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Abstract— Separation of video clips into foreground and
background components is a useful and important technique,
making recognition, classification, and scene analysis more
efficient. In this paper, we propose a motion-assisted
matrix restoration (MAMR) model for foreground–background
separation in video clips. In the proposed MAMR model, the
backgrounds across frames are modeled by a low-rank matrix,
while the foreground objects are modeled by a sparse matrix.
To facilitate efficient foreground–background separation, a dense
motion field is estimated for each frame, and mapped into
a weighting matrix which indicates the likelihood that each
pixel belongs to the background. Anchor frames are selected
in the dense motion estimation to overcome the difficulty of
detecting slowly moving objects and camouflages. In addition,
we extend our model to a robust MAMR model against
noise for practical applications. Evaluations on challenging
datasets demonstrate that our method outperforms many other
state-of-the-art methods, and is versatile for a wide range of
surveillance videos.

Index Terms— Background segmentation/subtraction, matrix
restoration, motion detection, optical flow, video surveillance.

I. INTRODUCTION

V IDEOS have become the basic representation of inter-
esting scenes and events, and are widely used in many

areas, such as entertainment, public-security surveillance,
and healthcare. As a consequence, video analysis is of
crucial importance to mine interesting information from mass
data [1]–[3]. Separation of foreground and background [4]–[7]
is to divide a video clip into two complementary components:
the background and the foreground, which has become a
useful technique for video analysis in many applications,
such as motion detection [8], [9], object recognition [10], and
video coding [11].

Manuscript received May 13, 2014; revised July 25, 2014,
October 5, 2014, and November 29, 2014; accepted January 7, 2015.
Date of publication January 19, 2015; date of current version October 28,
2015. This work was supported in part by the National Natural Science
Foundation of China under Grant 61372084 and Grant 61302059 and
in part by the Tianjin Research Program of Application Foundation
and Advanced Technology under Grant 12JCYBJC10300 and Grant
13JCQNJC03900. This paper was recommended by Associate Editor J. Lu.
(Corresponding author: Jingyu Yang.)

X. Ye, J. Yang, X. Sun, and C. Hou are with the School of
Electronic Information Engineering, Tianjin University, Tianjin 300072,
China (e-mail: yjy@tju.edu.cn; yexch@tju.edu.cn; sunxin1012@gmail.com;
hcp@tju.edu.cn).

K. Li is with the School of Computer Science and Technology, Tianjin
University, Tianjin 300072, China (e-mail: lik@tju.edu.cn).

Y. Wang is with the Polytechnic Institute of New York University, Brooklyn,
NY 11201 USA (e-mail: yao@poly.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2392491

For accurate foreground–background separation, there are
many tough problems arising from the practical applications,
for example, illumination changes: the background has
intensity variations due to lighting changes [12]; camouflage:
slowly moving objects are difficult to identify, resulting in
wrong classification; and noise: video signals are usually
contaminated by various types of noise. Previous methods,
such as Gaussian mixture model (GMM) [13], nonparametric
kernel density estimation [14], and methods based on robust
principle component analysis (RPCA) [15], have addressed
some of these factors and made significant progress (detailed
in Section II), but more research work is still necessary to
achieve more accurate separation of foreground and
background components in video clips.

In this paper, we propose a new foreground–background
separation method via motion-assisted matrix
restoration (MAMR). Fig. 1 shows the work flow of our
method. The main idea is to incorporate motion information
into the matrix recovery framework to facilitate the separation
of the foreground and the background. To this end, a dense
motion field is first estimated for each frame against an anchor
frame, and mapped into a weighting matrix which indicates
the likelihood that each pixel belongs to the background.
Anchor frames are selected in the dense motion estimation
process to overcome the difficulty in detecting slowly moving
objects and camouflages. The separation problem is then
formulated into an MAMR model with the weighting matrix.
The model is solved by the alternating direction method
under the augmented Lagrangian multiplier (ADM-ALM)
framework. Then, we estimate the foreground using our
background subtraction technique. In addition, we extend our
model to a robust MAMR (RMAMR) model for practical
applications. Experiments show that our method achieves
consistently better performance than many state-of-the-art
methods on various datasets with different characteristics
(e.g., motions, lighting conditions, and noise).

The rest of this paper is organized as follows. In Section II,
we present a brief overview of related work. Section III
presents the formulation of weighting matrix, the MAMR
model, and the extended RMAMR model; we further develop
the ADM-ALM algorithm to solve the proposed models in
this section. Experimental results and analysis are given in
Section IV, and the conclusions is drawn in Section V.

II. RELATED WORK

Background extraction and foreground detection techniques
can be divided into two categories: local methods and
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Fig. 1. Work flow of the proposed method.

global methods. We give a brief overview for these two
categories.

A. Local Methods

Local methods usually operate on each pixel individually.
Some simple methods, including running Gaussian
average [16], temporal median filtering [17], and
first-order low-pass filtering [18], in some cases offer
satisfactory accuracy with high processing speed, but have
difficulties to deal with backgrounds with multimodal intensity
distributions. To model the multimodality background,
methods based on GMM [13], [19], [20] achieve significant
improvements, but are still difficult to handle challenging
video clips with varying lighting conditions and/or dynamic
backgrounds. The nonparametric model based on kernel
density estimation [14] is more robust to rapid variations
of backgrounds. Visual background extractor (ViBe) [21],
which is also a nonparametric model method, introduces
a random strategy to update the background values.
Hofmann et al. [22] proposed the pixel-based adaptive
segmenter (PBAS) by assigning adaptive randomness
parameters. In addition, Godbehere et al. [23] introduced a
pixel-wise Bayesian segmentation algorithm that identifies
foreground objects from an inferred foreground model and
an estimated background. Yao and Odobez [24] introduced
a robust multilayer background subtraction (MBS) technique
that takes advantages of local texture features represented
by local binary patterns and photometric invariant color
measurements in RGB color space. Self-organization
background subtraction SOBS proposed in [25] learned
background motion with a self-organizing neural network,
and obtains impressive detection results for scenes with
gradual illumination variations. The � − � motion detection
filter [26] is applicable to embedded systems, but compromises
on the detection accuracy to some extent.

In general, local methods enjoy the simplicity in design
and implementation, but the resulting segmentation map often
suffers from spatial inconsistency. In addition, these techniques
are sensitive to perturbations (e.g., noise and illumination
variations), and yield misclassifications around boundaries
between the background and foreground.

B. Global Methods

In contrast to local methods, global methods exploit more
spatial correlation information. Markov random field (MRF)
based methods are frequently used in background extrac-
tion for integrating spatial or spatial–temporal information.
Zhou et al. [27] presented a time dependent MRF model with
multiresolution spatiotemporal pyramids. More recently, based
on fuzzy GMM and MRF, Zhao et al. [28] introduced the
spatiotemporal constraints into the model to deal with dynamic
backgrounds.

Principal component analysis (PCA), widely used in classic
data analysis, is also powerful in background modeling.
Seki et al. [29] trained a PCA for each block-volume over
time, and determined the belonging (to the background or
foreground) of each block by measuring its projection to
the trained PCA. The eigenspace model [30] is proposed to
detect moving objects. Using blocks as basic units, PCA-based
methods are prone to misclassifying pixels at foreground–
background boundaries.

RPCA [15], a well-known extension of PCA, is able to
efficiently exploit the underlying low-rank structure in the
data even in the presence of large errors or outliers. Recently,
many background and foreground separation methods based
on RPCA have been developed [31]–[36]. Gao et al. [31]
introduced a two-pass RPCA combining with motion saliency
estimation to detect foreground. Guyon et al. [32] proposed
an adapted �2,1 norm to model the sparse component, which
satisfies the ad hoc block-sparse hypothesis. Zhou et al. [9]
improved previous RPCA-based methods using �0 norm
instead of �1 norm to model the sparse component, and incor-
porating contiguity prior using MRF to make the foreground
objects spatially consistent. Bouwmans and Zahzah [33] pre-
sented a comprehensive review on RPCA-principal component
pursuit (PCP)-based methods [34]–[36] for testing and ranking
existing algorithms for foreground detection.

In general, many methods have been developed using the
framework of sparse representation and rank minimization.
However, previous methods are motion-unaware and would
introduce smearing artifacts when handling slow motion and
motionless foreground (camouflages). To be aware of motions,
our work encodes motion information into the low-rank and
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Fig. 2. Illustration of the deficiency of the RPCA-based modeling.
(a) Continuous frames from a video clip. (b) Overlapping of all the frames.
(c) Observed matrix constructed by frames in (a). For easy observation, the
left car is marked by red region, while the right one marked by yellow. The
corresponding pixels of the two cars in the observed matrix are also marked
by the same colors, respectively.

sparse recovery model by a weighting matrix, which is
distinct from the recent work in [9] that improves RPCA
by imposing smoothness of the foreground component. The
proposed method also preserves the spatial smoothness of the
foreground component to some extent as the used optical flow
estimator [37] has considered the smoothness of the motion
field (hence the foreground). Our successful attempt might
serve as a good starting point to exploit the incorporation of
more complex motion models or other clues into the low-rank
and sparse recovery framework for foreground detection.

III. BACKGROUND MODELING VIA MOTION-ASSISTED

MATRIX RESTORATION

A. Motivation

The RPCA-based methods decompose the observed matrix
(constructed by shaping each frame into a vector, and put
vectors corresponding to successive frames as columns in the
matrix) into two components. The low-rank component
corresponds to the stationary background, while the sparse
component represents the moving objects. In general, the
RPCA model fits well the background and foreground char-
acteristics when foreground objects move fast: the latent
background should be the same for all the frames within a
scene (hence low-rank) and the foreground scatters in the spa-
tiotemporal volume of the video clip (hence sparse). However,
this prior assumption can be violated when the foreground
occupies a large portion of the scene densely. Fig. 2 shows a
video clip containing two cars. The right car stays motionless
all the time, and hence belongs to the background. As the
left car moves slowly (belonging to foreground), background
pixels are occluded by the car in many frames. In the observed
matrix, each row corresponds to one pixel to be recovered in
the background image, and the elements in a row are pixels
from the background or the foreground along the temporal
direction. As shown in Fig. 2(c), many rows are dominated by

the intensities of the left car, and the foreground components
in these rows are thus dense, which does not meet the sparse
assumption. As a result, the foreground information would
leak into the recovered background component. Therefore,
previous RPCA-based methods present smearing artifacts
around regions with slow motions or even camouflage.
To overcome this shortcoming, it is desirable to find a smart
way to let the model be aware of slow motions of foreground
objects, which motivates us to propose an MAMR model for
background–foreground separation.

B. Framework

The key idea of our MAMR method is to assign to each
pixel a likelihood that it belongs to the background based
on the estimated motion at that pixel. The background is
to be extracted from K frames of a surveillance video clip
denoted by {ik}K−1

k=0 of size M × N . For easy mathematical
manipulation, let ik be the vector form of frame ik with
the size M N × 1. Then, we represent the frame sequences
with matrix D = [i0, i1, . . . , iK−1] of size M N × K . The
recovered background component and foreground component
in D are denoted by B and F, respectively. The aim is to
separate B and F from D. Denote a matrix, named weighting
matrix, by W whose elements represent the confidence levels
that corresponding pixels in D belong to the background.
We propose to solve the foreground–background separation
problem by solving the following optimization formula:

min
B,F

||B||∗ + λ||F||1, s.t. W ◦ D = W ◦ (B + F) (1)

where ||·||∗ and ||·||1 denote the nuclear norm (sum of singular
values) and �1 norm of a matrix, respectively, and ◦ denotes
element-wise multiplication of two matrices. Like previous
methods, it is reasonable to assume the background as motion-
less in most practical surveillance applications (otherwise a
global motion should be compensated). Under this assumption,
any area with motion should not be considered as a part of
background. Therefore, the weighting matrix W is constructed
from motion information (Section III-C). Model (1) extends
the classic matrix recovery model by taking the reliability
of observed data into consideration. By incorporating motion
information, areas dominated by slowly moving objects are
suppressed, while the background that appears in only a few
frames has more chances to be recovered in the final results.

C. Weighting Matrix Construction From Motion Information

Usually, the optical flow is computed pair-wise between two
consecutive frames. However, for practical video clips, moving
objects may move slowly or even stay motionless across many
frames, i.e., camouflage, which are difficult to detect by optical
flow. As shown in Fig. 6(a) (top row in red rectangle), the
bag put on the carton by the left man is a camouflage across
many frames. The optical flow between two adjacent frames
is not sufficient to determine whether it belongs to foreground
or background, resulting in misclassification. To remedy this
problem, for each frame, we find a proper reference frame
(called anchor frame, not necessarily the adjacent one) that
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differs from the current frame even in regions containing
slowly moving foreground objects or even camouflages. Then,
we estimate motion information for each frame referring to its
nearest anchor frame. Finally, we map the motion field into a
weighting matrix.

1) Dense Motion Estimation With Anchor Frame Selection:
For a single video, we set the first frame i0 as the initial anchor
frame. The remaining anchor frames are automatically selected
according to the difference against the previous nearest anchor
frame. To this end, the difference between the current frame ik

and the previous nearest anchor frame ianchor is calculated for
each frame. The difference ek is defined as mean absolute
difference between two frames

ek =
∑

m∈M,n∈N

∣
∣im,n

k − im,n
anchor

∣
∣

M × N
(2)

where m and n are the 2-D pixel indexes in a frame. If the
difference is larger than a threshold T, this frame is selected
as a new anchor frame.

For each frame, we use the optical flow method in [37]
to extract a dense motion field (ox

k , oy
k ) between current

video frame ik and its previous nearest anchor frame, where
ox

k and oy
k are the horizontal component and vertical compo-

nent of the motion field, respectively. Both ox
k and oy

k are in the
vector form in the same organization as ik . Note that T should
be chosen appropriately: too large a threshold would lead to
few anchor frames, while too small a threshold would result
in underestimation of motion (hence smearing artifacts around
slowly moving objects and misclassification of camouflages).

2) Motion-to-Weight Mapping: In the proposed model, the
weighting matrix W is constructed from the extracted dense
motion field. We use the sigmoid function to map the motion
field (ox

k , oy
k ) into the weighting matrix. We define ox of

size M N × K as the matrix form of horizontal motion fields
for all frames in D by stacking ox

k , k = 0, 1, . . . , K − 1 as
columns. Similarly, oy is defined for vertical motion fields.
The weighting matrix W is constructed as follows:

w j k = 1 − 1

1 + exp

(

α

(

−
√(

ox
jk

)2 + (
oy

jk

)2 + β

)) (3)

where α and β are the parameters of the sigmoid function
which control the fitting slope and phase, respectively. β is
chosen according to the average intensity of the motion field.
Note that α is a crucial parameter to shape the importance
of motion information, as shown in Fig. 3: if α is zero, the
weighting matrix W is equal to 0.5 in all elements, and (1)
turns into traditional RPCA-based method. As α increases,
the slope of sigmoid function becomes steeper; when α takes
very large values, for example, 10, the sigmoid function will
become approximately a step function, while W also turns
into a binary matrix, i.e., W ∈ {0, 1}M N×K . Specifically, the
weighting matrix W is degraded from (3) to the following
binary mask:

w j k =
{

0,
√(

ox
jk

)2 + (
oy

jk

)2 ≥ β

1, otherwise.
(4)

Fig. 3. Mapping from motion field (ox
k and oy

k ) to the weighting matrix W
using sigmoid functions.

With such weighting, (1) becomes the following matrix
completion model:

min
B,F

||B||∗ + λ||F||1, s.t. P�(D) = P�(B + F) (5)

where � denotes the linear subspace of entries in the observed
matrix that belong to background for sure, and P�(·) is the
associated projection operator.

D. ADM-ALM Algorithm to Solve the MAMR Model

The MAMR model is essentially a convex optimization
problem that can be solved by ADM-ALM method [38], [39].
The idea of ALM framework is to convert the original con-
strained optimization problem (1) to the minimization of the
augmented Lagrangian function

L (B, F, Y, μ) = ||B||∗ + λ||F||1 + 〈Y, W ◦ (D − B − F)〉
+ μ

2
||W ◦ (D − B − F)||2F (6)

where μ is a positive constant, Y is the Lagrangian multiplier.
〈·, ·〉 denotes the matrix inner product, and || · ||F denotes the
matrix Frobenius norm.

Instead of optimizing B, F, and Y simultaneously, the ADM
solves B, F, and Y alternatingly

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F j+1 = arg min
F

λ||F||1 − 〈Y j , W ◦ F〉
+ μ j

2
||W ◦ (D − B j − F)||2F

B j+1 = arg min
B

||B||∗ − 〈Y j , W ◦ B〉
+ μ j

2
||W ◦ (D − B − F j+1)||2F

Y j+1 = Y j + μ j W ◦ (D − B j+1 − F j+1)

μ j+1 = ρμ j .

(7)

The solution of Fj+1 has the following closed form:

F j+1 = shrink

(
1

μ j
Y j + W ◦ (D − B j ),

λ

μ j

)

(8)

where shrink(·,·) is the soft-thresholding function defined as

shrink(X, t) = sign(X) max(abs(X) − t, 0). (9)
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Algorithm 1 ADM-ALM Algorithm for the MAMR Model

Input: D ∈ R
M N×K, W ∈ R

M N×K , λ > 0, ρ > 0, μ > 0;
Initialize: F1 = 0, B1 = 0, Y1 = 0;
while not converged do

F j+1 = shrink
( 1

μ j
Y j + W ◦ (D − B j ),

λ
μ j

)
;

t1 = 1, Z1 = B j , B j,1 = B j ;
while not converged do

(Ul , Sl , Vl) =
svd

( 1
μ j

Y j + W ◦ (D − Zl) − F j+1 + Zl
)
;

B j,l+1 = Ulshrink
(
Sl ,

1
μ j

)
VT

l ;

Zl+1 = B j,l+1 + tl−1−1
tl

(B j,l+1 − B j,l);

tl+1 = 0.5

(

1 +
√

1 + 4t2
l

)

, l = l + 1;

end while
B j+1 = B j,l+1;
Y j+1 = Y j + μ j W ◦ (D − B j+1 − F j+1);
μ j+1 = ρμ j , j = j + 1;

end while
Output: (B j , F j );

The soft-thresholding operator applies on the matrix X in an
element-wise manner.

The solution of Bj+1 in (7) does not have a closed-form
solution, and we resort to the accelerated proximal gradient
algorithm [40] given as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(Ul , Sl , Vl) = svd
(

1
μ j

Y j + W ◦ (D − Zl ) − F j+1 + Zl

)

Bl+1 = Ulshrink
(

Sl ,
1
μk

)
VT

l

Zl+1 = Bl+1 + tl−1−1
tl

(Bl+1 − Bl)

tl+1 = 0.5

(

1 +
√

1 + 4t2
l

)
(10)

where tl is a positive sequence with t1 = 1 and svd(·) denotes
the singular value decomposition of a matrix.

The entire algorithm to solve problem (1) is summarized
as Algorithm 1. In the ADM-ALM framework, the sub-
problems are not necessarily solved exactly as long as the
approximated solutions reduce the cost of Lagrangian function,
which is therefore called inexact ALM [41]. Allowing inexact
approximation of the subproblems actually reduces overall
computational complexity as the inner-loop iterations require
considerable amount of computation to reach convergence.
In our implementation, the inner loop for solving Bj+1 has
only one iteration for acceleration.

The solution of (1), denoted by (B∗, F∗), is obtained after
the convergence of the iterative procedure: B∗ contains a
background component for each frame, while F∗ provides a
foreground component for each frame. We take the average of
all columns in B∗ as the final recovered background image b̄.
Note that the �1 regularizer essentially describes signals that
conform the Laplacian distribution. As a result, F∗ contains not
only the desired foreground components but also noise leaked
from background areas (due to the low-rank regularization).
Therefore, we do not use F∗ as the foreground solution. Rather,
we extract foreground using the background subtraction

approach with the recovered background b̄ (detailed
in Section III-E).

E. Foreground Separation With Background Subtraction

Denote by f̄k the foreground image for frame ik . The
intensity value of f̄k at pixel x , denoted by f̄k(x), is
determined as

f̄k(x) =
{

ik(x),
∑

x∈Nx |ik (x)−b̄(x)|
|Nx | > τ + σ

0, otherwise
(11)

where Nx is the neighborhood of size ω × ω around x .
|Nx | is the number of pixels in Nx ; σ represents the level
of noise variations in ik ; and τ is defined as

τ =
∑

x∈ |ik(x) − b̄(x)|
|| (12)

where  is the set of pixels which contains nonzero values
in |ik(x) − b̄(x)|; || is the number of nonzero pixels in the
set . By thresholding the average background subtraction
image value over a small window, the outliers can be removed,
while the true foreground pixels are retained. For comparison
in the experimental section, we convert the foreground image
f̄k into a binary map by replacing the nonzero values in f̄k

with 255.

F. Robust MAMR

In real applications, noise is quite ubiquitous. Usually, the
data matrix is seriously damaged in some elements, while
all of the elements would receive some lightweight noise
pollution. Though the �1 norm can separate the intensive
sparse errors from the intrinsic low-rank data matrix, it cannot
deal with dense noise distributed over the whole frames.
Therefore, we propose an RMAMR model. We use the
Frobenius norm to model dense noise. Denote by G the error
matrix of dense noise, the model can be formulated as follows:

min
B,F,G

||B||∗ + λ||F||1 + γ ||G||2F
s.t. W ◦ D = W ◦ (B + F + G) (13)

where γ is a positive constant, and || · ||F denotes the matrix
Frobenius norm. The augmented Lagrangian function of
problem (13) is given by

L(B, F, G, Y, μ) = ||B||∗ + λ||F||1 + γ ||G||2F
+ 〈Y, W ◦ (D − B − F − G)〉
+ μ

2
||W ◦ (D − B − F − G)||2F . (14)

Note that the difference between (1) and (13) is the intro-
duction of the quadric term of G. The solutions of B and F
subproblems are similar to those in (1). Therefore, we only
present the solution of G-subproblem

G j+1 = arg min
G

γ ||G||2F − 〈Y j , W ◦ G〉
+ μ j

2
||W ◦ (D − B j − F j+1 − G)||2F . (15)

The solution of G has the following closed form:
G j+1 = 1

μ j + 2γ
(Y j + μ j W ◦ (D − B j − F j+1)). (16)
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Algorithm 2 ADM-ALM Algorithm for the RMAMR Model

Input: D ∈ R
M N×K, W ∈ R

M N×K, λ > 0, ρ > 0, γ > 0,
μ > 0;
Initialize: F1 = 0, G1 = 0, B1 = 0, Y1 = 0;
while not converged do

F j+1 = shrink
( 1

μ j
Y j + W ◦ (D − B j − G j ),

λ
μ j

)
;

G j+1 = 1
μ j +2γ (Y j + μ j W ◦ (D − B j − F j+1));

t1 = 1, Z1 = B j , B j,1 = B j ;
while not converged do

(Ul , Sl , Vl) =
svd

( 1
μ j

Y j + W ◦ (D − Zl ) − F j+1 − G j+1 + Zl
)
;

B j,l+1 = Ulshrink
(
Sl ,

1
μ j

)
VT

l ;

Zl+1 = B j,l+1 + tl−1−1
tl

(B j,l+1 − B j,l);

tl+1 = 0.5

(

1 +
√

1 + 4t2
l

)

, l = l + 1;

end while
B j+1 = B j,l+1;
Y j+1 = Y j + μ j W ◦ (D − B j+1 − F j+1 − G j+1);
μ j+1 = ρμ j , j = j + 1;

end while
Output: (B j , F j , G j );

The entire algorithm to solve problem (13) is summarized
as Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we first present the setting of parameters
in our algorithm (Section IV-A), and introduce test
video clips and performance metrics used in our
paper (Section IV-B). Then, we investigate the parameters
in weighting matrix construction that affect the recovery
performance (Section IV-C), and compare different combining
options to evaluate the impact of each module in our model
(Section IV-D). Next, we compare our MAMR model
with other state-of-the-art methods on challenging datasets in
terms of background extraction (Section IV-E) and foreground
detection (Section IV-F). In addition, we show the robustness
to noise of our RMAMR model in Section IV-G. The running
time is reported in Section IV-H.

In this paper, our method is compared with 13 methods:
ViBe [21], SOBS [25], GMM [13], statistical Bayesian
segmentation and tracking (SBST) [23], PBAS [22], fuzzy
background modeling (FBM) method [28], GMM of
Laurence Bender (LBG) [42], MBS [24], PCP [15], outlier
pursuit (OP) [34], semisoft GoDec algorithm (SSGoDec) [35],
sparse Bayesian for low-rank matrix estimation (SBL) [36],
and detecting contiguous outliers in the low-rank represen-
tation (DECOLOR) [9]. The codes for PCP, OP, SSGoDec,
and SBL are available at the project website [33], [43]. The
codes for ViBe, GMM, SOBS, and DECOLOR are provided
by the authors. The remaining methods are publicly available
from Bgslibrary [44]. Since GMM, SOBS, LBG, MBS, and the
RPCA-based methods can generate the both background image
and the binary foreground map, we compare the extracted
backgrounds with these methods in (Sections IV-E and IV-G).

For all above algorithms, we seek optimal parameters around
initial parameters published by the authors for fair
comparison.

All the results are available in the project website.1

We direct interested readers to the website for more visual
comparison results.

A. Parameter Setting

The parameters in our method fall into two categories:
1) parameters (ρ and μ) that affect algorithm convergence
and 2) parameters (T, α, β, λ, γ , σ , and ω) that influence the
performance.

1) Convergence Parameters: μ is increasing during itera-
tions from a small initial value 1/LSV(F), where LSV(·) takes
the largest singular value of the operand matrix [38], [39].
In terms of ρ, too large a value would lead to unsatisfactory
result, while too small one would slow the convergence rate
of the algorithm. Therefore, we empirically set ρ = 2 for all
the datasets.

2) Performance Parameters: σ and ω are related to
foreground detection. Thresholding factor σ in (11) depends
on the level of noise and the average color difference between
foreground pixels and background pixels in a video clip. It is
chosen between the range [15], [35] for all the video clips
(Section IV-B). The neighborhood size ω in (11) is fixed
at 3 × 3.

The parameters T, α, and β control the construction of
weighting matrix. For each frame, T is adaptively set according
to the average motion intensity over the previous processed
K frames: T = 1.3

∑k−K
n=k−1 en/K . If ek is larger than T, the

current frame is selected as a new anchor frame. β controls the
turning point of the sigmoid function, and reflects the motion
level beyond which is considered significant. In our imple-
mentation, β is chosen as the average intensity of the motion
field, which is satisfactory for various datasets. Usually, α is
set at a large value for a binary weighting matrix. The detailed
discussion of α is given in Section IV-C.

The parameters λ and γ adjust the importance between
low-rank term, sparse term, and noise term. In the noise-
free case, our MAMR model set λ = 10, a large value that
emphasize the importance of sparse regularization. In noisy
case, our RMAMR model set λ = 1 and γ = 1 for the tested
noise level.

B. Test Datasets and Performance Metrics

For comprehensive evaluation, we test our
method on 10 video clips from change detection
dataset (CDnet) [45], [46], and other two typical video
clips Monitor and Train. CDnet contains six video categories
with four to six video clips in each category. We choose the
whole video clips from the category dynamic background,
including Boats, Canoe, Fall, Fountain01, Fountain02, and
Overpass; and pick one representative from each of
other four categories, i.e., Office from baseline,
Winterdrive (Winter) from intermittent object motion,

1Available at http://projects.medialab-tju.org/bf_separation/
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TABLE I

KEY INFORMATION OF THE 12 DATASETS INCLUDING TYPICAL

CHARACTERISTIC APPEARING IN THEM. DIFFERENT

DATASETS USED IN DIFFERENT EXPERIMENTAL

SECTIONS ARE MARKED BY CHECK MARK

Fig. 4. Ground-truth background images for Office, Winter, Shade, Monitor,
Train, and Fall (enclosed by blue lines), and dynamic backgrounds exclud-
ing foregrounds for Boulevard, Boats, Canoe, Fountain01, Fountain02, and
Overpass (enclosed by yellow lines).

Boulevard from camera jitter, and PeopleInShade (Shade) from
shadow. We pick continuous 200 frames from each dataset in
the experiment. The key information of these 12 datasets is
summarized in Table I. Each of these datasets may include
various kinds of motions, lighting variations, camera jitter,
camouflages, shadows, dynamic backgrounds, or the
combination of them.

For objective evaluation in background extraction, ground-
truth background images for static videos are created
by averaging the background frames (without foreground
included), which are manually picked from the sequence
(as shown in Fig. 4). We use the peak signal-to-noise
ratio (PSNR) to measure the quality of extracted backgrounds
against their ground truth. Datasets with dynamic backgrounds
are difficult to acquire their ground-truth backgrounds, and
thus excluded in objective evaluation.

Foreground detection is essentially a binary segmentation
task to classify each pixel into the background or foreground.
We measure the objective performance of different algorithms

Fig. 5. Objective comparison with different values of α for recovered
backgrounds on five video clips (static backgrounds). The values are computed
against ground truths in PSNR.

by three metrics, namely, Recall (Re), Precision (Pre), and
F-measure (F1)

⎧
⎪⎨

⎪⎩

Recall = tp/(tp + fn)

Precision = tp/(tp + fp)

F1 = (2 × Recall × Precision)/(Recall + Precision)

(17)

where tp (true positive) represents correctly classified
foreground pixels, fn (false negative) denotes the number
of foreground pixels incorrectly classified as background,
fp (false positive) stands for the total number of background
pixels incorrectly classified as foreground. Precision gives the
percentage of correctly detected foreground pixels among all
detected foreground pixels. Recall weighs the percentage of
correctly detected foreground pixels among the total number of
foreground pixels. F-measure is the weighted harmonic mean
of Precision and Recall, which measures the overall detection
quality of an algorithm. For all the three metrics, the higher
the value is, the better the performance it has.

C. Effect of α in Motion-to-Weight Mapping

Note that α is a crucial parameter to map the motion field
(ox

k and oy
k ) into weighting matrix W. We sample five values

of α, i.e., 0, 0.5, 1.5, 3, and 10 (which generates a nearly binary
matrix) to investigate how α affect the recovery performance.
A linear mapping is also tested between W and (ox

k , oy
k ).

Fig. 5 shows our objective results on recovered backgrounds.
As α increases, the recovered performance gets better for
each video clip, and reaches the highest PSNR when α equals
to 10 (approximately binary weight). This trend is particularly
significant for Monitor and Train, because Monitor contains
a slowly walking men while the runaway thief occupies most
space of the picture across many frames in Train.

Fig. 6 further shows two datasets under different alpha
parameters. The ghosting artifacts are eliminated as α
increases, and the best performance is achieved when α = 10.
In Fig. 6, we observe that the bag on the carton (highlighted
with a red rectangle) is successfully removed from the
background when α > 1.5. The results show that our
method favors the binary weights to have the most accurate
separation result. Therefore, we use model (5) for our method
in the following results.
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Fig. 6. Visual quality comparison for recovered background in Monitor
(the top row) and Train (the bottom row) using the proposed method under
different α values. From left to right (a) PCP (α = 0) [15], (b) α = 0.5,
(c) α = 1.5, (d) α = 3, and (e) α = 10.

TABLE II

QUANTITATIVE FOREGROUND DETECTION RESULTS ON DIFFERENT

COMBINING OPTIONS. OPT1–OPT10 REPRESENT 10 COMBINING

OPTIONS, IN WHICH OF1-OF4 ARE FOUR OPTICAL FLOWS,

AND AFS DENOTES THE ANCHOR FRAMES SELECTION

D. Performance of Our Method With
Different Combining Options

In this section, we test different combining options to verify
the importance of different modules included in our MAMR
model. Four optical flow computation methods, i.e., OF1 by
Black and Anandan [47], optical flow algorithm (OF2) by
Liu [37], OF3 by Sun et al. [48], OF4 by Brox and Malik [49],
are used to derive the weight matrix. These methods provide
different tradeoffs between speeds and accuracy. In total,
10 different combining options are designed for comprehen-
sive comparison (as shown in Table II). The acronyms of the
combing options are also explained in Table II. For
Opt1 and Opt2, the compound data of optical flows and pixels
values are modeled with GMM, in which the background
image is updated on-the-fly, and foreground is detected by
comparing its probability belonging to the foreground over
that belonging to the background. The quantitative results and
visual comparison are given in Table II and Fig. 7, respectively.

As shown in Table II, different optical flows obtain almost
the same results under the same type of combinations
(OF + RPCA or OF + AFS + RPCA). Therefore, we choose
the fast OF2 [37] to accelerate our method. Comparing the
results of OF + RPCA and OF + AFS + RPCA, we observe
that the performance would decline if the AFS is excluded,
which demonstrates the effectiveness of AFS to detect moving
objects.

Observing the effect of the weighting matrix constructed
from optical flow with anchor frames selection, one may want

Fig. 7. Binary foreground maps and its corresponding extracted backgrounds
obtained with different combining options on the 656th frame of Office and
the 1936th frame of Winter. (a) GMM [13]. (b) Opt1 (OF4 [49] + GMM).
(c) Opt2 (OF4 [49] + AFS + GMM). (d) Opt6 (OF4 [49] + RPCA).
(e) Opt10 (OF4 [49] + AFS + RPCA). AFS is the short for anchor frames
selection.

to see the effect of using this weighting matrix with other
models, such as GMM. To this end, we replace the RPCA
model with the GMM model in OPT1 and OPT2. As shown
in Table II, the replacement of RPCA with GMM suffers from
severe performance loss. In Fig. 7, we show the performance
evolution in a more intuitive way with visual comparison.
Only using GMM on color information cannot estimate the
foreground precisely, for example, the man in Office and
the car in Winter. When adding motion information (Opt1),
the results are improved, but some regions still cannot be
detected due to the failure of frame-by-frame optical flow
computation in detecting slowly moving objects. By further
introducing anchor frame selection (Opt2), most pixels of
the foreground can be found. However, there are still some
smearing artifacts due to the background variations. The
results generated by our method (Opt10), as shown in Fig. 7(e),
are more accurate, and the recovered backgrounds are more
close to the ground truth. Experimental results in this section
verify that each module of our method plays an important role
in improving the performance, and the assembling of the three
components in our method show great power toward accurate
background–foreground separation.

E. Experimental Results on Background Extraction

Fig. 8 compares backgrounds extracted by SOBS [25],
LBG [42], MBS [24], PCP [15], DECOLOR [9], and our
MAMR. We test all the video clips, but present the results for
only the most challenging seven ones to save space (see the
project website for the results on all the video clips). For the
same reason, of the five RPCA-based methods, we present
the results for only the baseline PCP [15] and the most
recent DEOLOR [9]. The results in Fig. 8 show that our
method provides significant improvement over other methods.
The background images recovered by our MAMR model are
more close to ground truth, while the ones extracted by other
methods present smearing and ghosting artifacts.

For Boulevard, Fall, Fountain01, and Fountain02, the
foreground objects are small and run fast in the scenes. For
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Fig. 8. Visual quality comparison for background extraction on seven video clips. (a) True backgrounds. (b) MAMR. (c) SOBS [25]. (d) LBG [42].
(e) MBS [24]. (f) PCP [15]. (g) DEOLOR [9]. From top to bottom: extracted backgrounds for Office, Winter, Monitor, Train, Boats, Canoe, and Overpass,
respectively.

this type of motions, all the methods can recover promising
background images. However, when it comes to slowly moving
objects, for example, the walking men in Office, Overpass,
and Monitor, and the running boats in Boats and Canoe,
results produced by the compared methods present severe
smearing artifacts. This is because the slowly moving objects
occlude the scene across many frames, which may be con-
sidered as a part of background, resulting in the failure of
background extraction. Moreover, for Winter, the left car keeps
motionless at first, and moves very slowly during the whole
video (nearly camouflage). SOBS, LBG, and MBS tend to
classify the intermittent moving object as background and fail
to adapt to background changes. The RPCA-based methods,
i.e., PCP and DECOLOR, present smearing artifacts along the
trajectories of running car. On the contrary, our method
achieves promising results for all the evaluation datasets.
With the help of motion information, we can prevent the
slow moving objects (e.g., motionless man and running boat)

from leaking into backgrounds, and recover the accurate
backgrounds without smearing and ghosting artifacts.

F. Experimental Results on Foreground Detection

With the extracted background, we detect foreground
objects via background subtraction. Foreground detection
results are reported in Table III. Our method achieves the
highest F-measure for all the datasets, though some values in
terms of the Precision and Recall metrics are a little lower than
other methods. For FBM, SBL, and DECOLOR, the values of
Precision and Recall present a trend that if the value of one
metric is very high, the other would be very low. For Monitor,
SBST achieves the highest Recall (0.97), but extremely low
Precision (only 0.42). As a result, these methods have low
F-measure values. In contrast, our method obtains high values
in terms of both Precision and Recall, and therefore has high
F-measure values. This proves the superior performance of
our method over other methods.
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Fig. 9. Visual quality comparison for foreground detection on 12 video clips. (a) Input image frame. (b) Corresponding ground-truth binary foreground.
(c) Our MAMR model. (d) ViBe [21]. (e) SOBS [25]. (f) GMM [13]. (g) FBM [28]. (h) PCP [15]. (i) DECOLOR [9]. From top to bottom: the
656th frame of Office, the 1936th frame of Winter, the 816th frame of Boulevard, the 481th frame of Shade, the 56th frame of Monitor, the 46th frame of
Train, the 7101th frame of Boats, the 956th frame of Canoe, the 1497th frame of Fall, the 717th frame of Fountain01, the 741th frame of Fountain02, and
the 2401th frame of Overpass, respectively. The gray regions in the ground-truths provided by CDnet are excluded when making objective comparison.

Fig. 9 further presents visual comparison results of
foreground detection for one typical frame in each video clip.
We only choose some typical methods to show the results to
save space. For slowly moving objects in Office, Monitor, and
camouflage in Winter, the proposed method accurately detects
the foreground objects. For Winter, Shade, and Train, due to

the poor lighting conditions and shadows cast by foreground
objects, most methods fail to detect the intact foreground.
It is more tough to handle backgrounds with varying ambient
lighting variations and shadows than static ones since these can
cause fake motions in the background. For Shade, Monitor,
and Overpass, they contain nearly periodic motions as the
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TABLE III

QUANTITATIVE FOREGROUND SEPARATION RESULTS IN TERMS OF RECALL, PRECISION, AND F -MEASURE ON THE 12 VIDEO CLIPS

TABLE IV

QUANTITATIVE FOREGROUND SEPARATION RESULTS IN TERMS OF RECALL, PRECISION, AND F -MEASURE ON 12 NOISY VIDEO CLIPS

man in each scene repeats the action of walking and the
poses are similar across frames. Our method successfully
detects this type of motions and recover accurate foregrounds;
DECOLOR [9] also provides similar results.

The most difficult category on detecting foreground is the
Dynamic Background. Due to the motions in the background,
such as the running water in Boats and Canoe, the waving trees
in Fall and Overpass, and springs in Fountain01 and
Fountain02, the judge on whether the pixel belongs to fore-
ground or background is very difficult. For example, in Boats,
all the methods fail to detect the body of the boat, while
our MAMR model is able to faithfully separate the boat;
in Fall, most methods cannot fend against the influence
of the waving tree, and the foreground masks are polluted
severely. DECOLOR provides comparable results to our meth-
ods and ensures the integrity of the foreground, but also
yields overestimation in some cases, which can be observed
from the man in both Shade and Overpass. Moreover, for
Fountain01, the flowing fountain water is misclassified as part
of foreground and further expanded due to the smoothness
regularization.

In general, our method significantly outperforms other
methods. The results of our MAMR model are the clos-
est to ground-truth binary maps. Through encoding motion
cues into RPCA, our motion-aware method significantly

improves the performance of other motion-unaware RPCA
methods.

G. Experimental Results on Noisy Datasets

In this section, we test the performance of our RMAMR
model against noisy datasets. To this end, we add Gaussian
noise with a variance of 25 to the original test clips. The
noise degradation can affect a lot on background extraction
and foreground detection.

Objective recovery results of foreground detection and
background extraction are reported in Tables IV and V,
respectively. As shown in Table IV, though most methods
including ours obtain a lower metric values than results
on clean datasets (Table III in Section IV-F), our method
still obtains the best objective values for most cases,
which demonstrates robustness of our RMAMR model to
noise. In Table V, our method obtains the highest PSNRs
against the ground-truth backgrounds. Note that all the
RPCA-based methods achieve satisfactory denoising results,
which have relative higher values of PSNR than other methods.
Fig. 10 further presents visual comparisons of foreground
detection results. Our method generates almost the same
foreground results as those on clean datasets, while other
methods tend to produce noisy results due to the presence
of noise.
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Fig. 10. Visual quality comparison for binary foreground maps on the synthetic noisy video clips on the category of dynamic background. (a) Original noisy
frame. (b) Ground truth. (c) Our RMAMR model. (d) SOBS [25]. (e) LBG [42]. (f) MBS [24]. (g) PCP [15]. (h) OP [34]. (i) SSGoDec [35]. (j) SBL [36].
(k) DECOLOR [9].

TABLE V

QUANTITATIVE BACKGROUND EXTRACTION RESULTS IN TERMS

OF PSNR ON 12 NOISY VIDEO CLIPS

H. Running Time

Our method mainly consists of two parts: dense motion
estimation by optical flow [37] and convex programming in
solving the MAMR/RMAMR models. We report running time
for Fountain01 with 40 frames of size 320 × 240. The
ADM-ALM algorithms are implemented in MATLAB
(R2013a), and run on a desktop with a 3.4-GHz Core4 i7
processor and 8-GB memory.

The motion estimation takes about 20 s on average to
process 40 frames (each frame takes about 0.5 s). The
ALM-ADM algorithm takes 2.53 s to separate the background
and foreground from the 40-frame sequence by solving (5),
while it takes 2.60 s solving (13), which is comparable with the
RPCA-based method (2.26 s) [15]. In addition, the optical flow
method [37] can be replaced by other faster motion estimators.

V. CONCLUSION

In this paper, we propose an MAMR model for
foreground–background separation from video clips. In the
proposed MAMR model, the backgrounds across frames
are modeled by a low-rank matrix, while the foreground
objects are modeled by a sparse matrix. To facilitate efficient
foreground–background separation, a dense motion field is
estimated for each frame, and mapped into a weighting matrix
to assign the likelihood of pixels belonging to the background.
Anchor frames are selected in the dense motion estimation to
overcome the difficulty of detecting slowly moving objects
and camouflages. We also extend our model to an RMAMR
model. Experimental results demonstrate our method is quite
versatile for surveillance videos with different types of motions
and lighting conditions.

The proposed framework could be improved and extended
in future work: 1) exploit the incorporation of more complex
motion models or other clues into the low-rank and sparse
recovery framework for foreground detection; 2) optimize
model parameters according to video characteristics; and
3) explore weighted versions of more low-rank and sparse
recovery models as well as their applications to other image
processing tasks.
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