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The total number of elements in a P+1 level 
pyramid for P>0 is
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The Z-transform, a generalization of the 
discrete Fourier transform, is the ideal tool for 
studying discrete-time, sampled-data 
systems.
The Z-transform of sequemce x(n) for 
n=0,1,2,…is

Where z is a complex variable.
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Downsampling by a factor of 2 in the time 
domain corresponds to the simple Z-domain 
operation

(7.1-2)
Upsampling-again by a factor of 2---is defined 
by the transform pair

(7.1-3)     
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If sequence x(n) is downsampled and 
subsequently upsampled to yield        , 
Eqs.(7.1-2) and (7.1-3) combine to yield

where                 is the downsampled-
upsampled sequence.  
Its inverse Z-transform is
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We can express the system’s output as

The output of filter          is defined by the 
transform pair 
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As with Fourier transform, convolution in the 
time (or spatial domain is equivalent to 
multiplication in the Z-domain.
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For error-free reconstruction of the input,
and               . Thus, we impose the 

following conditions:

To get

Where             denotes the determinant of         .
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Letting         , and taking the inverse Z-
transform, we get 

Letting         , and taking the inverse Z-
transform, we get 
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Three general solution:
Quadrature mirror filters (OMFs)

Conjugate quadrature filters (CQFs)

Orthonormal
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The Haar transform can be expressed in 
matrix form

Where 
F is an N*N image matrix, 
H is an N*N transformation matrix, 
T is the resulting N*N transform.
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For the Haar transform, transformation matrix 
H contains the Haar basis 
functions,          .They are defined over the 
continuous, closed interval           for 
k=0,1,2,…,N-1, where             .
To generate H, we define the integer k such 
that

where                 ,                or 1 for         . 
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Then the Haar basis functions are

and
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The ith row of an N*N Haar transformation matrix 
contains the elements of 

If N=4, for example k,q, and p assume the values
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The 4*4 transformation matrix, H4, is
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A signal of function f(x) can often be better 
analyzed as a linear combination of 
expansion functions

k is an interger index of the finite or infinite 
sum;

are real-valued expansion coefficients;
are real-valued expansion functions.
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These coefficients are computed by taking 
the integral inner products of the dual       ‘s 
and function f(x). That is 
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Series Expansion

Scaling Functions

Wavelet Functions



The set of expansion functions composed of 
integer translations and binary scaling of the 
real, square-integrable function           ; that is, 
the set          where
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If               , it can be written

We will denote the subspace spanned over k 
for any j as
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The simple scaling function in the preceding 
example obeys the four fundamental requirements 
of multiresolution analysis:

MRA Requirement 1: The scaling function is orthogonal to 
its integer translates;

MRA Requirement 2: The subspaces spanned by the 
scaling function at low scales are nested within those 
spanned at higher scales.





MRA Requirement 3: The only function that is 
common to all Vj is f(x)=0.

MRA Requirement 4: Any function can be 
represented with arbitrary precision. 
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Scaling Functions

Wavelet Functions



Given a scaling function that meets the MRA 
requirements of the previous section, we can 
define a wavelet function       that, together 
with its integer translates and binary scaling, 
spans the difference between any two 
adjacent scaling subspaces,     and      . We 
define the set           of wavelets 
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As with scaling functions, we write

And note that if

The scaling and wavelet function subspaces 
are related by
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We can now express the space of all 
measurable, square-integrable functions as 
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The Haar wavelet function is
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Defining the wavelet series expansion of 
function              relative to wavelet       and 
scaling function        . f(x) can be written as

: the approximation or scaling 
coefficients;

: the detail or wavelet coefficients.
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If the expansion functions form an 
orthonormal basis or tight frame, the 
expansion coefficients are calculated as

and
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The Wavelet Series Expansions

The Discrete Wavelet Transform

The Continuous Wavelet Transform



If the function being expanded is a sequence 
of numbers, like samples of a continuous 
function f(x), the resulting coefficients are 
called the discrete wavelet transform(DWT) 
of f(x).
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Consider the discrete function of four points:
f(0)=1, f(1)=4, f(2)=-3, and f(3)=0

Since M=4, J=2 and, with j0=0, the 
summations are performed over 

x=0,1,2,3,
j=0,1, and 
k=0 for j=0 

or k=0,1 for j=1.



We find that
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For x=0,1,2,3. If x=0, for instance,
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The Wavelet Series Expansions
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The Continuous Wavelet Transform



The continuous wavelet transform of a 
continuous, square-integrable function, f(x), 
relative to a real-valued wavelet,        ,is

Where

And s and     are called scale and translation 
parameters.  
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Given           , f(x) can be obtained using the 
inverse continuous wavelet transform

Where 

And         is the Fourier transform of           .        
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The Mexican hat wavelet
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In two dimensions, a two-dimensional scaling 
function,        , and three two-dimensional 
wavelet,          ,           and           , are 
required.
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Excluding products that produce one-
dimensional results, like              , the four 
remaining products produce the separable 
scaling function

And separable, “directionally sensitive”
wavelets
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The scaled and translated basis functions:
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The discrete wavelet transform of function 
f(x,y) of size M*N is then
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Given the      and       , f(x,y) is obtained via 
the inverse discrete wavelet transform
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Fig. 7.24 (Con’t)






