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The Fourier transform, F(u), of a single variable, 
continuous function, f(x), is defined by the equation

Where 
Conversely, given F(u), we can obtain f(x) by means 
of the inverse Fourier transform

These two equations comprise the Fourier transform 
pair.
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These equations are easily extended to two 
variables, u and v:

And, similarly for the inverse transform,
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The Fourier transform of a discrete function 
of one variable, f(x), x=0,1,2,…,M-1, is given 
by the equation

(4.2-5)
Similarly, given F(u), we can obtain the 
original function back using the inverse DFT:
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The concept of the frequency domain, follows 
directly from Euler’s formula:

Substituting this expression into Eq. (4.2-5). 
and using the fact that                 , gives us  θθ cos)cos( =−
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In the analysis of complex numbers, we find it 
convenient sometimes to express F(u) in 
polar coordinates:

Where
Is called the magnitude or spectrum of the 
Fourier transform, and
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Is called the phase angle or phase spectrum 
of the transform.
Another quantity that is used in this chapter is 
the power spectrum, defined as the square of 
the Fourier spectrum:
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The first value of the sampled function is then 
. 

The kth sample gives us                  .
When we write f(k), it is understood that we 
are utilizing shorthand notation that really 
means              .
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f(x) is then understood to mean 

F(u) is then understood to mean

and      are inversely related by the expression 
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The discrete Fourier transform of a function 
(image) f(x,y) of size M*N is given by the 
equation

Given F(u,v), we obtain f(x,y) via the inverse 
Fourier transform, given by the expression

for x=0,1,2,…,M-1 and y=0,1,2,…,N-1.
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The Fourier spectrum, phase angle, and 
power spectrum:

Where R(u,v) and I(u,v) are the real and 
imaginary parts of F(u,v), respectively.
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It is common practice to multiply the input 
image function by          prior to computing 
the Fourier transform. Due to the properties 
of exponentials, it is not difficult to show that

Where    denotes the Fourier transform of the 
argument.  
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The value of the transform at (u,v)=(0,0) is

If f(x,y) is real, its Fourier transform is 
conjugate symmetric; that is

From this, it follows that
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The following relationships between samples in the 
spatial and frequency domains:
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It consists of the following steps:
(1) Multiply the input image by (-1)x+y to center the 
transform.
(2) Compute F(u,v), the DFT of the image from (1).
(3) Multiply F(u,v) by a filter function H(u,v).
(4) Compute the inverse DFT of the result in (3).
(5) Obtain the real part of the result in (4).
(6) Multiply the result in (5) by (-1)x+y.





H(u,v) is called a filter is because it 
suppresses certain frequencies in the 
transform while leaving others unchanged.
The Fourier transform of the output image is 
given by

The filtered image is obtained simply by 
taking the inverse Fourier transform of G(u,v):

Filtered Image=
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Assuming that the transform has been 
centered, we can do this operation by 
multiplying all values of F(u,v) by the filter 
function:
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The discrete convolution of two functions f(x,y) 
and h(x,y) of size M*N is denoted by 
f(x,y)*h(x,y) and is defined by the expression
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Letting F(u,v) and H(u,v) denote the Fourier 
transforms of f(x,y) and h(x,y), the following 
result holds:
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Basic model for filter in the frequency domain 
is given by the following equation

Where F(u,v) is the Fourier transform of the 
image to be smoothed. 
The objective is to select a filter transfer 
function H(u,v) that yields G(u,v) by 
attenuating the high-frequency components 
of F(u,v).
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The transfer function of a two-dimensional(2-
D) ideal lowpass filter(ILPF) is:

The distance from any point (u,v) to the 
center of the Fourier transform is given by

D(u,v) = [(u - M/2)2 + (v - N/2)2]1/2.
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Ideal Lowpass Filters

Image power
Image power (PT) is obtained by summing 
the component of the power spectrum at 
each point (u,v), for u = 0,1,2,…M-1 and v 
= 0,1,2,…N-1

A circle of radius r with origin at the center 
of the frequency rectangle encloses α = 
100 [∑∑P(u,v)/PT]
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Ideal Lowpass Filters

As the filter radius increases, less and 
less power is removed, resulting in less 
severe blurring. 
Fig 4.12(c) through (e) are 
characterized by “ringing” which 
becomes finer in texture as the amount 
of high frequency content removed 
decreases.



Ideal Lowpass Filters

Ringing effect occurs along the edges of 
the filtered spatial domain image 
(illustrated in a Figure).
Next slide figure shows the shape of the 
one-dimensional filter in both the 
frequency and spatial domains for two 
different values of D0. 
We obtain the shape of the two-
dimensional filter by rotating these 
functions about the y-axis. 



Ideal Lowpass Filters

Multiplication in the 
Fourier domain 
corresponds to a 
convolution in the 
spatial domain. 
Due to the multiple 
peaks of the ideal 
filter in the spatial 
domain, the filtered 
image produces 
ringing along 
intensity edges in
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Butterworth Lowpass Filters

Ideal filtering simply cuts off the Fourier 
transform. It is easy to implement, 
however, it has the disadvantage of 
introducing unwanted artifacts (ringing) 
into the result.
One way of avoiding these artifacts is to 
use a filter matrix a circle with a cutoff 
that is less sharp.
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Butterworth Lowpass Filters
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Gaussian Lowpass Filters

The form of these filters in two 
dimensions is given by

D(u,v) is the distance from the origin of 
the Fourier transform, which we assume 
has been shifted to the center of the 
frequency rectangle
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Gaussian Lowpass Filters
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p
Lowpass Filtering

Fig. 4.19 shows a sample of text of poor 
resolution that may be occurred from 
fax transmission, duplicated material, 
and historical records.
Fig 4.19(a) shows characters in a 
document have distorted shapes. Many 
characters are broken.
Fig 4.19(b) shows “repaired” characters 
by this simple process using a Gaussian 
lowpass filter with D0 = 80



Gaussian Lowpass Filters
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Additional Examples of 
Lowpass Filtering

Fig. 4.20 shows an application of lowpass
filtering to produce a smoother, softer-looking 
result from a sharp original. The smoothed 
images look quite soft and pleasing
Fig. 4.21 shows images with prominent scan 
line.
Lowpass filtering a crude but simple way to 
reduce the effect of these lines.
Fig. 4.21(b) shows an image with D0 = 30
Fig. 4.21(c) shows an image with D0 = 10
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Sharpening Frequency Domain Filters

Image sharpening can be achieved by a 
highpass filtering process, which 
attenuates the low-frequency components 
without disturbing high-frequency 
information.
Zero-phase-shift filters: radially symmetric 
and completely specified by a cross section.
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Sharpening Frequency Domain Filters

Fig. 4.22 shows typical 3-D plots image 
representations and cross sections for these 
filters (IHPF, BHPF, GHPF).

Fig. 4.23 illustrates what these filters look like in 
the spatial domain. A spatial representation of a 
frequency domain filter is obtained by 
(1)multiplying H(u,v) by (-1)u+v for centering 
(2)computing the inverse DFT (3) multiplying the 
real part of the inverse DFT by (-1)x+y
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Ideal Highpass Filters

A 2-D ideal highpass filter (IHPF) is 
defined as

D0 is the cutoff distance measured. 
This filter is the opposite of the ideal 
lowpass filter.
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Ideal Highpass Filters

Fig. 4.24(a) is so severe that it produced 

distorted, thickened object boundaries. Edges on 

the top three circles do not show well.

The result for D0 = 80 is more of what a high 

pass-filtered image should look like. The edges 

are much cleaner and less distorted, and the 

smaller objects have been filtered properly.



Ideal Highpass Filters
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Butterworth Highpass Filters

The transfer function of the Butterworth 
highpass filter (BHPF) of order n and 
will cutoff frequency locus at distance 
D0 from the origin is given by

High-frequency emphasis: Adding a 
constant to a highpass filter to preserve 
the low-frequency components.
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Butterworth Highpass Filters

Fig. 4.25: The boundary is much less distorted 
than in Fig. 4.24, even for the smallest value of 
cut off frequency.

Since the center spot sizes of the IHPF and the 
BHPF are similar, the performance of the two 
filters I terms of filtering the smaller objects is 
comparable. The transition into higher values of 
cutoff frequencies is much smoother with the 
BHPF



Butterworth Highpass Filters
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Gaussian Highpass Filters

The transfer function of the Gaussian 
Highpass Filters (GHPF) with cutoff 
frequency locus at distance D0 from the 
origin is given by
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Gaussian Highpass Filters

Fig. 4.26: As expected, the results 
obtained are smoother than with the 
previous two filters. Even the filtering of 
the smaller objects and thin bars 
cleaner with the Gaussian filter.



Gaussian Highpass Filters
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Laplacian in the Frequency Domain

It can be shown that:

The Laplacian can be implemented in 
the frequency domain by using the filter
(Shift to center)

ℑ ∇2 f (x,y)[ ]= −(u2 + v 2)F(u,v)
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Laplacian in the Frequency Domain

The laplacian-filtered image in the 
spatial domain is obtain by computing 
the inverse Fourier Transform of 
H(u,v)F(u,v)
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Laplacian in the Frequency Domain

Fig. 4.27(a) is a 3-D perspective plot of 

The function is center at (M/2,N/2), and 
its value at the top of the dome is zero. All 
other values are negative.
Fig. 4.27(b) shows H(u,v) as an image, 
also centered.
Fig. 4.27(c) is the Laplacian in the spatial 
domain.
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Laplacian in the Frequency Domain

Fig. 4.28(a) is the same image in as Fig. 3.40(a). 
Fig. 4.28(b) shows the result of filtering this 
image in the frequency domain using

Fig. 4.28(c) show the scaled image (for display 
only)
Fig. 4.28(d) should be compared with Fig. 3.40, 
which shows exactly the same sequence of steps 
but computed using only spatial domain 
techniques. The results are identical for all 
practical purposes.
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Unsharp Masking, High-Boost Filtering

Unsharp masking: 
fhp(x,y) = f(x,y) - flp(x,y)

High boost filtering:  
fhb(x,y) = Af(x,y) - flp(x,y)
fhb(x,y) = (A-1)f(x,y) + fhp(x,y)
Hhb(u,v) = (A-1) + Hhp(u,v)



Unsharp Masking, High-Boost Filtering

Fig. 4.29 (b) is a highpass filterd iamge.
The image in Fig. 4.29(c) was obtained 
using 
fhb(x,y) = (A-1)f(x,y) + fhp(x,y)
with A = 2. 
This image is sharper but still too dark.

Fig. 4.29(d) was obtained with A = 2.7, 
which in effect means that the input 
image was multiplied by 1.7 before the 
Laplacian was subtracted from it.



Unsharp Masking, High-Boost Filtering

Fig. 4.29(d) is not as sharp as Fig. 3.43(d). 
The reason for this that a frequency 
domain representation of the Laplacian is 
closer to the mask that excludes the 
diagonal neighbors [Fig. 4.27(f)].

It is known that a mask that includes the 
diagonal neighbors produces slightly 
sharper results. They do become evident 
for images with larger features.





High-Frequency Emphasis Filtering

Sometimes it is advantageous to accentuate 
the contribution to enhancement made by 
the high-frequency component of an image. 
We multiply a high pass filter function by a 
constant and add an offset so that the zero 
frequency term is not eliminated by the filter. 

Hhfe(u,v) = a+bHhp(u,v),
where a>=0 and b>a. 
[ Typical a = [0.25,0.5] and b = [1.5,2.0] ]



High-Frequency Emphasis Filtering

Fig. 4.30(a) shows a chest X-ray with a 
narrow range of gray levels. Our objective 
is to sharpen the image.

Fig 4.30(c) shows image using HFE (with a 
= 0.5 and b = 2.0). Although the image is 
still dark, the gray level tonality due to the 
low frequency components was not lost.

Fig. 4.30(d) shows image that is been 
performing histogram equalization.



High-Frequency Emphasis Filtering
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Homomorphic Filtering

We can view an image f(x,y) as a product 
of two components:

i(x,y): illumination. It is determined by 
the illumination source.
r(x,y): reflectance (or transmissivity). It is 
determined by the characteristics of 
imaged objects.
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Homomorphic Filtering

In some images, the quality of the image has 
reduced because of non-uniform illumination.
Homomorphic filtering can be used to perform 
illumination correction.

The above equation cannot be used directly in 
order to operate separately on the frequency 
components of illumination and reflectance.
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Homomorphic Filtering

By separating the illumination and 
reflectance components, homomorphic
filter can then operate on them 
separately.
Illumination component of an image 
generally has slow variations, while the 
reflectance component vary abruptly. 
By removing the low frequencies 
(highpass filtering) the effects of 
illumination can be removed .



Homomorphic Filtering

A good idea of control can be gained over the 
illumination and reflectance components with a 
homomorphic filter. This control requires 
specification of a filter function H(u,v) that affects 
the low and high frequency components of the 
Fourier transform in different ways.

Fig. 4.32 shows a cross section of such a filter. If 
the parameters γL and γH are chosen so that γL 
<1and γH >1.

The curve in Fig. 4.32 can be approximated using 
modified Gaussian highpass filter:
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Homomorphic Filtering

Fig. 4.33 is typical of the results that can be 
obtained with the homomorphic filtering function 
in Fig. 4.32.

Fig. 4.33(b) shows the result of processing this 
image by homomorphic filtering, with γL = 0.5 
γH =2.0 in the filter function of Fig. 4.32. 

A reduction of dynamic range in the brightness, 
together with an increase in contrast, brought out 
the details of objects inside the shelter and 
balanced the gray levels of the outside wall. The 
enhanced image also is sharper.



Homomorphic Filtering



Homomorphic Filtering
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The Fourier transform pair has the following 
translation properties:

(4.6-1)

and
(4.6-2)
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When               and                , it follows that

In this case, Eq. (4.6-1) becomes

and, similarly
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Distributivity snd scaling

From the definition of the Fourier transform it 
follows that

And, in general, that

The Fourier transfoem is distributive over 
addition, but nor over multiplication.



Distributivity snd scaling

For two scalars a and b

and 
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Rotation

If we introduction the polar coordinates

Then          and           become        and          .
Direct substitution into definition of the 
Fourier transform yields
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Periodicity and conjugate symmetry

The discrete Fourier transform has the 
following periodicity properties:

The inverse transform also is periodic:
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Conjugate symmetry

The spectrum also is symmetric
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Separability

The discrete Fourier transform in Eq. (4.2-16) 
can be expressed in the separable form

where
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The 1-DFourier transforms:

(4.6-16)
and 

(4.6-17)
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Taking the complex conjugate of Eq. (4.6-17) 
and dividing both sides by M yields

A similar analysis for two variables yields:
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Figure 4.36 illustrates the significance of 
periodicity. The left column of this figure 
shows convolution computed using the 1-D 
version of Eq. (4.2-30):
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This procedure yields extended, or padded, 
functions given by

and
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Suppose that we have two images f(x,y) and 
h(x,y) of sizes A*B and C*D, respectively. 
Wraparound error in 2-D convolution is 
avoided by choosing:
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1−+≥ CAP

1−+≥ DBQ



The periodic sequences are formed by 
extending f(x,y) and h(x,y) as follows:
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The discrete convolution of two functions f(x,y) and h(x,y) 
of size M*N is denoted by f(x,y)*h(x,y) and is defined by 
the expression:

The convolution theorem consists of the following 
relationships between the two functions and their Fourier 
transforms:

and
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The correlation of two function f(x,y) and 
h(x,y) is defined as:

where f* denotes the complex conjugate of f.
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There is a correlation theorem, analogous to 
the convolution theorem. Let F(u,v) and H(u,v) 
denote the Fourier transforms of f(x,y) and 
h(x,y).

An analogous result is that correlation in the 
frequency domain reduces to multiplication in 
the spatial domain; that is
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The autocorrelation theorem:

Similarly,

2),(),(),( vuFyxfyxf ⇔o

),(),(),( 2 vuFvuFyxf o⇔





Some Additional Properties of the 2-D Fourier 
Transform
Computing the Inverse Fourier Transform Using a 
Forword Transform Algorithm
More on Periodicity: the Need for Padding
The Convolution and Correlation Theorems
Summary of Properties of the 2-D Fourier 
Tandform
The Fast Fourier Transform
Some Comments on Filter Design











Some Additional Properties of the 2-D Fourier 
Transform
Computing the Inverse Fourier Transform Using a 
Forword Transform Algorithm
More on Periodicity: the Need for Padding
The Convolution and Correlation Theorems
Summary of Properties of the 2-D Fourier 
Tandform
The Fast Fourier Transform
Some Comments on Filter Design



The FFT algorithm developed in this section 
is based on the so-called successive 
doubling method. For notational convenience 
we express Eq. (4.2-5) in the form

Where 
And M is assumed to be of the form

or 
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Substitution of Eq. (4.6-38) into Eq. (4.6-35) 
yields

Using 
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Defining 
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Continuing this argument for any positive 
integer value of n leads to recursive 
expressions for the number of multiplications 
and additions required to implement the FFT:

and
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The computational advantage of the FFT 
over a direct implementation of the 1-D DFT 
is defined as

Because it is assumed that           , we can 
express Eq. (4.6-49) in terms of n:
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All the filters discussed in this chapter are specified 
in equation form.
In order to use the filters, we simply sample the 
equation for the desired values of (u,v). This process 
results in the filter function H(u,v).
In all our examples, this function was multiplied by 

the DFT of the input image, and the inverse DFT 
was computed. 
All forward and inverse Fourier transforms in this 
chapter were computed with an FFT algorithm.



The approach to filtering discussed in this chapter is focused 
strictly on fundamentals, the focus being specifically to explain 
the effects of filtering in the frequency domain as clearly as 
possible. 
We know of no better way to do that than to treat filtering the way 
we did here. One can view this development as the basis for 
"prototyping" a filter. In other words, given a problem for which 
we want to find a filter, the frequency domain approach is an 
ideal tool for experimenting, quickly and with full control over filter 
parameters. 
Once a filter for a specific application has been found, it often is 
of interest to implement the filter directly in the spatial domain, 
using firmware and/or hardware. 


