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a b s t r a c t 

Human shape and pose estimation is a popular but challenging problem, especially when asked to capture the 

body, hands, feet and face jointly for multiple persons with close interaction. Existing methods can only have a 

total motion capture of a single person or multiple persons without close interaction. In this paper, we present a 

fully automatic and effective method to capture full-body human performance including body poses, face poses, 

hand gestures, and feet orientations for closely interacting multiple persons. We predict 2D keypoints corre- 

sponding to the poses of body, face, hands and feet for each person, and associate the same person in multi-view 

videos by computing personalized appearance descriptors to reduce ambiguities and uncertainties. To deal with 

occlusions and obtain temporally coherent human shapes, we estimate shape and pose for each person with 

the spatio-temporal tracking and constraints. Experimental results demonstrate that our method achieves better 

performance than state-of-the-art methods. 
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. Introduction 

Human sensing [1] and modeling [2] based on images or videos are

elatively essential and have extensive applications [3] such as human

ehavioral modeling, augmented reality, and character animation. Re-

ent works [4–7] have shown great progress in the use of parametric

odel known as SMPL [8] . They employ convolutional neural network

CNN) to estimate the shape and pose parameters to achieve 3D human

ecovery. However, these methods are limited to estimating a single per-

on in an image. 

Reconstructing multiple persons, especially that involves close in-

eractions with each other in natural scenes is crucial to more prac-

ical applications. But multi-person shape and pose estimation is very

hallenging due to serious inter-occlusions and inherent ambiguities in

cenarios where multiple persons interact. Directly using the methods

or single person would fail because of the incomplete information and

ncertainties. Although some multi-person methods [9,10] have been

roposed to deal with this problem, they can only deal with some very

imple interactions. Liu et al. [11] proposed a multi-view segmentation

cheme to reduce the ambiguities, which can estimate poses and surfaces

f multiple persons with close interactions. But this method need manual

ntervention and a laser scanned template. Therefore, a fully-automatic

hape and pose estimation method is required for these cases. Recently,

n automatic but effective motion capture method [12] was proposed

o achieve 3D shape and pose estimation for closely interacting multiple

ersons using multi-view images. They performed a frame-by-frame hu-
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an recovery and ignored the temporal information during the shape

stimation on a sequence. Consequently, there are some obvious jitters

etween adjacent frames. Besides, their method only focus on modeling

ody shape and pose without hands and face, which results in obvious

istakes on the capture of hands and face. 

In this paper, we present an effective method for the full-body cap-

ure of multiple persons with close interactions, including human bod-

es, face poses, hand gestures and feet orientations. There are three

hallenges: ambiguities and uncertainties among persons, tracking dif-

culties due to occlusions, and motion jitters caused by frame-by-frame

omputation. To reduce ambiguities and uncertainties among persons,

e propose to calculate discriminative person appearance descriptors

or association after predicting 2D keypoints of body, face, hands and

eet of each person. Then, we adopt spatio-temporal tracking to handle

cclusions, and impose temporally coherent shape constraint to avoid

otion jitters. Our method is simple but effective. Experimental results

how that our method outperforms the state-of-the-art methods with

ore comprehensive capture and more accurate estimation. 

Our main contributions are summarized as follows. 

• We contribute a fully automatic and effective motion capture method

for multiple people with close interactions which optimizes 3D hu-

man model of body, face, hands and feet simultaneously using multi-

view constraints. 

• We obtain multi-view association by computing discriminative per-

son appearance descriptors, and use spatio-temporal tracking to deal
, 2019216111@tju.edu.cn (Y. Liu), jia1saurus@gmail.com (R. Shao), 

with occlusions. 
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• We estimate the consensus shape for each person by imposing tempo-

rally coherent shape constraint, which helps to avoid motion jitters.

. Related work 

.1. Multi-person 2D pose estimation in images 

Existing methods of multi-person 2D pose estimation can be clas-

ified into two categories: bottom-up methods [13–17] which is very

ast but has error associations between different persons, and top-down

ethods [18–20] that usually focus more on accuracy and are hence

ore time-consuming. 

Bottom-up approaches first detect all joints and then assign these

oints to each person. Deepcut [15] used deep features to jointly detect

nd label joints and associated them to individuals with correlation clus-

ering. Deepercut [16] benefited from deeper Resnet [21] and improved

he runtime of method [15] . Multiposenet [17] is a multi-task model by

sing the Pose Residual network to get keypoints and detection. Open-

ose [13,14] used Part Affinity Fields (PAFs) to encode an unstructured

aired relationships between joints and individuals, which can achieve

eal-time performance and provide 2D detections of human body, hands,

ace and feet on single image. 

Top-down approaches first detect persons and then estimate pose

or each person using single person pose estimation method. Papan-

reou et al. [19] estimated heatmap and its offset as the keypoints. CPN

20] used a framework composed of GlobalNet and RefineNet to pre-

ict easy and hard keypoints respectively. Fang et al. [18] estimated

eypoints by combining different human detectors and pose estimators,

hich achieves good performance on human body detection. 

In this paper, we aim to have a total capture of multiple persons.

herefore, OpenPose [13,14] is used as our 2D keypoint detector to

ointly detect the keypoints of human body, face, hands and feet. 

.2. Pose tracking 

Based on bottom-up multi-person 2D pose estimation, disordered

eypoints are obtained, which can not be directly used in videos or

ulti-view situation. A few trackers [22,23] tried to link person de-

ection across frames. Kim et al. [22] estimated the person appear-

nce using Convolution Neural Network (CNN) to label the correspond-

ng people. Tang et al. [23] presented a pair-wise feature extracted by

atch matching to describe the relationships between persons. Posetrack

24] and artTrack [25] extended deepercut [16] and proposed to build a

patio-temporal graph to formulate this problem. Some work treated the

racking problem as an image-matching problem. Multi-image matching

26,27] aims to find the correspondence of a set of images. Dong et al.

26] proposed a cycle-consistent matching method based on appearance

nd geometry information to identify the same person in different im-

ges. Xiu et al. [28] proposed to use deepmatching as robust feature ex-

ractor and designed an efficient pose tracker based on pose flows. We

xtend these methods and propose spatio-temporal tracking to match

he same person across views and frames by computing discriminative

erson appearance descriptors and pose similarities. 

.3. 3D recovery of human shape and pose 

More 3D applications in real world and industrial demand to es-

imate human 3D pose and shape. At the beginning, the methods

29,30] only focused on the 3D pose estimation. They inferred 3D pose

ust from 2D features and ignored the 3D shape. Moreover, the re-

ults were usually bad when the feature detector did not work well.

imo-Serra et al. [31] proposed a Bayesian framework to jointly ad-

ress 2D detection and 3D inference to get a better performance. Roberts

t al. [32] simplified motion capture by editing their selected keyframes.

ifkooee et al. [33] proposed to utilize intrinsic Laplacian offsets to im-

lement human pose transfer. At the same time, many methods based
n deep learning have been proposed. DeepPose [34] was a simple but

fficient cascaded pose estimation method based on Deep Neural Net-

orks (DNN). Park et al. [35] directly estimated 3D human pose with

nd-to-end CNNs. They improved the efficiency of CNNs by combining

D pose and image features, and got a more precise 3D pose. 

With the use of statistic model [8,36] that consisting of shape

nd pose, human shape and pose can be estimated simultaneously.

 few work [12,37–39] exploited different constraints to effectively

egularized the fitting process for human reconstruction. Further more,

any work [4–7,40] used the deep learning strategy to predict the

odel parameters of a single body using available 2D and 3D datasets

41–43] , which simplified the process of 3D human reconstruction. 

However, in more complicated multi-person cases, existing methods

9,10] can only deal with very limited situation of simple interactions

ithout inter-occlusions. Liu et al. [11] proposed to combine instance

egmentation with human reconstruction. This method achieved good

erformance but need manual intervention and a laser scanned template

odel at the beginning. Li et al. [12] proposed the first method to es-

imate multi-person shape and pose automatically.However, they only

aptured the shape and pose of human body without hands and face

hich are important for human interactions. In contrast, we propose a

ethod to have a full-body motion capture including the hands and face

f closely interacting persons with spatio-temporal constraints. 

. Method 

Our goal is to have a full-body capture including body poses, face

oses, hand gestures, and feet orientations for multiple closely interact-

ng persons. Fig. 1 presents the details of our method. We first estimate

ulti-person 2D keypoints using OpenPose [14] , which jointly detect

he features of body, feet, hands and face. To reduce the uncertainties

nd ambiguities, a multi-person tracking method is designed to build

he spatio-temporal correspondence. Finally, we fit a newest paramet-

ic 3D human model, SMPL-X [44] , so that the projected joints are as

onsistent as possible with multi-view 2D detections. Besides, we also

ntroduce a temporally coherent shape constraint to avoid motion jitter.

.1. Multi-person 2D pose estimation 

We use the OpenPose detector [14] in each available view, which

ointly estimates 2D keypoints of body, feet, hands and face. OpenPose

s a bottom-up 2D keypoint detection method using Part Affinity Fields

PAFs) to encode an unstructured paired relationships between joints

nd individuals, which can achieve real-time performance. For multi-

erson cases with close interaction, there will be some obvious mistakes

n arms and legs by directly using OpenPose detector, hence we use a

egion-based detector [18] to rectify the errors on arms and legs. 

.2. Multi-Person pose tracking across views and frames 

In Section 3.1 , we got multi-person 2D keypoints, and then we need

o build association across views and frames. To achieve this, we de-

ign a spatio-temporal tracking scheme. Specifically, we first adopt a

re-trained person Re-ID network [45] to obtain personalized appear-

nce descriptors for labeling the persons in the starting frame. Then,

e use temporal pose tracking for each view to get the correct order-

ngs for multiple persons across frames. Finally, we validate the tracked

esults and determine the most accurate labels using spatio-temporal

onstraint. 

Spatial tracking. To match the detected 2D poses across different

iews, we need an appropriate criterion to measure the likelihood that

wo poses belong to the same person. This problem is very similar to

he work of person Re-ID (Re-identification). Therefore, we estimate the

ounding box for each person, and calculate the appearance Affinity ma-

rix to measure the similarities between bounding boxes using a publicly

vailable Re-ID model [45] . The Re-ID network is pre-trained on massive
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Fig. 1. The pipeline of our method. It contains of 3 components: 1) 2D pose estimation; 2) Tracking across views and frames; 3) 3D reconstruction with spatio- 

temporal constraints. 
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atasets and is able to extract discriminative and descriptive appearance

eatures that are robust to illumination and viewpoint changes. Suppose

here are V cameras in the scene, and p i detected bounding boxes in the

iew i . Matrix A ij measures the Affinity scores of view pair ( i, j ). Sim-

liar to [26] , we extract the feature vectors from “pool5 ” layer as the

escriptor for each bounding box. The sigmoid function is used to map

he distances to (0, 1) after computing the Euclidean distance between

he descriptors of two bounding boxes. For the first frame, we select view

 as a reference image and then compute the similarity scores between

iew i and view 0. The Affinity matrix can be written as: 

 0 ,𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑎 11 𝑎 12 ⋯ 𝑎 1 𝑛 
𝑎 21 𝑎 22 ⋯ 𝑎 2 𝑛 
⋮ ⋮ ⋱ ⋮ 
𝑎 𝑛 1 ⋯ ⋯ 𝑎 𝑛𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (1)

here 𝐴 0 ,𝑖 ∈ ℝ 

𝑛 ×𝑛 , is a symmetric matrix. 𝑛 = 

∑
𝑙∈{0 ,𝑖 } 𝑝 𝑙 , which is the

otal number of people in view 0 and view i . The element a i,j ∈ (0, 1)

epresents the similarity score between the i th bounding box and the

 th bounding box, larger for more similar appearance. We can easily

nd the optimal matching by maximizing the similarity scores using the

ungarian algorithm for each pair of views. This process is shown in

ig. 2 . 

Temporal tracking. Temporal tracking is built by associating poses

hat indicate the same person across frames. We perform a frame-by-

rame tracking method to combine the information of the bounding

oxes and estimated 2D poses. Define P 1 and P 2 as the body poses of

wo adjacent frames, and denote B and B as the bounding boxes sur-
1 2 
ounding P 1 and P 2 . The similarity metric is defined as 

( 𝑃 1 , 𝑃 2 , 𝐵 1 , 𝐵 2 ) = 𝛼𝑃 𝑠 ( 𝑃 1 , 𝑃 2 ) + 𝐵 𝑠 ( 𝐵 1 , 𝐵 2 ) , (2)

here P s is a function to measure the possibility of two cross-frame poses

ndicating the same person. We adopt the inter-frame pose distance de-

ned in [46] : 

 𝑠 ( 𝑃 1 , 𝑃 2 ) = 

∑
𝑖 

𝑓 𝑖 2 

𝑓 𝑖 1 
, (3)

here P 1 and P 2 are the body poses of two consecutive frames, 𝑓 𝑖 1 repre-

ents the number of feature points extracted by DeepMatching [47] from

he bounding box 𝐵 𝑖 1 surrounding 𝑝 𝑖 1 , and 𝑓 𝑖 2 is the number of feature

oints extracted from the bounding box 𝐵 𝑖 2 that match 𝑓 𝑖 1 . 𝑝 
𝑖 
1 and 𝑝 𝑖 2 are

he i th keypoint of P 1 and P 2 , respectively. The bounding boxes are 10%

erson bounding boxes size according to the standard PCK [41] . 

In Eq. (2) , B s is more like a global term compared with P s , which

ncludes the feature points of full body. Considering that there are some

rucial feature points to identity a person that cannot be perceived by

keletons, we use the feature points extracted from bounding boxes B 1 

nd B 2 to describe the similarities of two poses in two adjacent frames.

he similarity metric B s is defined as 

 𝑠 = 

𝑀𝐼 

𝑀𝑈 

, (4)

𝐼 = |𝑓 1 ∩ 𝑓 2 |, (5)

𝑈 = |𝑓 ∪ 𝑓 |, (6)
1 2 

Fig. 2. Illustration of our multi-view tracking. The col- 

ors filled in Affinity matrix represents the similarity 

scores. The output with the same color box (red or 

blue) is the matched people in different views. (For in- 

terpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this 

article.) 
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here MI are the matched feature points between B 1 and B 2 , and MU

re the total feature points extracted from B 1 and B 2 . 

Spatio-temporal validation. To find the most accurate labels, we

hen feed the previous labeled bounding boxes into the network [45] and

ry to maximize the similarity of the same labeled bounding boxes across

ll the views. For a bounding box labeled as ‘ l ’ in view v , suppose the

imilarity scores between it and the other bounding boxes locate in the

 th row, and the set M p is the index set of the other views with the same

abel. The problem can be formulated as 

( 𝐵 𝑙 
𝑣 
) = max 

𝑝 
( 𝑚𝑒𝑎𝑛 ( 

∑
𝑘 ∈𝑀 𝑝 

𝑎 𝑞𝑘 ) |𝑝 ∈ 𝑇 𝑝 ) , (7)

here T p is the total number of persons, and p is the p -th person in each

iew. After spatio-temporal tracking, we can get the most appropriate

abel of each person in each view and each frame. 

.3. Shape and pose estimation for multiple persons 

Given the tracked 2D poses of body, hands, feet, and face, we esti-

ate the 3D human shape and pose for each time instant by combing

ulti-view clues. We use SMPL-X [44] , a newly proposed unified defor-

ation model, as our underlying shape representation, and optimize the

arameters of the model with multi-view 2D keypoints. Considering that

ndependent optimization for each frame will lead to motion jitters, we

ntroduce a temporal constraint for a consistent shape for each person. 

Unified model. SMPL-X is an expressive statistical human model

y integrating the SMPL model [8] with FLAME face model [48] and

ANO hand model [49] . It has 𝑁 = 10475 vertices and 𝐾 = 54 joints,

hich is about twice that of SMPL. SMPL-X is defined by a function

( 𝜃, 𝛽, 𝜓) ∶ ℝ 

|𝜃|×|𝛽|×|𝜓| → ℝ 

3 𝑁 , where 𝛽 ∈ ℝ 

|𝛽| contains the shape pa-

ameters of the body, face and hands, 𝜃 contains the pose parameters of

aw joint, finger joints and the body joints, and 𝜓 ∈ ℝ 

|𝜓| has the facial

xpression parameters. With this unified model, we can simply obtain

he shapes and poses of multi-persons by optimizing the parameters ( 𝜃,

, 𝜓) for each person. Please refer to [44] for more details about the

odel. 

Optimization. Although many previous work [4,5,7] have achieved

reat success in human shape and pose estimation, they are limited to

ealing with a single person in an image. Hence, we cannot directly use

hese methods for our problem which includes serious occlusions and

mbiguities caused by close interactions. Instead, we estimate the shape

nd pose for each person at each time instant using spatio-temporal con-

traints. Given the detected 2D keypoints { 𝐽 1 
𝑒𝑠𝑡 
, 𝐽 2 
𝑒𝑠𝑡 
, ⋯ , 𝐽 

|𝑉 |
𝑒𝑠𝑡 

} for differ-

nt views V , we formulate the problem of fitting SMPL-X to multi-view

eypoints as an optimization problem. We define the energy function

s 

 𝑀 

( 𝛽, 𝜃, 𝜓) = 

|𝑉 |∑
𝑣 =1 

𝐸 𝐽 ( 𝛽, 𝜃; 𝐾 𝑣 , 𝐽 
𝑣 
𝑒𝑠𝑡 
) + 𝐸 𝑝 ( 𝛽, 𝜃, 𝜓) + 𝜆𝑐 𝐸 𝑐 + 𝜇𝐸 𝑡 , (8)

here K v contains the camera parameters of view v. E J is a joint fitting

ata term, E p is a prior term, E c is a collision term that penalizes self-

ollisions and penetrations of several body parts, and E t is a temporal

erm. 

For the data term, it is defined by a re-projection loss which is used

o minimize the weighted distance between the 2D projection of 3D

oint R 𝜃( J ( 𝛽)) i and the detected 2D keypoint 𝐽 𝑣 
𝑒𝑠𝑡,𝑖 

for each joint i . It is

ormulated as 

 𝐽 ( 𝛽, 𝜃; 𝐾 𝑣 , 𝐽 
𝑣 
𝑒𝑠𝑡 
) = 

∑
joint 𝑖 𝛾𝑖 𝜔 𝑖 𝜌(Π𝐾 𝑣 ( 𝑅 𝜃( 𝐽 ( 𝛽)) 𝑖 ) − 𝐽 𝑣 

𝑒𝑠𝑡,𝑖 
) , (9)

here J ( · ) is a function that transforms rest vertices into rest joints,

 𝜃( · ) is a global rotation function that converts the rest joints to the

osed 3D joints according to the pose 𝜃, Π𝐾 𝑣 denotes a projection func-

ion of the v -th view, 𝜔 i is the detected confidence score of the i -th joint,

nd 𝛾 i are per-joint weights for annealed optimization (described later).

onsidering the noise in detections, we use a robust Geman-McClure
rror function [46] defined as 

𝜎( 𝑒 ) = 

𝑒 2 

𝜎2 + 𝑒 2 
, (10)

here e is the residual error, and 𝜎 is a robustness constant set to be

00. 

The prior term E p that jointly penalizes the body, face and hands is

earned from massive training data. It is formulated as 

 𝑝 ( 𝛽, 𝜃, 𝜓) = 𝜆𝜃𝑏 
𝐸 𝜃𝑏 

( 𝜃𝑏 ) + 𝜆𝜃𝑓 
𝐸 𝜃𝑓 

( 𝜃𝑓 ) + 𝜆𝑚 ℎ 
𝐸 𝑚 ℎ 

( 𝑚 ℎ ) + 𝜆𝛽𝐸 𝛽 ( 𝛽) + 𝜆𝜀 𝐸 𝜀 ( 𝜓) ,

(11) 

here 𝜃b , 𝜃f , and m h are the pose vectors of body, face, and two hands,

espectively. The body pose 𝜃𝑏 = 𝑑𝑒𝑐( 𝑍) is a function of latent vectors

 ∈ ℝ 

32 that follow the normal distribution. 𝜃 = ( 𝜃𝑏 , 𝜃𝑓 , 𝑚 ℎ ) contains the

ose parameters of the whole body. The terms 𝐸 𝜃𝑓 
, 𝐸 𝑚 ℎ 

, E 𝛽 and E 𝜀 are

imple L 2 priors for face pose, hand pose, body shape and facial ex-

ression, respectively. A VAE-based body pose prior 𝐸 𝜃𝑏 
is also used for

 reasonable axis-angle representation for human body pose. Different

rom that of [37] which directly optimizes 𝜃b , the VAE-based body pose

rior imposes the quadratic penalty on the latent vector Z to regularize

 normal distribution of the latent space [44] . 𝜆∗ represents the weights

or each term that helps the optimization in the use of annealing scheme.

For the whole human body, it is inevitable to have physically impos-

ible self-collisions and penetrations during the optimization process.

herefore, we use Bounding Volume Hierarchies (BVH) [50] as the col-

ision detection. Based on [51,52] , to find a collision between two tri-

ngles f t and f s , a point-to-point distance is used in the collision term: 

 𝑐 ( 𝜃) = 

∑
( 𝑓 𝑠 ( 𝜃) ,𝑓 𝑠 ( 𝜃))∈𝐶 

{ ∑
𝑣 𝑠 ∈𝑓 𝑠 

‖− Ψ𝑓 𝑡 ( 𝑣 𝑠 ) 𝑛 𝑠 ‖2 + 

∑
𝑣 𝑡 ∈𝑓 𝑡 

‖− Ψ𝑓 𝑠 ( 𝑣 𝑡 ) 𝑛 𝑡 ‖2 
} 

, (12) 

here C is the set of colliding triangles, v represents vertex, and Ψ is the

ocal 3D distance field defined by triangles C and their normals n . 

Simply fitting a SMPL-X model to multi-view 2D detections cannot

roduce temporally consistent shapes for the same person in different

rames, which will result in motion jitters. Hence, we add a temporal

onstraint on the shape parameter 𝛽, which is defined as 

 𝑡 = ‖𝛽𝑡 − 𝛽𝑡 −1 ‖. (13)

onsistent shape for the same person brings temporally stable bone

engths which is beneficial to pose estimation. 

Implementation details. Our algorithm is implemented in Pytorch

nd we solve our optimization problem using Limited-memory BFGS (L-

FGS) [53] optimizer. The learning rate of our algorithm is set to be

.0. Similar to [37] , we optimize Eq. (8) in a multi-stage manner to

void local minima by starting with high regularization for body and

hen gradually increasing the influence of hands and face in three steps.

he weights 𝛾 i in Eq. (9) corresponding to body, hands and face in three

teps are set to be (1.0, 0.0, 0.0), (1.0, 0.1, 0.0) and (1.0, 2.0, 2.0),

espectively. The weights 𝜆∗ except 𝜆c in Eq. (11) gradually decrease for

 better fitting. However, 𝜆c increases to impose higher regularization

n the collisions that will deteriorate with more influence of hands and

ace. As for the weight 𝜇, larger 𝜇 brings more temporally consistent

hape. Therefore, we set it to be 50 in our experiment. 

. Experiments 

In this section, we first evaluate the proposed method with abla-

ion study in Section 4.2 on a public multi-view human-human interac-

ion (MHHI) dataset [54] ( Section 4.1 ), and then compare our method

ith the state-of-the-art methods quantitatively and qualitatively in

ection 4.3 . Finally, we give the detailed running times of our method

n Section 4.4 . 
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Fig. 3. 3D reconstruction of human body, face, feet, and hands for multiple people with close interactions. The presented results projected to 3 different views are 

examples of 4 sequences respectively. 
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.1. Evaluation dataset 

MHHI is a dataset that includes 7 sequences with different motions.

t was recorded by 12 synchronized and calibrated cameras with the

mage resolution of 1296 × 967. Each motion sequence contains more

han 200 frames. There are four challenging available public sequences

 Crash, Jump, Wrestle and Fight ), categorized into marker-based cap-

ure data and markerless capture data. The Fight sequence is a marker-

ased motion capture sequence that can be used for quantitative eval-

ation. In this sequence, 38 markers are attached to a person whose

otion is captured by a commercial marker-based motion capture sys-

em PhaseSpace TM as the ground truth. We quantitatively evaluate our

ethod on this sequence which contains complex and extreme poses as

ell as fast motion. Some examples of our reconstruction results on the

our available sequences are shown in Fig. 3 . 

.2. Ablation study 

We first explore how the results are affected by different compo-

ents. Table 1 gives the comparison results of without and with tracking

n the Fight dataset. As shown in this table, tracking plays an important
Table 1 

Quantitative evaluation of without tracking (N. track), with tem- 

poral tracking (T. track), and with spatio-temporal tracking (S.T. 

track). O: using original OpenPose detection; O+: using updated 

OpenPose detection. 

N. track T. track 

S.T. track 

O O + 

Mean(mm) 765.91 241.56 31.79 30.35 

Std(mm) 420.00 187.34 10.27 7.89 

fi  

b  

c  

s

4

 

p  
ole in multi-person shape and pose estimation. In the case of no track-

ng, the detected 2D keypoints have no correspondences. Therefore, the

ptimization across views and frames will be invalid, which brings a

orse result. If only using the temporal tracking, the results will get

 little improved because of considering temporal information. Larger

mprovement is achieved by using our spatio-temporal tracking. This

enefits from our discriminative person appearance descriptor and the

legant design of spatio-temporal tracking. We also compare the results

sing original OpenPose detection and the updated 2D detection. The

pdated operation does not contribute as much as tracking, but it makes

he estimation more stable with smaller standard deviation. Fig. 4 shows

he visual results of without and with tracking. We can see obvious im-

rovement by using our spatio-temporal tracking. 

We further compare the face reconstruction results of using SMPL-X

odel [44] and a representative face model FLAME [48] on the MHHI

ataset in Fig. 5 . FLAME is an existing lightweight method that can re-

onstruct an expressive face and the whole head.We fit FLAME to the

ame 2D keypoints as ours for a fair comparison by using their official

ode. 1 Because multi-person close interaction scenario contains severe

cclusions and the image resolution of human faces is not high, directly

sing the existing 3D face reconstruction method cannot generate satis-

ed results. The FLAME method shows expressive results for some visi-

le and frontal views, but fails to generate correct results for occlusion

ases. On the contrast, our method obtains better results for both per-

ons in various views. 

.3. Qualitative and quantitative evaluation 

To our best knowledge, very little work can achieve 3D shape and

ose estimation for multiple closely interacting persons. Method [12] is
1 https://github.com/TimoBolkart/TF _ FLAME . 

https://github.com/TimoBolkart/TF_FLAME
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Fig. 4. 3D reconstruction results on four sequences (first row) without tracking (second row) and with spatio-temporal tracking (third row). 

Fig. 5. Comparison of face reconstruction of FLAME [48] (middle) against our method (bottom). 
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Fig. 6. The reconstruction results with method [12] (top row) and with our method (bottom row) using 2, 4, 8, 12 views from left to right. 

Fig. 7. 3D reconstruction results for four sequences (top) by method [12] (middle), and our method (bottom). 
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Table 2 

Comparison on different number of views. All errors 

are in millimeters. 

Number of 

views 

[12] Ours 

Mean Std Mean Std 

2 views 242.27 985.75 63.93 57.35 

4 views 58.42 177.56 37.88 17.67 

8 views 48.57 10.06 32.73 11.44 

12 views 43.30 9.45 30.35 7.89 
 very recent method for reconstructing multiple people involving close

nteractions. This method uses multi-view cues to compensate incomple-

ions and ambiguities due to occlusions, which has achieved the state-

f-the-art results. In order to give a fair comparison, we evaluate our

ethod on the Fight dataset similar to [12] . Quantitative evaluation re-

ults with different views are given in Table 2 . The selection of cameras

s based on their indices in the dataset. We calculate the mean distance

ith standard deviation between 38 tracked markers and its paired 3D

ertices that are matched in the first reconstructed frame across all 500

rames. As shown in Table 2 , our method outperforms the state-of-the-
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Fig. 8. Total capture results for multiple persons by using method [39] (middle row) and our method (bottom row). 
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i  
rt method [12] on both mean error and standard deviation metrics,

hich demonstrates that our method achieves more accurate shape and

ose estimation. It is worth noting that our method performs much bet-

er than method [12] especially with sparse views. This verifies the effec-

iveness of our approach on better dealing with ambiguities, occlusions

nd motion jitters. Some visual results are shown in Fig. 6 . It can be

een that our method can basically reconstruct the two persons in the

ase of two views while method [12] only reconstructs one person. 

Fig. 9 shows the mean reconstruction error of each frame using

ethod [12] and ours with 12 views. The errors are smaller by using

ur method for most frames. More qualitative comparison results are

hown in Fig. 7 . For closer observation, some regions are enlarged in

he corresponding images in Fig. 7 . Our method outperforms method

12] especially in some complex motion cases. 

We also compare our method with a newest total capture method

39] by using its publicly available code in Fig. 8 . It can be seen that
ur method is able to produce more accurate and realistic 3D human

odels for multiple closely interacting persons. 

Although our method presents good performance on 3D shape and

ose estimation for multiple persons with close interactions, there are

till some failure cases shown in Fig. 10 . Due to complex motion or

evere occlusions, our proposed method is hard to obtain the accurate

D estimation based on wrong 2D estimations in most of views. 

.4. Running time 

We conduct our experiments on a desktop with a 16-GB RAM and

 NVIDIA GeForce GTX 1080Ti GPU. Take two persons for an exam-

le. The 2D pose estimation using OpenPose takes about 0.6 s per frame.

he spatial tracking takes about 1.28 s for a pair of images, including

.26 s for feature extraction using ReID model and 0.02 s for the match-

ng. The temporal tracking takes about 7.78 s using the time-consuming
Fig. 9. The errors of 500 frames in Fight sequence. 
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Fig. 10. Examples of failure cases. 
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eepMatching feature extraction method (7.75 s ). The shape and pose

ptimization takes about 90s per frame for two persons. 

. Conclusion 

In this paper, we present a fully automatic method to jointly capture

ody, feet, face, and hands of multiple persons involving close inter-

ctions. To overcome challenges caused by multiple closely interacting

ersons, we design a spatio-temporal tracker that uses discriminative

ppearance descriptors and pose similarities to get multi-person associa-

ions in spatial and temporal domain. For more accurate reconstruction,

e estimate 3D shape and pose of each person by fitting a SMPL-X model

o multi-view videos using spatio-temporal constraints. Experimental re-

ults shows that our method outperforms state-of-the-art methods quan-

itatively and qualitatively. 

In future work, we will try to speed up our method. Furthermore, we

ill also try to recover the geometry details on the shape with shape-

rom-shading approaches, and generate a full texture map for a more

ivid virtual character. 
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