nearest high-
resolution key-frame with the optical flow O to generate
high-resolution non-key-frame is formulated as

xkl ¼ yij; ðiA ð1;mÞ; jAð1;nÞÞ; ð5Þ



Fig. 2. Results of continuous non-key-frame super-resolution for Container, Foreman and Big Buck Bunny: (a) high-resolution key-frames, (b) low-resolution
non-key-frames, (c) images warped by the feature-guided variational optical flow, (d) images corrected by inpainting, and (e) original high-resolution non-
key-frames.
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Table 1
Quantitative evaluation of different algorithms: improvement of PSNR
values from the bi-cubic interpolation.

Sequence Fan
[40]

Brandi
[41]

MSR
[5]

LSR
[5]

HSR
[5]

Hung
[4]

Our
method

Container �0.1 0.9 4.0 2.7 5.3
News 1.0 1.0 2.5 4.5 6.7
Mobcal �0.8 0.1 3.2 1.1 3.3
Shields �1.1 �0.2 0.3 1.2 1.6
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with

k¼ iþO1
ij

l¼ jþO2
ij; ð6Þ

where y is the previous nearest high-resolution frame, m
and n are the height and width of y, x is the high-
resolution version of the current non-key frame, O is the
optical flow, and O1, O2 are the first and the second
dimension of the optical flow O, respectively. We ignore
the pixel values of x, when its subscripts k and l are beyond
the image boundary.

Although we adopt feature-guided variational optical
flow to enhance the quality of warping scheme, some
information may be lost in the generated high-resolution
frame. We formulate the information repairing problem
into an image inpainting problem. Assume that D is a
region needed to be repaired in a frame L, and L\D is the
region without information missing. For a point dAD, the
inpainting of d is determined by the values of the known
points close to d. We consider a first order approximation
Lf ðdÞ of the frame in point d as

Lf ðdÞ ¼ Lðf Þþ∇Lðf Þðd� f Þ; ð7Þ
where f AL\D is a point close to d, L(f) is the pixel value of f
and ∇Lðf Þ is the gradient of point f. We estimate the pixel
value of d as a weighted average over a small neighbor-
hood Ω of d, which can be formulated as [39]

L dð Þ ¼∑f AΩWðd; f Þ½Lðf Þþ∇Lðf Þðd� f Þ�
∑f AΩWðd; f Þ ; ð8Þ

whereWðd; f Þ is the normalized weighting function, which
is used to define the contribution of pixel f in the
neighborhood. The weighting function is defined as

Wðd; f Þ ¼ Pðd; f Þ � Q ðd; f Þ � Rðd; f Þ; ð9Þ
with

P d; fð Þ ¼ d� f
Jd� f J

� N dð Þ

Q d; fð Þ ¼ d20
‖d� f‖2

R d; fð Þ ¼ S0
1þjSðdÞ�Sðf Þj; ð10Þ

where S(d) is the level set and NðdÞ ¼∇SðdÞ is the normal
direction of d. d0 and S0 are the distance parameter and the
level-set parameter, respectively, both of which are gen-
erally set to be 1. Directional factor Pðd; f Þ ensures that the
contribution of the pixels close to normal direction N is
higher than those farther from N. Distance factor Q ðd; f Þ
guarantees that the contribution of the pixels closer to d is
higher. Level set distance factor Rðd; f Þ ensures that the
contribution of pixels close to the contour through d is
higher.

Fig. 2 shows the intermediate and final results of
continuous non-key-frame super-resolution for Container,
Foreman and Big Buck Bunny. We only give results of a few
non-key-frames nearest to the key-frame as a schematic.
The top four rows are experimental results for Container
video and the ratio r is set to be 0.1; the middle three rows
are experimental results for Foreman video and the ratio r
is set to be 0.2; the bottom two rows are experimental
results for Big Buck Bunny video and the ratio r is set to be
0.3. It can be seen that the proposed method can accu-
rately predict the non-key-frame with respect to the key-
frame, even if for Foreman and Big Buck Bunny with large
displacements.

4. Experimental results

In this section, we evaluate the performance of the
proposed video super-resolution method with publicly
available datasets (in Section 4.1) and datasets acquired
from internet or captured by the author (in Section 4.2).

4.1. Evaluation on publicly available datasets

For evaluating the performance and comparing with
other methods, we use four publicly available YUV video
sequences: two CIF sequences (Container and News) and
two 1280 �720 sequences (Mobcal and Shields). In the
experiment, we first down-sample the original high-
resolution non-key-frame by the factor of 2 and then
super-resolve the low-resolution version using the pro-
posed method. In order to compare with the other
method, we also assume that the key-frame is originally
high-resolution and set the ratio r to be 0.5.

We compare the performance of the proposed method
with five existing methods: the bi-cubic method [15], Fan's
method [40], Brandi's method [41], Hung's method [4] and
three versions of the method in [5]: learning-based super-
resolution (LSR) version, motion-compensated super-reso-
lution (MSR) version and hybrid super-resolution (HSR)
version. In the LSR method, the cluster number is set to be
512. In the MSR method, the motion search range is set to
be 64, and the matching block for motion vector is set to
be 16�16. In Fan's method [40], the number of nearest
neighbor is set to be 5 and the patch size is set to be 7�7.
For Brandi's method [41], the matching block size is set to
be 16�16, which provides the best performance among
all the sizes. The reference frames are interpolated by bi-
cubic method. In Hung's method [4], the number of patch-
pairs is set to be 1000, and the block size is set to be 2�2.
Table 1 shows the PSNR improvement of the 15th frame
from the bi-cubic interpolation, where the values in red
are the highest of all methods for each sequence and the
values in blue indicate the second highest. As shown in
Table 1, our method has obviously better performance
than all the methods for the sequences Container and
News, and the PSNR value is even 11.2 dB higher than the
bi-cubic method. For the sequences Mobcal and Shields, the



Fig. 3. Super-resolution results for a center region of Shields: (a) Ground truth, (b) bi-cubic, (c) MSR in [5], (d) HSR in [5], (e) Hung's method [4], and (f) our
method.

Fig. 4. Super-resolution results for News: (a) Ground truth, (b) bi-cubic, (c) Brandi's method in [41], (d) MSR in [5], (e) HSR in [5], (f) Our Method.
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performance of our method is better than other methods
except Hung's method. Although the PSNR value is lower
than Hung's result, the visual quality of our results is
significantly better than all the other's results.
Fig. 3 gives the qualitative evaluation of the 15th frame
for the Shields sequence. We compare our method with the
bi-cubic method, the MSR method, the HSR method and
Hung's method. As shown in Fig. 3, the result of bi-cubic



Fig. 5. Three video sequences. (a) Surveillance, (b) TV, (c) Lab.
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method is very blurred in the whole image, even though
its PSNR value is not low. Obvious errors such as the logo
in the middle of the image and the information missing
such as the bottom of the image can be seen in the result
of MSR method. The HSR method performs slightly better
than MSR method, but the blocking artifacts are still
apparent, and the edges and cloth textures are also
blurred. The result of Hung's method also has error
regions, such as the logo in the middle of the image. On
the contrary, our method provides the best visual quality
with sharper edges and richer textures.

For more comprehensive comparison of the perfor-
mances of our method and other methods, we provide
the super-resolution results of the 15th frame for the News
sequence with large displacement in Fig. 4. We compare
our method with the bi-cubic method, Brandi's method,
the MSR method and the HSR method. As shown in the
figure, the results of bi-cubic and Brandi's method are very
blurred. In the result of the MSR method, the information
of dancers in the background is wrong and missing, and
the hair details of the female anchor's forehead are also
missing. The result of the HSR method has the same
problem in the hair area, and the words on the background
LED screen are blurred. Our method overcomes all the
above-mentioned problems and gets the significantly
better visual quality than all the other methods.
4.2. Evaluation on more datasets

To prove a good practical application, we super-resolve
three real video sequences: Surveillance (352�288, 120
frames), TV (426�240, 360 frames) and Lab (640�360,
240 frames). Surveillance and TV are two popular video
sequences on the internet, and the Lab sequence is
captured using a Nikon D90 camera, as shown in Fig. 5.
For the Surveillance sequence, we super-resolve it to
verify the performance of our method when the propor-
tion of non-key-frames is large. Therefore, the threshold T
is set to be 3.0 and the ratio r is set to be 0.7. Fig. 6 gives
the 3� super-resolution results of the 1st, 11th, and 21st
frames in Surveillance sequence. These frames are super-
resolved by the proposed FVOF method, and selected to
show randomly. In order to demonstrate the performance
of our method more comprehensively, we select different
amplification regions for different frames. The regions
highlighted by rectangles in Fig. 6 are enlarged and shown
in the associated images for closer observation. For the
low-resolution input frame, it is stretched to the same size
as the high-resolution frame. As shown in the figure, for all
the regions, our method provides obvious good subjective
visual quality with sharp edges and rich textures.

In order to demonstrate the performance of our
method in displaying high quality scaled images on
cutting-edge digital consumer application such as high-
definition television, we super-resolve the TV sequence by
factor 3 with threshold T equal to 2.8 and ratio r equal to
0.5. To display the continuous super-resolution perfor-
mance of our method, the 3� super-resolution results of
three continuous frames are shown in Fig. 7. For different
frames, we select different amplification regions to com-
prehensively show the super-resolution quality of our
method. By inspecting the regions highlighted with rec-
tangles, it can be seen that our method provides obviously
sharp edges and rich details.

Another video sequence Lab is captured by the author.
We set threshold T to be 3.8 and ratio r to be 0.5. Fig. 8
gives the super-resolution results of the 63rd, 65th and
67th frames selected randomly from the result set. The
regions highlighted by rectangles are enlarged and
shown in the associated images for closer observation.
In order to show the super-resolution quality of our



Fig. 6. 3� Super-resolution results of Surveillance. Top row: the 1st frame result. Middle row: the 11th frame result. Bottom row: the 21st frame result.
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method comprehensively, we select different magnifica-
tion regions for different frames. As shown in the figure,
our method provides obviously good subjective visual
quality with sharp edges and rich textures.
5. Conclusion

This paper proposes a new video super-resolution
method to magnify a low-resolution video. The key-frames



Fig. 7. Super-resolution results of TV sequence by magnifying 3� . Top row: the 2nd frame result. Middle row: the 3rd frame result. Bottom row: the 4th
frame result.

Fig. 8. Super-resolution results of Lab. From left to right: the 63rd frame result, the 65th frame result and the 67th frame result.
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are automatically selected based on motion errors and
super-resolved by a method based on SRNIP. The non-key-
frames are super-resolved by a method based on FVOF. By
using an accurate warping method based on feature-guided
variational optical flow, the proposed approach overcomes
blocking artifacts and achieves promising results even for
small structures with large displacement. Experimen-
tal results prove that the proposed method provides
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significantly better visual quality as well as higher PSNR
value in comparison with the state-of-the-art methods.
Moreover, the proposed method is applicable to various
practical video sequences due to the flexibility of the
designed automatic key-frame selection and the validness
of the feature-guided variational optical flow. The applica-
tions include but not limited to the following areas:
(1)
 Surveillance video. Most surveillance cameras are low-
resolution due to the cost, while our method can
provide high-resolution videos for this application.
(2)
 Video compression. Video compression usually involves
quantization and sub-sampling to control the balance
between image quality and bit rate. The sub-sampled
frames have to be up-sampled to achieve full resolu-
tion. Our method can be used to increase the recon-
structed image quality.
(3)
 Remote sensing. Currently, the resolution of the remote
sensing video is low, and our method can achieve the
high-resolution remote sensing video. This is impor-
tant for the object recognition.
Although feature-guided variational optical flow is
robust for most scenes, it is difficult to handle situations
with fast scene changes or lots of noises. As a future work,
we will explore the pre-processing such as sparse feature
tracking or denoising before super-resolution to improve
the performance of this case.
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