Chapter 7
Wavelets and
Multiresolution
Processing




e Background
e Multiresolution Expansions
e \Wavelet Transforms in One Dimension

e \Wavelet Transforms in Two Dimensions



FIGURE 7.1 A
natural image and
its local histogram
variations




e Image Pyramids
e Subband Coding

e The Haar Transform




e The total number of elements In a P+1 level
pyramid for P>0 Is
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FIGURE 7.2 (a) A
pyvramidal image
structure and

(b) system block
diagram for
creating il.
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FIGURE 7.3 'Two
image pyramids
and their
statistics: (a) a
Gaussian
(approximation)
pyramid and (b) a
Laplacian
(prediction

residual) pyramid.



e Image Pyramids
e Subband Coding

e The Haar Transform
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e The Z-transform, a generalization of the
discrete Fourier transform, is the ideal tool for
studying discrete-time, sampled-data
systems.

e The Z-transform of sequemce x(n) for
n=0,1,2,...Is )
X(2)=) x(n)z™"

e Where z Is a complex variable.



e Downsampling by a factor of 2 in the time
domain corresponds to the simple Z-domain
operation

K (1) = X(20) & X o (2) =5 [X (%) + X (- 2] (7.1-2)

e Upsampling-again by a factor of 2---is defined
by the transform pair

wo | X(N/2) n=0,24,... DN oy
" (n)_{O otherwise ()= X2 (7.1-3)



e If sequence x(n) Is downsampled and
subsequently upsampled to yield(n) ,
Eqgs.(7.1-2) and (7.1-3) combine to yield

X(@)=-[x@)+X(2)]

where x(nN)=27X(2)] is the downsampled-
upsampled sequence.

e ItS Inverse Z-transform Is
Z X (-2)]= (=D " x(n)



e We can express the system’s output as
X(2)= Gy (DHo (X (@) + Ho (DX (-2)]

+ %Gl(z)[Hl(Z)X (2) + H, (-2) X (-2)]

e The output of filter h(n) is defined by the
transform pair

hy (n) # X(n) = 3" hy (0 = K)x(K) & H, (2)X (2)



e As with Fourier transform, convolution in the
time (or spatial domain is equivalent to
multiplication in the Z-domain.

X(2)=2[H, ()6, (D) + H, ()6, (X ()

+[Ho (216, () + H, ()6, (X (-2)



e For error-free reconstruction of the input,

x(n) =x(n) and X(z)=X(z). Thus, we impose the
following conditions:

Hy (_Z)Go (z) + Hl(—Z)Gl(Z) =0
H,(2)G, (2) + H,(2)G,(2) = 2

Gy(z)] 2 H, (~2)
G,(z) | det(H,(2))|—H,(-2)

Where det(H,, (z))denotes the determinant of H.(2).

To get




det(H _ (2)) = az Y

e Letting ¢ =2, and taking the inverse Z-
transform, we get

9o (n) = (=1)"h ()
g,(n) = (-1)""hy(n)

e Letting « =-2, and taking the inverse Z-
transform, we get

9o (n) — (_1)n+1 hl (n)
g,(n) = (=1)"hy(n)



Filter OMF CQF Orthonormal
2 3 v A Hy(z)Ho(z') + |
H(z) Hy(z) — Hy(—2) = 2 HY—7)Hy-z1) =2 Go(z :]
H\(z) H(—z) T Hy(—27") Gy(z')
= Go(2)G(z ') +
Go(2) H,y(7) Hy(z™") Gol—2)Gol 2 |:] _ 9
Gi(2) —Hy(—2) ZHy(—2) —Z_EKHG[](—Z_I)

e Three general solution:

Quadrature mirror filters (OMFs)

Conjugate quadrature filters (CQFS)

Orthonormal

TABLE 7.1
Perfect
reconstruction
filter families.
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FIGURE 7.5 A
two-dimensional.
four-band filter
bank for subband
image coding.



FIGURE 7.6 The
impulse responses
of four 8-tap
Daubechies
orthonormal
filters.
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FIGURE 7.7 A
four-band split of
the vase in Fig. 7.1
using the subband
coding system of
Fig. 7.5.




e Image Pyramids
e Subband Coding

e The Haar Transform




e The Haar transform can be expressed In
matrix form

T=HFH'
e Where
- Is an N*N image matrix,
H is an N*N transformation matrix,
T Is the resulting N*N transform.




e For the Haar transform, transformation matrix
H contains the Haar basis
functions, h(z) .They are defined over the
continuous, closed interval  ze<[0/]] for
k=0,1,2,...,N-1, where N =2" .

e To generate H, we define the integer k such
that

k=2"+qg-1

where 0<p<n-1, q=0 or1for P=0,
1<q<2f for p=#0



e Then the Haar basis functions are

ho(2) =hyy (2) =

e and

N (2) =hyy (2) =

1

JN

<

1

W’ ze[0]]

(2P'2 (q-1)/2° <z<(q-05)/2"
— 20!z (q-0.5)/2°<z<q/2”
0 otherwise, z € [0,1]

\



e The ith row of an N*N Haar transformation matrix
contains the elements of

h.(z) for z=0/N1/N,2/N,....,(N-1)/N.
o If N=4, for example k,q, and p assume the values

WIN|PFP,|O | X
PRIk, O|O|T
NIk, |O|LQ




e The 4*4 transformation matrix, H,, IS

H, =

1
Ja
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discrete wavelet 'TY )
transform using o0
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functions. Its local
histogram
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shown;

(b)—(d) Several

different
approximations
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256 % 256) that

can be obtained

from (a).



e Background
e Multiresolution Expansions
e Wavelet Transforms in One Dimension

e \Wavelet Transforms in Two Dimensions



e Series Expansion
e Scaling Functions

e Wavelet Functions




e A signal of function f(x) can often be better
analyzed as a linear combination of
expansion functions

f(x) :Zak¢k (X)
e K Is an interger index of the finite or infinite
sum,

e o, are real-valued expansion coefficients;
e ».(x are real-valued expansion functions.



e These coefficients are computed by taking
the integral inner products of the dual #.(0's
and function f(x). That is

o, =(P, (%), £ () = [ &y () F (x)dx



e Series Expansion
e Scaling Functions

e Wavelet Functions




e The set of expansion functions composed of
Integer translations and binary scaling of the
real, square-integrable function ¢(x) ;thatis,
the set i, (0 where

0, ()=2"2p(27x —k)



Vi, =Spkan{¢jo,k(x)}
o If f(x)eV, It can be written
f(x)zzak¢jo,k (X)

e We will denote the subspace spanned over k
for any | as

V, = Spka”{%,k (x)}
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FIGURE 7.9 Haar
scaling functions
in Vi in V.



e The simple scaling function in the preceding
example obeys the four fundamental requirements
of multiresolution analysis:

MRA Requirement 1: The scaling function is orthogonal to
Its integer translates;

MRA Requirement 2: The subspaces spanned by the
scaling function at low scales are nested within those
spanned at higher scales.



FIGURE 7.10 The Vo CV, CV,
nested function

spaces spanned by

a scaling function.




e MRA Requirement 3: The only function that is
common to all V;is f(x)=0.

e MRA Requirement 4: Any function can be
represented with arbitrary precision.



e Series Expansion
e Scaling Functions

e Wavelet Functions




e Given a scaling function that meets the MRA
requirements of the previous section, we can
define a wavelet function v (x)that, together
with its integer translates and binary scaling,
spans the difference between any two
adjacent scaling subspaces,V; andV;, . We
define the set . (0 of wavelets

Wi 00 =212y (20 x=k)|



e As with scaling functions, we write

W, = Spkan{c//j,k (x)}

e And note that if f(x)eW,
f(x)= Zaij,k (X)

k
e The scaling and wavelet function subspaces
are related by

V,,=V, &W,



e \We can now express the space of all
measurable, square-integrable functions as

L°(R) =V, W, W, & ...
e Or

12(R) =V, ®W, W, @ ...



V,=V,8W, =V, 8 W, & W, FIGURE 7.11 The
relationship
between scaling
and wavelet
function spaces.




e The Haar wavelet function is

1 0<x<05
w(x)=<-1 0.5<x<1
0 elsewhere

\
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FIGURE 7.12 Haar
wavelet functions
in W, and W,.



e Background
e Multiresolution Expansions
e Wavelet Transforms in One Dimension

e \Wavelet Transforms in Two Dimensions



e The Wavelet Series Expansions
e The Discrete Wavelet Transform

e The Continuous Wavelet Transform




e Defining the wavelet series expansion of
function fo<*(®) relative to wavelet v(x) and
scaling function ¢(x) . f(x) can be written as

f)=Yc, K, )+ d, Ky, ()

i=lo

e c; (k)'s: the approximation or scaling
coefficients;

e d,(k)'s : the detail or wavelet coefficients.



If the expansion functions form an

orthonormal basis or tight frame, the
expansion coefficients are calculated as

c;, () =(F ()0, ()= [ F (e, , (X)dx

and

d; (k) =(f ()., 00) = [ F(w, (X
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FIGURE 7.13 A wavelet series expansion of y = x? using Haar wavelets.



e The Wavelet Series Expansions
e The Discrete Wavelet Transform

e The Continuous Wavelet Transform




e If the function being expanded is a sequence
of numbers, like samples of a continuous
function f(x), the resulting coefficients are
called the discrete wavelet transform(DWT)

of f(x).
W, (jy. k) =ﬁ2 f ()0, 4 (%)

vv,,,(j,k)zﬁg F (X, (X)
e and

f(xﬁﬁ;vn(jo,k)qo,-o,k(x) FZZW (3, K)w 4 (%)

1=1o



e Consider the discrete function of four points:
f(0)=1, f(1)=4, f(2)=-3, and f(3)=0
e Since M=4, J=2 and, with |,=0, the
summations are performed over

x=0,1,2,3,
1=0,1, and
k=0 for |=0
or k=0,1 for J=1.




e We find that
W, (0,0) =%i f (X)@, 4 (X) =%[1-1+4-1—3-1+o-1]=1

1

WW(O,O)=§[1-1+4-1—3-(—1)+O-(—l)] 4

WW(1,0)=%[1-ﬁ+4-(—ﬁ)—3-0+o-o]=—1.5ﬁ

WW(1,1)=%[1-0+4.0—3-\/§+0-(—ﬁ)]:—l.sﬁ



f(x)= % M¢ (0,0)@,0 (X) + W, (0,0),(X) + W, (1,0)yy0(X) + W, LDy, (X)]

e For x=0,1,2.3. If x=0, for instance,

f(0)=%[1-1+4.1—1.5\E-(ﬁ)—1.5ﬁ-0]=1



e The Wavelet Series Expansions
e The Discrete Wavelet Transform

e The Continuous Wavelet Transform




e The continuous wavelet transform of a
continuous, square-integrable function, f(x),
relative to a real-valued wavelet, v(x) ,IS

W, (s,7) =] f(w. (x)dx

e Where ) (x)—iw(x_f\
o Js )
e And s and 7 are called scale and translation

parameters.



e GivenW, (s,7), f(X) can be obtained using the
Inverse continuous wavelet transform

f(X)——J' J‘ W (s z_)st()

e Where

du

- P )
C =
=L
e And Y(u) is the Fourier transform of v (x)



e The Mexican hat wavelet

l//(X) _ (%ﬂlmj(l_ Xz)e—x2/2
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e Background
e Multiresolution Expansions
e \Wavelet Transforms in One Dimension

e \Wavelet Transforms in Two Dimensions



¢ |In two dimensions, a two-dimensional scaling
function,#(x.y), and three two-dimensional

wavelet, v " (x.y), v'(xy) and v’ (x,y), are
required.



e EXxcluding products that produce one-
dimensional results, like (X)¥(X) , the four
remaining products produce the separable
scaling function

o(X,y) = p(X)e(y)
e And separable, “directionally sensitive”

wavelets 1y vy = w(x)o(y)
v (X, Y) = o(Xw(y)
v (%, Y) =w(w(y)



e The scaled and translated basis functions:

¢j,m,n (X’ y) :2j/2¢(2j X — m12j Yy — n)

viimn (X, y) =212y (2 x—=m,2'y—n),  i={H,V,D}



e The discrete wavelet transform of function
f(x,y) of size M*N is then

M-1N-1

W (JO m,n _fzto(X y)¢] mn(X y)

l M-1N-1

S YW (% y)  i={H,V,D]

W (j,m,n)= N
x=0 y=0



e Given the w, and w; , f(x,y) is obtained via
the inverse discrete wavelet transform

f (x, y)=ﬁ;;w¢uo,m,n)m,m,n(x, y)

+\/|\]/-|7 Z iZZWl/j(j’m’n)W},m,n(X’y)

N i—Hv,Dj=j, m n
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FIGURE 7.22 'The two-dimensional fast wavelet transform: (a) the analysis filter bank;

i
D b (b} the resulting decomposition; and (c) the synthesis filter bank.
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FIGURE 7.23 A
three-scale FWTT.
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FIGURE 7.24
Fourth-order
symlets:

(a)—(b) decompo-
sition filters:
{c)—(d) recon-
struction filters;
(e) the one-
dimensional
wavelet; (f) the
one-dimensional
scaling function;
and (g) one of
three two-
dimensional
wavelets,
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Fig. 7.24 (Con’t)
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FIGURE 7.25
Maodifying a DWT
for edge
detection: (a) and
(c) two-scale
decompositions
with selected
coefficients
deleted; (b) and
(d) the
corresponding
reconstructions,




FIGURE 7.26
Moditying a DWT
for noise removal:
{a) a noisy MRI
of a human head;
(b}, (c)and

{e) various
reconstructions
after thresholding
the detail
coefficients: (d)
and (f) the
information
removed during
the reconstruction
of (c) and (e).
{Original image
courtesy
Vanderbuilt
University
Medical Center.)




