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Restoration attempts to reconstruct or 
recover an image that has been degraded by 
using a priori knowledge of the degradation 
phenomenon.   
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If H is a linear, position-invariant process, 
then the degraded image is given in the 
spatial domain by

Where h(x,y) is the spatial representation of 
the degradation function. 
Write the model in an equivalent frequency 
domain representation.
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Parameters: define the spatial characteristics 
of noise, and whether the noise is correlated 
with the image.
Frequency properties: refer to the frequency 
content of noise in the Fourier sense.
When the Fourier spectrum of noise is 
constant, the noise usually is called white 
noise.



Spatial and Frequency Properties of Noise
Some Importany Noise Probability Density 
Functions
Periodic Noise
Estimation of Noise Parameters



Gaussian noise

The PDF of a Gaussian random variable, z, is 
given by

z represents gray level,
is the mean of average value of z;
is its standard deviation.
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Rayleigh noise

The PDF of Rayleigh noise is given by

The mean and variance of this density are 
given by

and
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Erlang(Gamma) noise

The PDF of Erlang noise is given by

The mean and variance of this density are 
given by

and
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Exponential noise

The PDF of exponential noise is given by

The mean and variance of this density 
function are

and
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Uniform noise

The PDF of uniform noise is given by

The mean of this density function is given by

And its variance by
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Impulse (salt-and-pepper) 
noise

The PDF of (bipolar) impulse noise is given 
by
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Periodic noise in an image irises typically 
from electrical or electromechanical 
interference during image acquisition.

Periodic noise can be reduced significantly 
via frequency domain filtering.
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The parameters of periodic noise typically are 
estimated by inspection of the Fourier 
spectrum of the image.
The simplest way to use the data from the 
image strips is for calculating the mean and 
variance of the gray levels.



Consider a strip (subimage) denoted by S. 
We can use the following sample 
approximations from basic statistics:

and

where the zi’s are the gray-level values of the 
pixels in S, and p(zi) are the corresponding 
normalized histogram values.
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When the only degradation present in an 
image is noise

and
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Arithmetic mean filter
Let Sxy represent the set of coordinates in a 
rectangular subimage window of size m*n, 
centered at point (x,y). 
The arithmetic mean filtering process computes 
the average value of the corrupted image g(x,y) 
in the area defined by Sxy.
The value of the restored image     at any point 
(x,y) is simply the arithmetic mean computed 
using the pixels in the region defined by Sxy. In 
other words, 
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Geometric mean filter

An image restored using a geometric mean 
filter is given by the expression
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Harmonic mean filter

The harmonic mean filtering operation is 
given by the expression
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Contraharmonic mean filter

The contraharmonic mean filtering operation 
yields a restored image based on the 
expression:

where Q is called the order of the filter.
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Median filter

Replaces the value of a pixel by the median 
of the gray levels in the neighborhood of that 
pixel:
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Max and min filters

Using the 100th percentile results in the so-
called max filter, given by

The 0th percentile filter is the min filter:

{ }
xySts

tsgyxf
∈

=
),(

),(max),(
)

{ }
xySts

tsgyxf
∈

=
),(

),(min),(
)





Midpoint filter

The midpoint filter simply computes the 
midpoint between the maximum and 
minimum values in the area encompassed by 
the filter:
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Alpha-trimmed mean filter
Suppose that we delete the d/2 lowest and the d/2 
highest gray-level values of g(s,t) in the neighborhood 
Sxy.Let gr(s,t) represent the remaining mn-d pixels. A 
filter formed by averaging these remaining pixels is 
called an alpha-trimmed mean filter:

Where the value of d can range from 0 to mn-1.
When d=0, the alpha-trimmed filter reduces to the 
arithmetic mean filter.
If we choose d=mn-1, the filter becomes a median filter.
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Two simple adaptive filters whose behavior 
changes based on statistical characteristics 
of the image inside the filter region defined by 
the m*n rectangular window Sxy.



Adaptive, local noise reduction 
filter

The response of the filter at any point(x,y) on 
which the region is centered is to be based 
on four quantities:

g(x,y), the value of the noisy image at (x,y);
, the variance of the noise corrupting f(x,y) to 

form g(x,y);
, the local mean of the pixels in Sxy;
, the local variance of the pixels in Sxy.

2
ησ

2
Lσ
Lm



We want the behavior of the filter to be as follows:
If      is zero, the filter should return simply the value of  g(x, 
y)．This is the trivial, zero-noise case in wnich g(x, v）is 
equal to f(x, y)．
If the local variance is high relative to      , the filter should 
return a value close to g(x,y)．A nigh local variance 
typically is associated with edges,  and these should be 
preserved.
If the two variances are equal, we want the filter to return 
the arithmetic mean value of the pixels in Sxy· This 
condition occurs when the local area has the same 
properties as the overall image, and local noise is to be 
reduced simply by averaging.
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An adaptive expression for obtaining        
based on these assumptions may be written 
as

),( yxf
)

[ ]L
L

myxgyxgyxf −−= ),(),(),( 2

2

σ
ση)









Outline
A Model of the Image Degradation/Restoration Process
Noise Models
Restoration in the Presence of Noise Only-Spatial 
Filtering
Periodic Noise Reduction by Frequency Domain Filtering
Linear, Position-Invariant Degradations
Estimating the Degradation Function
Inverse Filtering
Minimun Mean Square Error(Wiener) Filtering
Constrained Least Squared Filtering
Geometric Mean Filter
Geometric Transformations



Bandreject Filters

Bandpass Filters

Notch Filters

Optimum Notch Filtering



Bandreject filters remove or attenuate a band of 
frequencies about the origin of the Fourier 
transform. An ideal bandreject filter is given by 
the expression

Where D(u,v) is the distance from the origin of 
the centered frequency rectangle, W is the width 
of the band, and D0 is its radial center.
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A Butterworth bandreject filter of order n is 
given by the expression:

And a Gaussian bandreject filter is given by
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The transfer function Hbp(u,v) of a bandpass
filter obtained from a corresponding 
bandreject filter with transfer function Hbr(u,v) 
by using the equation

Hbp(u,v)=1-Hbr(u,v)
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The transfer function of an ideal notch reject 
filter of radius D0, with centers at(u0,v0) and, 
by symmetry, at(-u0,-v0), is

where

and
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The transfer function of a Butterworth notch 
reject filter of order n is given by

A Gaussian notch reject filter has the form

n
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The Fourier transform of the interference 
noise pattern is given by the expression

The corresponding pattern in the spatial 
domain is obtained from the expression
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The local variance of          at coordinates (x,y) 
can be estimated from the samples as follows:

Where           is the average value of      in the 
neighborhood  
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To minimize          ,we solve

for w(x,y). The result is
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The input-output relationship is expressed as

H is linear if
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An operator having the input-output 
relationship                       is said to be 
position invariant if 
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Where 
If H is position invariant

then,

This expression is called the convolution integral.
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Estimation by Image Observation

Estimation by Experimentation

Estimation by Modeling



:The observed subimage;
:The constructed subimage;
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G(u,v): The Fourier transform of the observed 
image;
A: a constant describing the strength of the 
impulse;
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Estimation by Image Observation
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Estimation by Modeling



A degradation model proposed by Hufnagel
and Stanley is based on the physical 
characteristics of atmospheric turbulence. 
This model has a familiar form:
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Suppose that an image components of 
motion in the x- and y-directions, respectively. 
If T is the duration of the exposure, it follows 
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At a rate given by                 ,           . 

With the motion given by                  , then the 
degradation function becomes
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Based on these conditions, the minimum of 
the error function is given in the frequency 
domain by the expression
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The Wiener filter presents an additional 
difficulty: 
The power spectra of the undergraded image 
and noise must be known.



To find the minimum of a criterion function, C, 
defined as

Subject to the constraint
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The frequency domain solution to this 
optimization problem is given by the 
expression

P(u,v) is the Fourier transform of the function
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Define a “residual” vector r as
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In order to use this algorithm, we need the 
quantities      and     .2r 2η
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A spatial transformation: which defines the 
“rearrangement” of pixels on the image plane;

Gray-level interpolation: which deals with the 
assignment of gray levels to pixels in the 
spatially transformed image.



Spatial Transformations
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Gray-Level Interpolation






