Chapter 12
Object Recognition
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e Patterns and Pattern Classes

e Recognition Based on Decision-Theoretic
Methods

e Structural Methods




FIGURE 12.1
Three types of iris
flowers described
by two
measurements.
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FIGURE 12.2 A noisy object and its corresponding signature.
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FIGURE 12.3 (a) Staircase structure. (b) Structure coded in terms of the primitives a and
b to vield the string description ... ababab ... .



FIGURE 12.4
Satellite image of e

a heavily built 0006
downtown arca 000606
(Washington, ®
D.C.) and ®
surrounding ®
residential areas.
(Courtesy of
NASAL)
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FIGURE 12.5 A tree description of the image in Fig. 12.4.
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Xew, d;(x) > d;(x)
X € o, d; (x) <d;(x)




X5 FIGURE 12.6
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e The conditional average risk or loss in
decision theory terminology.

I (X) = i Ly p(a)k /X)

1 W
ri(X) = p—E’ p(e, / x)P(a )
k=

I (X) = i Ly p(X/a)k )P(wk)



ﬁL o(x/ @, P, ) < ﬁL‘“’ p(x/ @, JP(w,

L, =1-6,

Where 5, =1 ifi=jand &, =0if 1#] .

%4

ri(x) = 2(1 — Skj)p(x/cuk)P(wk)

=1

p(x) — p(x/w;)P(w;).
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The Bayes classifier then assigns a pattern x to class w; if, for all j # i,
p(x) — p(x/w;)P(w;) < p(x) — p(x/w;)P(w;) (12.2-15)
or, equivalently, if
p(x/w)P(w;) > p(x/w)P(w;) j=1,2,...,W;j #i (122-16)

With reference to the discussion leading to Eq. (12.2-1), we see that the Bayes
classifier for a 0-1 loss function is nothing more than computation of decision
functions of the form

di(x) = p(x/w)P(0;) j=1,2,....W (12.2-17)
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In the n-dimensional case, the Gaussian density of the vectors in the jth pat-
tern class has the form

1 —%(x— m f-)TC 7(x—m,))

p(x/w;) = ST e (12.2-19)
m; = E{x}
and
C, = E{(x - m))(x — m))'}



T
1 0000
R 000
AT 2 X o0
j Xew; ®
and
C; = Ly > xx” — m;m’
| Sann I
}' XE&’J:

di(x) = In| p(x/w;)P(w;)]
= In p(x/wj) + In P(wj).

di(x) = In P(w;) — —’élnzn - ; In|C;| — %[(x - m))'Cj'(x — m))]. (12.2-25)

The term (7/2) In27 is the same for all classes, so it can be eliminated from
Eq. (12.2-25), which then becomes

1

di(x) = In P(w;) — %1n|cj| =3 [(x — m))'C7l(x — m,)] (12.2-26)
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If all covariance matrices are equal, then C; = C,forj = 1,2,...,W. By ex-
panding Eq. (12.2-26) and dropping all terms independent of j, we obtain
1
di(x) = InP(w;) + x'C'm; — o m' C'm;, (12.2-27)
which are linear decision functions (hyperplanes) forj = 1,2,... ,W.

If, in addition, C = I, where I is the identity matrix, and also P(w}-) = 1/W,
forj =1,2,...,W, then

L

di(x) =x'm; — -m

j-ymymy oy =1,2,..., W. (12.2-28)



FIGURE 12.10
Probability
density functions
for two 1-D
pattern classes.
The point xy
shown is the

decision boundary

if the two classes
are equally likely
[0 oCccur.

Frobability density
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FIGURE 12.13 (a) Multispectral image. (b) Printout of machine classification results using a Bayes classifier. {Courtesy of the Lab-

oratory for Applications of Remote Sensing. Purdue University. )
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si(a) = 5;(b) forj = 4,6,8,...,k
si(a) # s;(b) forj =k + 2,k +4,...

where s indicates shape number and the subscript indicates order. The distance
between two shapes a and b is defined as the inverse of their degree of similarity:

1

D(a, b) = }(—

(12.3-2)



This distance satisfies the following properties:
D(a,b) =0
D(a,b) =0 iffa=0>b
D(a, c¢) = max|D(a, b), D(b,c)].
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FIGURE 12.24

(a) Shapes.

(b) Hypothetical
similarity tree.

(c) Similarity
matrix. ( Bribiesca
and Guzman.)
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Suppose that two region boundaries, a and b, are coded into strings (see
Section 11.5) denoted a,a,...a, and b, b,...b,,, respectively. Let « represent
the number of matches between the two strings, where a match occurs in the
kth position if a;, = b;. The number of symbols that do not match is

B = max(|a|, |b|) - __ (12.3-4)

where |arg| is the length (number of symbols) in the string representation of
the argument. It can be shown that 8 = 0if and only if  and b are identical (see
Problem 12.21).
A simple measure of similarity between a and b is the ratio
(84 84

R=—= : 12.3-5
B max(|al, |b]) — « ( )
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and (b) Sample
houndaries of two
different object
classes: (¢) and

(d) their
corresponding
polygonal
approximations;
(e)—(g) tabulations

14 185 1¢ 1d 1e 1f Rl 724 71h 3¢ 3d 35 i of R. (Sze and
Yang.)
oo 2_{[ ==]
160 o 2b| 335
96 263 = 2¢| 48 58 =
51 81 103 2d| 36 42 193 -
47 72 103 142 = 2e| 28 33 92 183
7 72 103 84 237 = 26| 26 30 77 135 270 =

2a| 124 150 132 147 155 148
2b| 118 143 132 147 155 148
2e| 102 118 1.19 132 139 148
2d| 102 118 119 132 129 140
Ze| 093 107 108 119 124 1.25
20 089 1.02 102 124 122 118




The end




