Chapter 10
Image Segmentation
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e The whole is equal to the sum of its parts.
-Euclid

e The whole is greater than the sum of its parts.
-Max Wertheimer

e The Whole is Not Equal to the Sum of Its Parts:
An Approach to Teaching the Research Paper.
-by Mangum, Bryant



e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion in Segmentation
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e Point Detection

e Line Detection

e Edge Detection
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FIGURE 10.2

(a) Point
detection mask.
(b) X-ray image
of a turbine blade
with a porosity.
(¢) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)



e Point Detection

e Line Detection

e Edge Detection




FIGURE 10.3 Line
masks.
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FIGURE 10.4
[llustration of line
detection.

(a) Binary wire-
bond mask.

(b) Absolute
value of result
after processing
with —45° line
detector.

(c) Result of
thresholding
image (b).



e Point Detection

e Line Detection

e Edge Detection




Model of an ideal digital edge

Gray-level profile
of a horizontal line

through the image

Model of a ramp digital edge

Gray-level profile
of a horizontal line
through the image
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FIGURE 10.5

(a) Model of an
ideal digital edge.
(b) Model of a
ramp edge. The
slope of the ramp
1s proportional to
the degree of
blurring in the
edge.
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FIGURE 10.6

(a) Two regions
separated by a
vertical edge.

(b) Detail near
the edge, showing
a gray-level
profile, and the
first and second
derivatives of the
profile.
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Second
derivative
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and = 0L0,0.1, 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative
images and gray-level profiles.
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Gradient operators

e The gradient of an image f(x,y) at location

(X,y) Is defined as the vector
N

G| |ax
o | &
Oy _
e An important quantity in edge detection Is the

magnitude of this vector, denoted vi ,where

I /2
Vf =mag(Vf) = |G; +G§]1



e The direction of the gradient vector also is an
Important quantity. Let a(x,y) represent the
direction angle of the vector vf at (x,y). Then,
from vector analysis,

1 Gy
CZ(X, y) — tag_ (G—)

X



e Roberts cross-gradient operators:

Gx — (Z9 - 25)
and

Gy — (28 - 26)




e An approach using masks of size 3*3 is given
by

G, =(2; +23+24) - (2, + 2, + 2,)
e and

G, =(z;+25+24)— (2, +2, + ;)



e A slight variation of these two equations uses
a weight of 2 in the center coefficient:

G, =(z,+22,+2,)—(z,+22,+ 2,)
and

G, =(z;+224 +24)— (2, + 22, + 2;)



e An approach used frequently Is to
approximate the gradient by absolute values:

Vi z‘GXH‘Gy‘



The Laplacian

e The Laplacian of a 2-D function f(x,y) is a
second-order derivative defined as
2 2
Vef = g I + 0 I
OX oy

e For a 3*3 region, one of the two forms
encountered most frequently in practice Is

Vit =4z, —(z,+12, +2,+1,)




e A digital approximation including the diagonal
neighbors Is given by

2
Vit =8z, —(z,+2,+2,+2, +2,+2,+12,+1,)
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FIGURE 10.8

A3 X 3 region of

an image (the z's
are grav-level
values) and
various masks
used to compute
the gradient at
point labeled zs.
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FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.
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FIGURE 10.10

(a) Original
image. (b) |G|,
component of the
gradient in the
x-direction.

() |G},
component in the
y-direction.

(d) Gradient
image, |G,| + |G,/
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FIGURE 10.11
Same sequence as
in Fig. 10,10, but
with the original
image smoothed
witha 3 X 5
averaging filter.
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FIGURE 10.12

Diagonal edge
detection.

(a) Result of using
the mask in

Fig. 10.9(c).

(b) Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11(a).




FIGURE 10.13
Laplacian masks
used to
implement

Eqs. (10.1-14) and
(10.1-15).
respectively.
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FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b} Image (black
IS negative, gray is
the zero plane,
and white 1s
positive).

(¢) Cross section
showing zero

V2 CrOSsIngs.

4 (d) 5 X 5 mask
approximation to
the shape of (a).
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FIGURE 10.15 {a) Original image. {b) Sobel gradient (shown for comparison). (c) Spatial Gaussian smooth-
ing function. {d) Laplacian mask. {e) LoG. (f) Thresholded LoG. (g) Zero crossings. (Original image courtesy

of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical
Center.)




e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion in Segmentation



e Local Processing

e Global Processing via the Hough Transform

e Global Processing via Graph-Theoretic
Technigues



e An edge pixel with coordinates (X,,Y,) In a
predefined neighborhood of (x,y), Is similar in
magnitude to the pixel at (x,y) if

VE (X, y) = VE (X, ¥o)| S E

e An edge pixel at (X,,Y,) In the predefined
neighborhood of (x,y) has an angle similar to

the pixe

at (x,y) If
a(x,y) —a(x,, Yo )| < A
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FIGURE 10.16

(a) Input image.
(b) &, component
of the gradient.
(¢) G, component
of the gradient.
(d) Result of edge
linking. (Courtesy
of Perceptics
Corporation.)




e Local Processing
e Global Processing via the Hough Transform

e Global Processing via Graph-Theoretic
Technigues
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FIGURE 10.18
Subdivision of the
parameter plane
for use in the
Hough transform.
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(X_C1)2 +(y_C2)2 :C§
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FIGURE 10.20
Ilustration of the
Hough transform.
(Courtesy of Mr.
D. R. Cate. Texas
Instruments, Inc.)
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FIGURE 10.21

(a) Infrared
image.

(b) Thresholded
eradient image.
(c) Hough
transform.

(d) Linked pixels,
(Courtesy of Mr.
D). R. Cate, Texas
Instruments, Inc.)



e Local Processing
e Global Processing via the Hough Transform

e Global Processing via Graph-Theoretic
Technigues



FIGURE 10.22
Edge element
between pixels p
and g.
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e A sequence of nodes n,,n,,...,n,, with each
node n. being a successor of node n. , IS
called a path from n, to n,. The cost of the
entire path Is:

C= C(ni—l’ ni)

K
1=2
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FIGURE 10.23 (a) A 3 X 3 image region. (b) Edge segments and their costs. (¢) Edge corresponding to the
lowest-cost path in the graph shown in Fig. 10.24,
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FIGURE 10.24
Grraph for the
image in

Fig. 10.23(a). The
lowest-cost path is
shown dashed.



FIGURE 10.25
lmage of noisy
chromosome
silhouette and
edge boundary
(in white)
determined by
eraph search.



e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion in Segmentation



e Foundation

e The Role of lllumination

e Basic Global Thresholding

e Basic Adaptive Thresholding
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FIGURE 10.26 (a) Giray-level histograms that can be partitioned by (a) a single thresh-
old. and (b) multiple thresholds.



e Based on the preceding discussion,
thresholding may be viewed as an operation
that involves tests against a function T of the
form

T=T[xy,p(xy), f(xy)]
e A thresholded image g(x,y) Is defined as



e A thresholded image g(x,y) is defined as

1 if f(x,y)>T

9(%y) :{o it f(x,y)<T




e Foundation

e The Role of lllumination

e Basic Global Thresholding

e Basic Adaptive Thresholding




a

o000
b c
R 0000

FIGURE 10.27 o0
(a) Computer o0
cenerated ®
reflectance

function.

(b) Histogram of
reflectance

function.

(c¢) Computer
cenerated

illumination

function.

(d) Product of (a)

and (c).

(e) Histogram of
product image.
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FOXy)=1(x,y)r(xy)
e Taking the natural logarithm of this equation
yields a sum:

Z(X,y)=Inf(x,y)
=Ini(x,y)+Inr(x,y)
=i (X, y)+r (x,y)



e Foundation

e The Role of lllumination

e Basic Global Thresholding

e Basic Adaptive Thresholding
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FIGURE 10.28
(a) Original
image. (b) Image
histogram.

(c) Result of
elobal
thresholding with
T midway
between the
maximum and
Minimum gray
levels.



e The following algorithm can be used to obtain

T automatically:

Select an initial estimate for T;

Segment the image using T. This will produce two groups of
pixels: G, consisting of all pixels with grey level values>T and G,
consisting of pixels with values <=T.

Compute the average gray level valuest, and 4, for the pixels in
regions G, and G..
Compute a new threshold value:

1

T=§(ﬂ1+uz)

Repeat steps 2 through 4 until the difference in T in successive
iterations is smaller than a predefined parameter T..



e Foundation

e The Role of lllumination

e Basic Global Thresholding

e Basic Adaptive Thresholding
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FIGURE 10.29
(a) Original
image. (b) Image
histogram.
{c) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
[nstitute of
Standards and
Technology.)
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FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(¢) Image
subdivided into
individual
subimages.

(d) Result of
adaptive
thresholding.




e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion in Segmentation






e Region Growing

e Region Splitting and Merging




(b) o )

Fig. 5. (a) X-ray image of human chest in which the left and right lung fields are to be segmented. (b) A second X-ray image of human chest with very
different left lung field. (c) Result of segmentation of (a) by SRG using automatically derived seed areas (10 x 10 boxes). These seeds, for the left and right
lung fields and the region in between them, are found using a converging squares algorithm. (d) Result of segmentation of (b).
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FIGURE 10.40

(a) Image
showing defective
welds (b) Seed
points. (¢) Result

of region growing.

(d) Boundaries of
segmented
defective welds
(in black).
(Original image
courtesy of
X-TEK Systems,
Ltd.).




e Region Growing

e Region Splitting and Merging
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FIGURE 10.42
(a) Partitioned

image.
(b) Corresponding R R,

quadtree.




e Split into four disjoint quadrants any region R
for which P(R;)=FALSE;

e Merge any adjacent regions R; and R, for
which P(R; UR,) =TRUE .

e Stop when no further merging or splitting Is
possible.
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FIGURE 10.43

(a) Original
image. (b) Result
of split and merge
procedure.

(c) Result of
thresholding (a).




e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion in Segmentation
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FIGURE 10.44

(a) Original
image.

(b) Topographic
view. (¢)—(d) Two
stages of flooding.
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FIGURE 10.44
(Continued)

(¢) Result of
further flooding.
(1) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them}). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines. (Courtesy of
Dr. 8. Beucher,
CMM/Ecole des

Mines de Paris.)
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[] First dilation

a
. Second dilation

E C <] Dam points

FIGURE 10.45 {a) Two partially flooded catchment basins at stage n — 1 of flooding.

(b) Flooding at stage n, showing that water has spilled between basins {for clarity, water
is shown in white rather than black ). {¢) Structuring element used for dilation. (d) Re-

sult of dilation and dam construction.
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FIGURE 10.46
(a) Image of
blobs. (b) Image
gradient.

() Watershed
lines.

(d) Watershed
lines
superimposed on
original image.
(Courtesy of Dr,
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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FIGURE 10.47

(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
eradient image.
Oversegmentation
1s evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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FIGURE 10.48

(a) Image showing
internal markers
(light gray regions)
and external
markers
(watershed lines).
(b) Result of
segmentation. Note
the improvement
over Fig. 10.47(b).
(Courtesy of Dr. 8.
Beucher,
CMM/Ecole des
Mines de Paris.)



e Detection of Discontinuities

e Edge Linking and Boundary Detection
e Thresholding

e Region-Based Segmentation

e Segmentation by Morphological
Watersheds

e The Use of Motion In Segmentation



e Spatial Techniques

e Frequency Domain Techniques




1t [fGyt) - FOGyt)>T

d; (X, y) =1
0 otherwise




(AL y)+1if ROGY) = FOyK)>T
¢ A, (X,Y) =+ k-1 ‘ _ ‘
AL (XY) otherwise
(P (x,y)+1 if |R(X,y)—f(x,y,K)|>T
Pk(X,Y)=< k—l( y) ‘ ( y) ( y )‘
P (X, Y) otherwise

e and

Nio (G y)+1 if R y) = F(xy, k)| <-T
N, ,(X,y) otherwise

Nk(xvy):{
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FIGURE 10.49 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI. (b) Posi-
tive ADI. (¢) Negative ADL.
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FIGURE 10.50 Building a static reference image. (a) and (b) Two frames in a sequence.
(¢) Eastbound automobile subtracted from (a) and the background restored from the
corresponding area in (b). (Jain and Jain.)



e Spatial Techniques

e Frequency Domain Techniques




(X X
. t
g 12720+ UM — cog[27a, (X'+1)At ]+ jsin[27a, (x+t)At] |
M—-1N- | St - 9% 2]
glt,ay) = 2 Z (x, y, t)e?m™xdt ¢t =0,1,...,K = 1. (10:6-6)
. x=0 y=0 : -
Similarly, the sum of the projections onto the y-axis is
N-1M-1 | | "
(t a;) = 2 > flx, y, t)erm ¥ ¢t =0,1,...,K -1 (10.6-7)
y=0 x=0 : R
The 1-D Fourier transforms of Egs. (10.6-6) and (10.6-7), respectively, are
K-1 |
G (uy, ay) = —I}(-— > gt ay)e Pk oy =0,1,...,K -1 (10.6-8)
=0

and |



° The frequency-velocity relationship is
| U, = a1
and
Uy = A0,

e The actural physical speed in the x-dirextion
IS
v; = (10 pixels)(0. Sm/ p1xel)(2 frames/ s) / (30 frames)
= 1/3m/s.
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The sign of the x_-componeght' of the velocity is _obtainéd by computing
dRe[g(t, a))]| =
i e i (10.6-12)
and
| d*Im| g (t, a
Sye = [j :2( il (10.6-13)




FIGURE 10.51
LANDSAT
[rame. (Cowart,
Snyder, and
Ruedger.)




FIGURE 10.52
[ntensity plot of
the image in

Fig. 1051, with
the target circled.
(Rajala. Riddle,
and Snyder.)
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FIGURE 10.53 Spectrum of Eq. (10.6-8) showing a peak at u, = 3. (Rajala, Riddle. and

Snvder. )



FIGURE 10.54
Spectrum of

Eq. (10.6-9)
showing a peak at
i, = 4. (Rajala,
Riddle, and
Snyder.)
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