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Image enhancement approaches

e Spatial domain
Image plane itself

e Spatial domain methods

Based on direct manipulation of pixels in an
Image.
e Frequency domain methods

Based on modifying the Fourier transform of an
Image
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e Background

e Some Basic Gray Level Transformations

e Histogram Processing

e Enhancement Using Arithmetic/Logic Operations
e Basics of Spatial Filtering

e Smoothing Spatial Filters

e Sharpening Spatial Filters

e Combining Spatial Enhancement Methods



e Spatial domain:the aggregate of pixels composing an image.

e Spatial domain methods: procedures that operate directly on these
pixels.

e Spatial domain processes:
denoted by the expression:
g(x,y) =T[f (x,y)]
f(x,y):the input image
g(X,y):the processed image

T:. an operator on f, defined over some neighborhood of (x,y).
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e Gray-level transforngatiof (q'r)ction of the form

r. the gray level of f(x,y)
s: the gray level of g(x,y)
e Larger neighborhoods
masks:is a small 2-D array.

the mask coefficients determine the nature of the process, such
as image sharpening.
e Masking processing

Enhancement techniques based on this type of approach often
are referred to as masking processing.
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transformation
functions for
contrast
enhancement.
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e Three basic types of functions used
frequently for image enhancement:

e Linear (negative and identity transformations)

e Logarithmic (log and Inverse-log
transformations)

e Power-law (nth power and nth root
transformations)



Image negatives

e The negative of an image with gray levels In
the range[0,L-1] is obtained by using the
negative transformation in Fig. 3.3, which is
given by the expression

S=L-1-r



FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.
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FIGURE 3.4

(a) Original
digital
mammogran.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)



Log Transformations

e The general form of the log transformation

shown In Fig'sgz'%ligg(u )

where c IS a constant, and It Is assumed that
r>=0.

e This transformation maps a narrow range of
low gray-level values In the input image into a
wider range of output levels.
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FIGURE 3.5

{a) Fourier
spectrum.

(b) Result of
applving the log
transformation
given in

Eq. (3.2-2) with
c=1.




Power-Law Transformations

e Power-law transformations have the basic
form S =cCr’

e Where c and / are positive constants.
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FIGURE 3.6 Plots
of the equation

5 = ¢r’ for
various values of
¥ (c = 1inall
cases).



ab
cd

FIGURE 3.7

(a) Linear-wedge
gray-scale image.
(b) Response of
monitor to linear
wedge.

(c) Gamma-
corrected wedge.
(d) Output of
maonitor.

Image as viewed on monitor

Image as viewed on monitor
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FIGURE 3.8

(a) Magnetic
resonance (MR)
image of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with
¢ =1and

v = (.6,0.4, and
(.3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0,4.0,and
3.0, respectively.
(Original image
for this example
courtesy of
NASA.)




Piecewise-Linear
Transformation Functions

Ouput gray level. s
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FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)
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FIGURE 3.11

(a) This
transformation
highlights range
[ A, B]of gray
levels and reduces
all otherstoa
constant level.
(b) This
transformation
highlights range
[ A, B] but
preserves all
other levels.

(c) An image.
(d) Result of
using the
transformation
in (a).



One 8-bit byte

Bit-plane 7
{most significant)

Bit-plane 0
(least significant)

FIGURE 3.12
Bit-plane
representation of
an 8-bit image.




FIGURE 3.13 An 8-bit fractal image. { A fractal is an image generated from mathematical
expressions). (Courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore, PA.)




FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.
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FIGURE 3.15 Four basic image types: dark, light. low contrast, high contrast, and their cor-
regponding histograms. (Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian National University, Canberra, Australia. )
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FIGURE 3.16 A
grav-level
transformation
function that is
both single valued
and
monotonically
increasing.
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FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equaliza tion. (¢) Cor-
responding histograms




FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).
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FIGURE 3.19
(a) Graphical
interpretation of
mapping from r,
to s, via T'(r).
(b) Mapping of z,
Lo 1ts
corresponding
value v, via G(z).
(c) Inverse
mapping from sy
toits
corresponding
value of z,.
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FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global
Surveyor. (b) Histogram. {Original image courtesy of NASA.)
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FIGURE 3.21

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
oul appearance ).
(c) Histogram

of (b).




FIGURE 3.22
(a) Specified
histogram.

(b) Curve (1) is

from Eq. (3.3-14),

using the
histogram in (a);
curve (2) was
obtained using
the iterative
procedure in
Eq. (3.3-17).
{c) Enhanced
image using
mappings from
curve (2).

(d) Histogram
of ().
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FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. {c) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.



FIGURE 3.24 SEM
image of a
tungsten filament
and support,
magnified
approximately
130 (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (¢) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.



FIGURE 3.26
Enhanced SEM
image. Compare
with Fig.3.24. Note
in particular the
enhanced area on
the right side of
the image.
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e Arithmetic/logic operations involving images
are performed on a pixel-by-pixel basis
between two or more images.

e Of the four arithmetic operations, subtraction
and addition are the most useful for image
enhancement.

e Masking sometimes is referred to as region of
Interest(ROI) processing.
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FIGURE 3.27

(a) Original
image. (b) AND
image mask.

(¢) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.

(f) Result of
operation OR on
images (d) and
(2).



e Image subtraction

e Image Averaging




Image subtraction

g(x,y)=1(x,y) =h(x, y)
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FIGURE 3.29

Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.



e Image subtraction

e Image Averaging




e Consider a noisy image g(x,y) formed by the
addition of noise 7(x,y) to an original image
f(x,y); that is

g(x,y)=1(X,y) +7n(X,y)

e If animage g(x, y) Isformed by averaging K

different noisy images,

mxw:§2muw>



e Then it follows that

E{g(x, y)}=f(x,Y)

e ANnd




FIGURE 3.30 ({a) Image of Galaxy Pair NGC 3314, (b} Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (¢)—{f) Results of av-
eraging K = 8, 16,64, and 128 noisy images. { Original image courtesy of NASA.)
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FIGURE 3.31

{(a) From top to
bottom:
Difference images
between

Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.

(b) Corresponding
histograms.
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e Some neighborhood operations work with the values
of the image pixels in the neighborhood and the
corresponding values of a subimage that gas the
same dimensions as the neighborhood.

e The values in a filter subimage are referred to as
coefficients, rather than pixels.

e For linear spatial filtering, the response is given by a
sum of products of the filter coefficients and the
corresponding image pixels in the area spanned by
the filter mask.
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Mask coafficients, showing
coordinate arrangement

Pixals of imagz
section undear mask

FIGURE 3.32 The
mechanics of
spatial filtering.
The magnified
drawing shows a
3 » 3mask and
the image section
directly under it
the image section
is shown
displaced out
from under the
mask for ease of
readability.




e The result, R, of linear filtering with the filter
mask at a point(x,y) in the image Is

R=w(-1-Df(x-1L,y-D+w(-10)f(x-1vy)+...
+wW(0O0,0)f(x,y)+...+w@LO)f(x+1Ly)+wl@lDFf(x+1Ly+1

e In general, linear filtering of an image f of size
M*N with a filter mask of size m*n Is given by
the expression:

g(x,y)= Za:ZW(s,t)f(x+s, y +1)

s=—at=-a



e When interest lies on the response, R, of an
m*n mask at any point(x,y), it IS common
pratice to simplify the notation by using the
following expression:

R=W,Z, +W,2, + oot W 200 = > W, Z,



e For the 3*3 general mask shown below, the

response at any point(x,y) in the image is

given by

FIGURE 3.33
Another
representation of
a general 3 X 3
spatial filter mask.

w, W, Wy
wy W Wy
W Wy Wy




e If the center of the mask moves any closer to the
border, one or more rows or columns of the mask
will be located outside the image plane.

e There are several ways to handle this situations.

To limit the excursions of the center of the mask to be at a
distance no less than (n-1)/2 pixels from the border.

To filter all pixels only with the section of the mask that is
fully contained in the image.

Padding the image by adding rows and columns of O’s, or
padding by replicating rows and columns.
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e Smoothing filters are used for blurring and for
noise reduction.

Blurring Is used in preprocessing steps, such as
removal of small details from an image prior to
object extraction, and bridging of small gaps in
lines or curves.

Noise reduction can be accomplished by blurring
with a linear filter and also by non-linear filtering.




e Smoothing Linear Filter

e Order-Statistics Filter




e The output of a smoothing, linear spatial fi

ter

IS simply the average of the pixels contained

In the neighborhood of the filter mask.

e This filters sometimes are called averaging
filters. They also referred to a lowpass filter.
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e The general implementation for filtering an
M*N image with a weighted averaging filter of
Size m*n Is given by the expression

ZZW(S ) f(X+s,y+t)
ZZW(S t)

S=—at=

g(X, y) o
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FIGURE 3.34 Two
3 X 3 smoothing
(averaging) filter
masks. The
constant multipli
er in front of each
mask 1s equal to
the sum of the
values of 1ts
coefficients, as is
required to
compute an
average.
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FIGURE 3.35 (a) Original image, of size 500 » 500 pixels. (b)—{f) Results of smoothing
with square averaging filter masks of sizes n = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35,45, and 35 pixels, respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high: their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20°%4.. The background of the image is 10°%% black. The noisy rec-
tangles are of size 50 » 120 pixels.
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FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). {Original image courtesy of NASA.)



e Smoothing Linear Filter

e Order-Statistics Filter




e Order-statistics filters are nonlinear spatia
filters whose response Is based on ordering
(rankng) the pixels contained in the image
area encompassed by the filter, and then
replacing the value of the center pixel with

the value determined by the ranking result.

e The best-known example in this category Is
the filter, which, as its name implies, replaces
the value of a pixel by the median of the gray
levels In the neighborhood of that pixel.
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FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a

3 X 3Javeraging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)
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e The principal objective of sharpening is to
highlight fine detall in an image or to enhance
detail that has been blurred, either in error or
as a natural effect of a particular method of
Image acquisition.

Averaging is analogous to integration,;

Sharpening could be accomplished by spatial
differentiation.



e Foundation

e Use of Second Derivatives for Enhancement-
The Laplacian

e Use of First Derivatives for Enhancement-
The Gradient



e We require that any definition we use for a
first derivative.

Must be zero in flat segments(areas of constant
gray-level values);

Must be nonzero at the onset of a gray-level step
or ramp;

Must be nonzero along ramps.



e The definition of a second derivative
Must be zero In flat areas:

Must be nonzero at the onset and end of a gray-
level step or ramp;

Must be zero along ramps of constant slope.



e A basic definition of the first-order derivative
of a one-dimensional function f(x) is the
difference.

ﬂ: f(x+1)— f(x)
OX

e \We define a second-order derivative as the
difference.

52]; =f(x+D)+ f(x=1D)-2f(x)
OX
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FIGURE 3.36

Ilustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.



e Comparing the response between first- and second-
order derivatives, we arrive at the following
conclusions.

First-order derivatives generally produce thicker edges in
an image.

Second-order derivatives have a stronger response to fine
detail, such as thin lines and isolated points.

First-order derivatives generally have a stronger response
to a gray level step.

Second-order derivatives produce a double response at
step changes in gray level.



e Second-order derivatives that, for similar
changes in gray-level values in an image,
their response is stranger to a line than to a
step, and to a point than to a line.



e Foundation

e Use of Second Derivatives for Enhancement-
The Laplacian

e Use of First Derivatives for Enhancement-
The Gradient



e We are interested in isotropic([q] 7] ) filters,
whose response is independent of the
direction of the discontinuities in the image to
which the filter is applied.

e |sotropic filters are rotation invariant.



e The simplest isotropic derivative operator Is
the Laplacian, which, for a function
(image)f(x,y) of two variables is defined as

o f N o f

ox° oy’

e Because derivatives of any order are linear

operations, the Laplacian is a linear operator.

Vif =




e We use the following notation for the partial
second-order derivative in the x-direction:

0" =f(x+lLy)+ f(x=-1y)-2f(X,Y)

X2

e And, similarly in the y-direction, as

2
Z 1; =f(x,y+D+ f(x,y=-1)-21(X,y)
Yy



e The digital implementation of the two-
dimensional Laplacian is obtained by
summing these two components.

VI =[f(x+Ly)+ F(X=Ly)+ F(x,y+1)+ f(x,y=1)]-4f(x,y)
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FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian,



e Because the Laplacian is a derivative operator,
its use highlights gray-level discontinuities in an
Image and deemphasizes regions with slowly

varying gray levels.

e The basic way in which we use the Laplacian for
Image enhancement is as follows:

g(x,y) =+

f(xy)=Vi(xy)

f(x,y)+V2f(x, )

If the center coefficient of
Laplacian mask is negative
If the center coefficient of
Laplacian mask 1Is positive

the

the
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FIGURE 3.40

(a) Image of the
North Pole of the
maoorn.

(b) Laplacian-
filtered image.
{(¢) Laplacian
image scaled for
display purposes
(d) Image
enhanced by
using Eq. (3.7-3).
{Original image
courtesy of

NASA)




Simplifications

g%, yY)=f (X y) - [fX+Ly)+ f(x=Ly)+ f(x, y+D)+ f(x,y-D]+4f(x,y)
=5f(%y)-[f(x+Ly)+ f(x=Ly)+ f(x,y+1)+ f(x,y-1]
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FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope timage. (d) and (e) Results of filtering with the masks in (a) and (b),
respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)




Unsharp masking and highy-
boost filtering

e A process used for many years in the
publishing industry to sharpen images
consists of subtracting a blurred version of an
Image from the image itself. This process,
called unsharp masking, Is expressed as

fO06y)=fF(xy)— f(xy)

e Where f,(x,y)Xdenotes the sharpened image
obtained by unsharp masking and f(x,y) Is a
blurred version of f(x,y).




e A slight further generalization of unsharp
masking is called high-boost filtering. A high-
boost filtered image, f,,, Is defined at any
point (X,y) as

fo (X, y) = AT (X, y) — T(X,y)
where A>=1

e The equation may be written as

oo (X Y)=(A=D)f(X,y)- f, (X y)
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FIGURE 3.42 The

high-boost filtering
technique can be
implemented with
either one of these
masks, with A = 1.



e |If we select to use the Laplacian, the above

equation becomes

fon =1

e When A=1, high-boost filtering becomes

Af (x,y) =V T(X,Y)

Af (X, y) + VZf(X,y)

If the center coefficient of
Laplacian mask is negative
If the center coefficient of
Laplacian mask is positive

“standard” Laplacian sharpening.

the

the
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FIGURE 3.43

(a) Same as

Fig. 3.41(c), but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A =1,

(c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A= 1.(d)Same
as (c¢), but using
A= 1.7.




e For function f(x,y), the gradient of f at
coordinates (Xx,y) Is defined as the two-
dimensional column vector

Vi =

b

I

o
OX
@
oy

e The magnitude of this_ve_ctor IS given by

Vi =mag(Vf) :[GX2 +Gj]% —

|

@
OX

)+

of
9

;

%



e |n order to reduce the computational burden,
It IS common practice to approximate the
magnitude of the gradient by using absolute
values instead of squares and square roots:

\V4i z\GX\+\Gy\



e The simplest approximations to a first-order
derivative that satisfy the conditions stated
are G, :(28 - 25) and Gy — (26 - 25) .

e The other definitions proposed by Roberts In
the early development of digital image
processing use cross differences:

G, =(zy — 25) and Gy:(ZS_ZG)



e \We compute the gradient as

Vi :[(29 - 25)2 +(Zg — 26)2]%
or

Vf ~|z4 — 25| + |25 — Z¢]
e An approximation using absolute values, still
at point z. , but using a 3*3 mask, Is
Vf ~|(z, + 224 + 2,) — (2, + 22, + Z;)

+\(z3 +22, +2,)— (2, +22, + 27)\
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FIGURE 3.44
A3 X 3region of
an image (the z's

are grav-level

values) and maské

used to comput
the gradient at
point labeled zs.
All masks
coefficients sum
to zero, as
expected of a
derivative

operator.
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a b

FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
S o'clock).

(b) Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation. )



QOutline

e Background

e Some Basic Gray Level Transformations

e Histogram Processing

e Enhancement Using Arithmetic/Logic Operations
e Basics of Spatial Filtering

e Smoothing Spatial Filters

e Sharpening Spatial Filters

e Combining Spatial Enhancement Methods
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FIGURE 3.46

(a) Image of
whole body bone
scan,

(b) Laplacian of
(a).{c) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of
(a).
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FIGURE 3.46
(Continued)

(e) Sobel image
smoothed with a
3 X 5 averaging
filter. (1) Mask
image formed by
the product of (c)
and (e).

(2) Sharpened
image obtained
bv the sum of (a)
and (f). (h) Final
result obtained by
applving a
power-law
transformation to
(2). Compare (g)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)
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