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Wind Power Curve Modeling and Wind Power
Forecasting With Inconsistent Data

Yun Wang, Qinghua Hu , Senior Member, IEEE, Dipti Srinivasan, Senior Member, IEEE, and Zheng Wang

Abstract—Wind power curve modeling is a challenging task due
to the existence of inconsistent data, in which the recorded wind
power is far away from the theoretical wind power at a given
wind speed. In this case, confronted with these samples, the esti-
mated errors of wind power will become large. Thus, the estimated
errors will present two properties: heteroscedasticity and error
distribution with a long tail. In this paper, according to the above-
mentioned error characteristics, the heteroscedastic spline regres-
sion model (HSRM) and robust spline regression model (RSRM)
are proposed to obtain more accurate power curves even in the
presence of the inconsistent samples. The results of power curve
modeling on the real-world data show the effectiveness of HSRM
and RSRM in different seasons. As HSRM and RSRM are op-
timized by variational Bayesian, except the deterministic power
curves, probabilistic power curves, which can be used to detect the
inconsistent samples, can also be obtained. Additionally, with the
data processed by replacing the wind power in the detected incon-
sistent samples with the wind power on the estimated power curve,
the forecasting results show that more accurate wind power fore-
casts can be obtained using the above-mentioned data processing
method.

Index Terms—Power curve modeling, wind power forecasting,
heteroscedasticity, robustness, inconsistent samples.

I. INTRODUCTION

CURRENTLY, wind power as a clean and renewable energy
has been receiving more and more attention [1]. Large-

scale wind power integration will ease energy stress to a certain
extent, and bring economic and environmental benefits. How-
ever, owing to the intermittency and randomness of wind power,
it will be a challenge to the stability of power system operations
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as the wind power penetration increases [2]. Therefore, more
accurate wind power forecasting models are necessary for inte-
gration purpose, which are also helpful to reduce the operating
costs [3], [4].

In literature, wind power forecasting models can be grouped
into two categories: direct forecasting approaches and indirect
forecasting approaches [3]. The former mainly utilize the his-
torical wind power data to forecast future wind power. However,
the latter are two-step methods, which generate the wind speed
forecasts and then provide the wind power forecasts by power
curve, which reflects the nonlinear relationship between wind
speed and wind power [5]. Therefore, the wind power forecast-
ing error is mainly caused by the forecasting error of wind speed
for indirect models.

In general, the theoretical power curve is provided by manu-
factures without considering the environment factors (e.g. tem-
perature and humidity) [6]. In practice, it will change depending
on the terrain and climate of different areas, etc. Thus, using the
theoretical power curve to conduct wind power forecasting will
lead to additional errors [3], [7]. The practical power curve
should be estimated. In addition to helping to forecast wind
power when wind speed forecasts are available, an accurate
power curve facilitates online monitoring and reduces operation
and maintenance costs of wind turbines [8].

Generally, power curve modeling techniques can be divided
into two groups: parametric models and non-parametric models.
Usually, parametric models, including warping function [9], lin-
earized segmented model [10], polynomial power curve, ideal
power curve [11], probabilistic model [12], dynamical power
curve [13], four and five-parameter logistic models (4-PLM and
5-PLM) [10], [14], are constructed by mathematic expressions
with several parameters to describe power curves [7], [15], as
well as the modified hyperbolic tangent model [8]. For poly-
nomial model, cubic power curve [6], quadratic power curve
[16], sixth and ninth degree polynomials [3], [17] are often
used. The main drawback of parametric techniques is their lim-
ited performances in describing the dynamic nature of power
curve [18]. Unlike parametric models, non-parametric models
are not made up of mathematical expressions and don’t need
any prior knowledge about the shape of power curve. They can
model various power curves only using the real wind speed and
wind power data. Examples of non-parametric models contain
spline regression model (SRM) [15], artificial neural networks
(ANNs) [19], fuzzy methods [20] and data mining methods
(e.g. support vector machine (SVM) [18], random forest, boost-
ing algorithm and K-nearest neighbor (KNN) [21]). Although

1949-3029 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8690-987X
mailto:wangyun15@tju.edu.cn
mailto:huqinghua@tju.global advance �reakcnt @ne penalty -@M edu.cn
mailto:huqinghua@tju.global advance �reakcnt @ne penalty -@M edu.cn
mailto:dipti@nus.global advance �reakcnt @ne penalty -@M edu.sg
mailto:dipti@nus.global advance �reakcnt @ne penalty -@M edu.sg
mailto:wangzheng1618@yeah.net


WANG et al.: WIND POWER CURVE MODELING AND WIND POWER FORECASTING WITH INCONSISTENT DATA 17

non-parametric techniques are more flexible than parametric
techniques, they suffer from higher computation costs [18].

Apart from the power curve modeling approaches, another
factor that affects the acquisition of accurate power curves is the
data quality [22]. In reality, there are many inconsistent data in
our databases due to several reasons such as sensor errors, blade
damage, maintenance issues, wind curtailment and environment
factors (e.g., ice) [8], [22]. The main character of these data is
that the real wind power is far away from the theoretical wind
power on the power curve at a given wind speed. In order to get
accurate power curves, some researchers use flitter methods to
process these inconsistent data in advance [3], [8], [18], [22].
For instance, Taslimi-Renani et al. firstly grouped the wind
speed into many small intervals, then the mean μp and the
deviation σp of the corresponding wind power data in each
interval were computed, the samples in which wind power data
were located out of the boundary [μp − σp, μp + σp ] were seen
as the inconsistent data and were flitted [8]. Marčiukaitis et al.
employed a statistic model named Tukeys method to detect
the inconsistent samples [3]. Kusiak et al. used a KNN model
to construct a power curve, then used residual approach and
control charts to detect the inconsistent data [23]. Zhao et al.
proposed a data-driven method combining a quartile method and
a density-based clustering method to eliminate the inconsistent
samples [22].

However, for the current detection models, we cannot ensure
that all inconsistent samples can be identified in any conditions,
there may still be some inconsistent samples hidden in our pro-
cessed data. In such case, the estimated errors of those power
curve modeling techniques may present two new characters.
Owing to the presence of inconsistent samples, the estimated
errors when encountering these samples will be larger than that
of normal samples. First, the variances of the estimated errors
will vary with the samples, which shows that the error is het-
eroscedastic [24]. Second, the larger errors will be far away from
zero, so the distribution of the estimated errors will present a
long tail. However, the estimated error in the current power
curve modeling techniques is often assumed to be Gaussian
distributed [15], that cannot deal with the heteroscedasticity
and long-tail error distribution well. In this paper, within the
Bayesian framework, heteroscedastic spline regression model
(HSRM) and robust spline regression model (RSRM) are pro-
posed to deal with the above problem. The main contributions
of this work are summarized as follows:

1) HSRM, in which the regression errors of training sam-
ples are assumed to be Gaussian distributed with different
variances, is first developed to model power curves with
the data contaminated by some inconsistent samples.

2) RSRM, which uses an infinite mixture of Gaussians
(IMoG) to model the error distribution with long tail, is
also first designed to model power curves with the data
corrupted by some inconsistent samples.

3) HSRM and RSRM are optimized via variational Bayesian.
Thus, they can generate deterministic and probabilistic
power curves simultaneously. And, the latter can also be
used to detect inconsistent samples in power data.

4) We develop a new strategy for wind power forecasting.
First, inconsistent samples are detected by HSRM and

RSRM, and replaced by the data on the estimated power
curves. Second, with the processed data, ANN based fore-
casting model is constructed to obtain power forecasts.

The rest of this paper is constructed as follows. Section II
introduces some power curve models. Two proposed mod-
els based on spline regression are presented in Section III.
Section IV shows the applications of the proposed models, in-
cluding power curve modeling, inconsistent samples detecting
and wind power forecasting. Section V concludes the paper and
shows the future work.

II. WIND POWER CURVE MODELS

Currently, many approaches are employed to model power
curves. Here, some representative parametric models and non-
parametric models are introduced.

A. Parametric Models

1) Four-Parameter Logistic Model (4-PLM): Owing to the
shape of 4-PLM is similar to the real power curves, it is widely
used to model them. The expression of 4-PLM is

yP = α(1 + βexS /γ )/(1 + δexS /γ ) (1)

where yP , xS are the wind power and wind speed, respectively.
Four parameters α, β, γ, δ control the shape of the power curve.
Usually, intelligent optimization methods are employed to get
the four optimal parameters based on the objective function [8],

min
α,β ,γ ,δ

N∑

i=1

(ŷi
P − yi

P )2 (2)

where ŷi
P is the estimated wind power while yi

P is the real wind
power.

2) Five-Parameter Logistic Model (5-PLM): 5-PLM is also
employed to model power curves, its expression is given by

yP = α + (β − α)/(1 + (xS /γ)δ )ε (3)

where α, β, γ, δ, ε are the corresponding five parameters, and
γ, ε ≥ 0. Similar to optimize 4-PLM, intelligent optimization
methods are also employed to tune 5-PLM by the same objective
function as expressed in (2) [8].

3) Polynomial Regression: Generally, a pth degree polyno-
mial regression can be expressed as

yP = a0 + a1xS + a2x
2
S + · · · + apx

p
S (4)

where a0 , . . . , ap denote the corresponding parameters. In lit-
erature, sixth and ninth degree polynomial regression models
(6-PRM, 9-PRM) have been tested to have good performances
in modeling power curves. And least squares method is usually
used to estimate the model parameters a0 , . . . , ap [15].

B. Non-Parametric Models

1) Artificial Neural Network (ANN): ANNs are powerful
tools to model nonlinear characteristics. The most popular one
in ANNs is BP neural network, which can approximate any non-
linear continuous functions with proper structure and weights
in theoretically [25]. A general BP has three layers: input layer,
hidden layer and output layer. Given a BP neural network with
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D input neurons, H hidden neurons and one output neuron, the
output of jth neuron in the hidden layer (yh

j ) with input vector
{xin

1 , . . . , xin
D } is

yh
j = f

(
D∑

d

wdjx
in
d + bj

)
, (j = 1, . . . , H) (5)

where f(·) is a Sigmoid activation function, wdj is the connec-
tion weight from the dth input node to the jth hidden node, bj is
the bias of hidden node j. The output of the network yo

j can be
obtained via an activation function (e.g. a linear function) fo(·),
the calculation is

yo = fo

⎛

⎝
H∑

j

wo
j y

h
j + bo

⎞

⎠ (6)

where wo
j is the connection weight between the jth hidden node

and the output node, bo is a bias. BP neural network uses error
gradient descent algorithm to minimize the total error E, which
is defined as E =

∑N
i=1(y

o
i − yr

i )2 , where N is the length of
the training data, yo

i and yr
i are the output of network and the

real data of the ith sample, respectively [25].
2) Support Vector Machine (SVM): The basic idea of support

vector machine is using a nonlinear function φ(·) to map the in-
put into a high-dimension feature space, in which a linear regres-
sion is constructed. The most popular one is the ε−SVM with
ε-nonsensitive loss function. Given the training data {xi, yi}N

i=1 ,
based on the minimum structure risk criteria, the objective func-
tion is

min
w,b,ξi ,ξ ∗

i

1
2
‖w‖2

2 + C

N∑

i=1

(ζi + ζ∗i )

s.t.

⎧
⎪⎨

⎪⎩

〈w · φ(xi)〉 + b − yi ≤ ε + ζi

yi − 〈w · φ(xi)〉 − b ≤ ε + ζ∗i
ζi , ζ

∗
i ≥ 0, i = 1, 2, . . . , N.

(7)

where ζi, ζ
∗
i are the two slack variables, 〈w · φ(xi)〉 denotes the

inner produce of w and φ(x), ε is a positive value, C is the
penalty parameter, w and b are the regression coefficient vector
and the bias, respectively.

After taking the Lagrangian, the estimated function in dual
representation is given by

g(x) =
N∑

i=1

(αi − α∗
i )K(xi, x) + b (8)

where αi, α
∗
i denote the solutions of the dual problem, K(xi,

x) = 〈φ(xi), φ(x)〉 is the kernel function. Usually, radial basis
function (RBF) kernel function is used.

3) Spline Regression Model (SRM): Generally, spline re-
gression model can be expressed as yi = f(xi) + ei , where ei

is the error term. Owing to there are many types of spline basis
functions, the expressions of f(xi) are also different. Here, we
introduce two popular spline bases: truncated power basis and
B-spline basis.

Given xi ∈ [a, b], and divide the interval [a, b] by K distinct
points, (ξ0 =)a < ξ1 < ξ2 , . . . , ξK < b(= ξK +1), ξ1 , ξ2 , . . . ,
ξK are called knots. When using the truncated power basis

to form a spline regression model, f(xi) is expressed as

f(xi) = β0 +
p∑

r=1

βix
r
i +

K∑

k=1

βk+p(xi − ξk )p
+ (9)

where p means the order of spline, β0 , β1 , . . . , βK + p are the
regression coefficients, and (xi − ξk )p

+ is defined as [15]

(xi − ξk )p
+ =

{
0 xi < ξk

(xi − ξk )p xi ≥ ξk

(10)

Before constructing the B-spline basis based spline regression
model, the augmented knot sequence ϑ is defined as [26]

⎧
⎪⎨

⎪⎩

ϑ0 ≤ ϑ1 ≤ · · · ≤ ϑp ≤ ξ0

ϑp+k = ξk , k = 1, . . . , K

ξK +1 ≤ ϑK +p+1 ≤ · · · ≤ ϑK +2p

(11)

Then, f(xi) of the B-spline regression is

f(xi) =
K +p∑

j=0

βjB
p
j (xi) (12)

where

B1
j (xi) =

{
1, xi ∈ [ϑj , ϑj+1)
0, otherwise

Bp
j (xi) =

xi − ϑj

ϑj+p−1 − ϑj
Bp−1

j (xi) +
ϑj+p − xi

ϑj+p − ϑj+1
Bp−1

j+1(xi)

(13)

Given the training samples of size N , the above two spline
regression models can be rewritten as the same matrix form,

Y = Zβ + e (14)

where Y ,e ∈ RN , β ∈ RK +p+1 and Z ∈ RN ×(K +p+1) . The
estimated parameter vector β by least squares method is β̂ =
(ZT Z)−1ZT Y [15].

III. PROPOSED SPLINE REGRESSION MODELS

In this section, the proposed models (HSRM and RSRM)
optimized by variational Bayesian are introduced in detail.

A. Heteroscedastic Spline Regression Model

An underlying assumption of the least squares method is that
ei obeys a normal distribution with zero mean and a constant
variance for all samples. However, the variance of the estimated
error in case of inconsistent samples will be larger than that of
normal sample. Thus, the variance is not a constant but varies
with the samples. A heteroscedastic spline regression model is
proposed here to solve this problem.

1) Prior Distributions: To construct a HSRM, ei is assumed
to obey a Gaussian distribution with mean 0 and variance σ−1

i ,
which is given a Gamma prior distribution to complete the
Bayesian model,

p(ei |σi) = N (ei |0, σ−1
i ), p(σi) = G(σi |a0 , b0) (15)

where N (·) and G(·) denote the Gaussian and Gamma distribu-
tions, respectively, a0 , b0 are two hyperparameters.
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So, the likelihood function of training samples {xi, yi}N
i=1 is

computed as

p(Y |Z,β,σ) =
N∏

i=1

N (yi |Ziβ, σ−1
i ) (16)

The prior distribution on regression coefficient βj is usually
assumed to be Gaussian distributed with mean 0 and variance
λ−1

j , and λj is assumed to obey a Gamma distribution parame-
terized by c0 , d0 ,

p(βj |λj ) = N (βj |0, λ−1
j ), p(λj ) = G(λj |c0 , d0) (17)

Then, our goal turns to infer the posterior distributions of
all involved variables in the following joint probability density
function (PDF),

p(β,σ,λ|Y ,Z) = p(Y |Z,β,σ)p(β|λ)p(σ)p(λ) (18)

where λ = [λ1 , . . . , λN ], σ = [σ1 , . . . , σN ].
2) Posterior Distributions: According to the theory of vari-

ational Bayesian (VB) [27], taking the expectation of the log-
arithmic PDF in (18), log p(β,σ,λ|Y ,Z), with respect to all
parameters except β, the logarithmic posterior distribution of β
can be inferred and expressed as

log Q(β) = βT Σ−1
β β − βT ZT diag(〈σ〉)Y

− Y T diag(〈σ〉)Zβ + const. (19)

where Σ−1
β = [diag(〈λ〉) + ZT diag(〈σ〉)Z], 〈·〉 means the ex-

pectation of a random variable, function diag(·) will produce
a diagonal matrix, const. denotes a constant. Therefore, the
posterior distribution of β is a Gaussian distribution,

Q(β) = N (β|μβ,Σβ) (20)

parameterized with mean μβ and covariance Σβ,

μβ = ΣβZT diag(〈σ〉)Y
Σβ = [diag(〈λ〉) + ZT diag(〈σ〉)Z]−1 (21)

Using the same method to obtain the posterior distribution
of β, the posterior distribution of σi is a Gamma distribution
parameterized with two parameters ai, bi ,

Q(σi) = G(σi |ai, bi)

ai =
1
2

+ a0 , bi =
1
2
〈(yi − Ziβ)2〉 + b0 (22)

Similarly, the posterior distribution of parameter λj is also a
Gamma distribution,

Q(λi) = G(λj |cj , dj ) (23)

where

ci =
1
2

+ c0 , di =
1
2
〈β2

j 〉 + d0 (24)

3) Parameter Estimations and Forecasting: Based on the
principle of VB [28], the HSRM algorithm can be summarized
in Algorithm 1.

According to the outputs of Algorithm 1, given Zi computed
by (9) and (12), the distribution of yi is a Gaussian distribution

with mean Ziμβ and variance 〈σi〉−1 + ZiΣβZT
i , which can

be inferred from
∫

N (yi |Ziβ, 〈σi〉−1)N (β|μβ,Σβ)dβ

= N (yi |Ziμβ, 〈σi〉−1 + ZiΣβZT
i ) (25)

According to the posterior of σi , 〈σi〉−1 = bi/ai . For a new
wind speed x∗, based on the spline basis, the corresponding
Z∗ can be obtained. However, the estimated variance is related
with the wind power y∗, which is unknown. So, bi/ai can not be
computed directly. In this paper, it is suggested to be replaced
by the mean of all estimated bi/ai by HSRM with the training
samples, namely (

∑N
i=1 bi/ai)/N . Therefore, the distribution

of y∗ is

p(y∗) = N
(

y∗|Z∗μβ,
1
N

N∑

i=1

bi

ai
+ Z∗ΣβZ∗T

)
(26)

Then, a probabilistic power curve can be obtained according
to (26).

B. Robust Spline Regression Model (RSRM)

To deal with the error distribution with long tail is to enhance
the robustness of SRM. Single Gaussian distribution cannot fit
the long-tail error distribution. Considering the superior fitting
ability of IMoG, a robust spline regression model is constructed
using IMoG to model the complex error distribution.

1) Prior Distributions: The probability density function of
MoG can be expressed as

p(ei) =
G∑

g=1

πgN (ei |0, τ−1
g ) (27)

where G is the number of Gaussian components in MoG, τg and
πg denote the precision and the proportion of the gth Gaussian,
respectively, and

∑G
g=1 πg = 1, πg ≥ 0. In the Bayesian frame-

work, (27) can be represented by a two-level generated model
with the indicator variable rig , which obeys a multinomial dis-
tribution with parameter π, and π is assumed to obey a Dirichlet
distribution parameterized with α0 ,

p(ei) =
G∏

g=1

N (ei |0, τ−1
g )ri g

p(ri) = M(ri |π), p(π) = D(π|α0) (28)
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where ri = [ri1 , ri2 , . . . , riG ], π = [π1 , π2 , . . . , πG ] and α0 =
[α01 , α02 , . . . , α0G ]. According to (28), the likelihood function
of training samples is:

p(Y |R,Z,β, τ ) =
N∏

i=1

G∏

g=1

N (yi |Ziβ, τ−1
g )ri g (29)

However, the main drawback of the original MoG model is
that the number of Gaussian components in MoG should be
determined before constructing a MoG model. Therefore, the
original MoG model is extended into an IMoG model by re-
constructing π according to the theory of stick-breaking con-
struction. The corresponding hierarchical Bayesian prior for π
becomes:

πg (�) = �g

g−1∏

m=1

(1 − �m )

p(�g |υ) = B(�g |1, υ), p(υ) = G(υ|e0 , f0) (30)

where B(·) is a Beta distribution. Under this assumption for π,
given a larger value of G randomly, the limitation of the sum of
component weights equals to 1, namely:

lim
G→∞

G∑

g=1

πg = lim
G→∞

G∑

g=1

�g

g−1∏

m=1

(1 − �m ) = 1 (31)

For the regression coefficient βj , similar to the prior distri-
butions in the HSRM model, βj is given a Gaussian prior with
zero mean and precision �j , and �j is assumed to obey a Gamma
distribution:

p(βj |�j ) = N (βj |0, �−1
j ), p(�j ) = G(�j |g0 , h0) (32)

Usually, a Gamma prior is put on the parameter τg , namely:

p(τg ) = G(τg |s0 , t0) (33)

Then, we should infer the posterior distributions of all vari-
ables involved in the following joint PDF:

p(R,β,�,	, τ , υ|Y ,Z) = p(Y |R,Z,β, τ )p(τ )

p(R|�)p(β|	)p(	)p(�|υ)p(υ) (34)

2) Posterior Distributions: Based on the theory of VB, the
logarithmic posterior distribution of R can be expressed as

log Q(R) =
N∑

i=1

G∑

g=1

rig log ϕig (35)

where log ϕig = [1
2 〈log τg 〉 + 1

2 log(2π) + 〈log πg 〉 − 1
2 〈τg 〉·

〈(yi − Ziβ)2〉]. According to the above equation, the poste-
rior distribution of R is also a multinomial distribution with the
expectation of rig expressed as

〈rig 〉 = ϕig

(
G∑

g=1

ϕig

)−1

(36)

For β, its posterior distribution is also a Gaussian distribution
with mean μβ and covariance Σβ,

Q(β) = N (β|μβ,Σβ)

μβ = ΣβZT diag(A)Y

Σβ = [diag(〈	〉) + ZT diag(A)Z]−1 (37)

where Ai =
∑G

g=1〈rig 〉〈τg 〉 and A = [A1 , . . . , AN ].
The posterior distribution of �j is a Gamma distribution

Q(�j ) = G(�j |g�j
, h�j

) (38)

with the parameters g�j
and g�j

defined as

g�j
= g0 +

1
2
, h�j

= h0 +
1
2
〈β2

j 〉 (39)

As to �g , its posterior is a Beta distribution,

Q(�g ) = B(�g |l�g
,m�g

) (40)

with

l�g
= 1 +

N∑

i=1

〈rig 〉

m�g
= 〈υ〉 +

N∑

i=1

G∑

q=g+1

〈riq 〉 (41)

The posterior distribution of parameter υ is a Gamma distri-
bution

Q(υ) = G(υ|eυ , fυ ) (42)

with the parameter eυ and fυ defined as

eυ = e0 + G − 1

fυ = f0 −
G−1∑

g=1

〈log(1 − �g )〉 (43)

Similarly, the posterior distribution of τg is also a Gamma
distribution,

Q(τg ) = G(τg |sτg
, tτg

) (44)

with the parameter sτg
and tτg

defined as

sτg
= s0 +

1
2

N∑

i=1

〈rig 〉

tτg
= t0 +

N∑

i=1

〈rig 〉〈(yi − Ziβ)2〉 (45)

3) Parameter Estimations and Forecasting: Algorithm 2
shows the full VB-based RSRM.

Based on the outputs of Algorithm 2 , we can infer from (46)
that the distribution of y∗ is also a MoG.
∫ G∑

g=1

〈πg 〉N (y∗|Z∗β, tτg
/sτg

)N (β|μβ,Σβ)dβ

=
G∑

g=1

〈πg 〉N (y∗|Z∗μβ, tτg
/sτg

+ Z∗ΣβZ∗T ) (46)

where 〈πg 〉 is the expectation of variable πg .
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TABLE I
THE NUMBERS OF SAMPLES PAIRS IN TRAINING AND TEST SETS

IV. WIND POWER CURVE MODELING AND WIND

POWER FORECASTING

Here, four real-world datasets from two wind turbine genera-
tors (WTG1 and WTG2) are employed to test the effectiveness
of our proposed models. After that, wind power forecasting
is conducted with the data processed by the estimated power
curves. All experiments are conducted on MATLAB.

A. Data Descriptions

Datasets A and B are collected from WTG1, but come from
spring and winter, respectively. However, Datasets C and D are
gathered from WTG2, also collected in spring and winter, re-
spectively. Dataset A contains 6000 sample pairs (wind speed S
and wind power P ). Before constructing a power curve model
of a wind turbine, the dataset is divided into two parts, the first
5000 samples pairs are used to train the power curve models
and the rest sample pairs are employed to test the performances
of different models. For the other three datasets, the numbers of
samples in training set and test set are presented in Table I. For
the above four datasets, all data are recorded every 10 minutes.

B. Evaluation Indices

Here, two indices, the mean absolute error (MAE) and the
root mean squared error (RMSE), are employed to evaluate the
performances of different models, computed as [21]

MAE = L−1
L∑

l=1

|yl − ŷl |

RMSE =

√
L−1

∑L

l=1
(yl − ŷl)2 (47)

where L is the length of the test set, yl , ŷl denote the actual wind
power and the estimated wind power, respectively.

C. Power Curve Modeling

In this section, except the two proposed models (HSRM
and RSRM), four parametric power curve modeling techniques
(4-PLM, 5-PLM, 6-PRM and 9-PRM), one non-parametric
model (SRM), and two learning-based models (ANN and SVM)
are also taken as benchmark models to demonstrate the effec-
tiveness of the proposed models. For all power curve model-
ing techniques, there are only one input (wind speed) and one
output (wind power).

As to 4-PLM and 5-PLM, the optimal parameters are ob-
tained by intelligent optimization methods [8]. Follow Taslimi’s
work [8], backtracking search algorithm (BSA) published on the
website1 is employed to tune 4-PLM and 5-PLM. The number
of iteration in BSA is set as 5000 in this paper. Least squares
method [15] is used to get the optimal parameters in 6-PRM and
9-PRM. The structure of BP neural network (a popular ANN)
affects the final fitting results. Here, for power curve modeling,
ANN with one hidden layer is used. The number of neurons
in hidden layer is determined by the Hecht-Nelson method: the
number of hidden neurons is 2l + 1 when the number of neu-
rons in input layer is l [29], [30]. Owing to there is only one
input (wind speed) for power curve modeling l = 1, the number
of hidden neurons is 3. Then, BP neural networks are imple-
mented on MATLAB by newff function with default settings.
As to SVM, the kernel selected here is the RBF kernel, and we
use grid search to select the optimal kernel parameter κ and
penalty parameter C. For the proposed models, several parame-
ters should be determined. Specifically, a0 , b0 , c0 , d0 in HSRM
are set as 0.001, e0 , f0 , g0 , h0 , s0 , t0 in RSRM are also set as
0.001, the maximum number of iterations is set as 50 for two
proposed models.

In practice, we can not guarantee that all inconsistent sam-
ples can be detected. Before estimating power curves, the
original data are processed roughly by a simple detection
method (SDM). For Dataset A, samples located in the intervals
{S > 5, P < 20} and {S > 10, P < 400} will be detected as
inconsistent samples and will be removed. Similarly, for Dataset
B, the intervals are {S > 6, P < 50} and {S > 13, P < 700},
while they are {S > 6, P < 50} and {S > 12, P < 600} for
Dataset C. As to Dataset D, the intervals are {S > 4.5, P < 20},
{S > 9, P < 400} and {S > 13.5, P < 800}. Tables II shows
the results of different power curve modeling techniques under
the condition that the inconsistent samples are not completely re-
moved. Also, the computational time of each model except SVM
is presented in Table II. Because it is time-consuming to select
optimal values of κ and C by grid search, SVM takes more than
one hour to get the estimated power curves on four datasets.

For WTG1, from Table II, RSRM performs the best among
all power curve modeling techniques in spring and winter. Com-
pared with seven benchmark models, HSRM usually generates
a power curve with a lower RMSE in two seasons. However, in
terms of MAE, they are SVM and SRM that perform better than
HSRM in spring and winter, respectively.

As to WTG2, from the results in Table II, RSRM outperforms
the other models in spring, while it is HSRM that performs

1https://www.mathworks.com/matlabcentral/fileexchange/44842-
backtracking-search-optimization-algorithm
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TABLE II
THE RESULTS OF BENCHMARK MODELS AND THE PROPOSED TECHNIQUES

Fig. 1. The estimated power curves of the proposed models and the corresponding detected inconsistent samples. In sub-figures (e)– (h), the yellow points
represent the normal samples while the black ones represent the inconsistent samples.

the best in winter. Moreover, in terms of MAE and RMSE,
both HSRM and RSRM perform better than the other seven
benchmark models in spring and winter, respectively.

Generally, from Table II, the performances of the two pro-
posed models (RSRM and HSRM) are better than seven bench-
mark models in two seasons. Fig. 1(a)–(d) show the power
curves generated by the best models on all datasets. Table III
shows the optimal parameters of some models on Dataset A.

For the model to be fully trained, it is usually given a larger
iteration number. Therefore, from Table II, using RSRM and
HSRM will take more time to obtain the estimated power
curves than the majority of benchmark models. Here, we haven’t
studied the the effect of the iteration number on the model
performance.

D. Inconsistent Samples Detecting

For the SDM described in Section IV-C, there are 152, 309,
931 and 2085 inconsistent samples are detected in Dataset A, B,
C and D, respectively. For the proposed models, given a confi-
dence level (95%), a confidence interval can be obtained based
on the distribution of y∗ in (26) and (46), the inconsistent sam-
ples will be detected when the values of wind power exceed the

computed confidence intervals. Fig. 1(e)–(h) show the detected
results of the best power curve models. Table IV presents the
number of the detected inconsistent samples on the training set
of all datasets.

From Table IV, RSRM detects more inconsistent samples
than SDM and HSRM in Dataset A, Dataset B and Dataset C.
However, it is SDM that detects more inconsistent samples in
Dataset D. This phenomenon shows that some normal samples
are detected and removed by SDM in Dataset D. Nevertheless,
the performances of the proposed models are better than the
others in power curve modeling in Dataset D.

E. Wind Power Forecasting

Wind speed is related with wind power by a power curve.
So, except the historical wind power data, wind speed data also
should be considered as inputs to forecast future wind power.
In reality, the real power data are sometimes far away from
the theoretical power data on power curve. These inconsistent
samples will degenerate the wind power forecasting accuracy. In
this paper, we propose a new strategy to solve the above problem,
flowchart for wind power forecasting is shown in Fig. 2. From
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TABLE III
THE ESTIMATED PARAMETERS OF POWER CURVE MODELS ON DATASET A

TABLE IV
THE NUMBER OF THE DETECTED INCONSISTENT SAMPLES

Fig. 2. Flowchart for wind power forecasting.

Fig. 2, wind power forecasts can be obtained via the following
five steps.

Step 1: Data separation. We group the dataset into two sepa-
rate parts, training set and test set. The details are described in
Section IV-A.

Step 2: Power curve modeling. Both deterministic and prob-
abilistic power curves are obtained by HSRM and RSRM. The
process and the results are shown in Section IV-C.

Step 3: Power data processing. Inconsistent samples in train-
ing set can be detected by the probabilistic power curves
obtained in Step 2. The detecting results are described in
Section IV-D. Then, the real wind power in inconsistent samples
will be replaced by the estimated wind power on the determin-
istic power curves obtained in Step 2.

Step 4: ANN training. Inputs and the structure of BP neural
network play key roles in the forecasting performances. Here,
both the historical wind power and wind speed are considered
to make wind power forecasting. PACF (partial autocorrelation
function) is employed to select the optimal historical wind power
data that have the highest correlation with the target power. His-
torical wind speed data corresponding to the optimal historical
wind power data are also considered as inputs. With the above
inputs, the number of hidden neurons in BP neural network are
determined by the Hecht-Nelson method [29], [30]. The other
settings for a BP neural network are defaults.

Fig. 3. Picture of PACF on the processed wind power data in Dataset A.

Step 5: Wind power forecasting. Wind power forecasts will
be obtained by feeding the optimal inputs of test set into the
trained BP neural network in Step 4.

The two proposed models, which follow the above five steps
to make wind power forecasting, are named as HANN (S+P)
and RANN (S+P) for easy description. HANN (S+P) uses the
power curve estimated by HSRM to process the power data,
while the power curve estimated by RSRM is used by RANN
(S+P). Here, we take Dataset A as an example to show the details
of wind speed forecasting by the proposed models. Picture of
PACF for the wind power time series in the processed data in
Step 3 is shown in Fig. 3.

According to Fig. 3, wind power data at time t − 4, t − 3, t −
2, t − 1, t are used to forecast wind power at time t + 1 and
t + 3, respectively. Namely, five historical wind power data are
employed to realize the 10-min ahead and 30-min ahead wind
power forecasting. Moreover, with the same lag as the power
data, wind speed data at time t − 4, t − 3, t − 2, t − 1, t are also
taken as inputs to forecast 10-min ahead and 30-min ahead wind
power. So, the number of inputs is 10. The number of hidden
neurons in BP neural network is 2 × 10 + 1 = 21 based on the
Hecht-Nelson method [29], [30]. Then, two BP neural networks
with the above settings will be trained to make 10-min and
30-min ahead wind power forecasting, respectively.

In the final step, 10-min and 30-min ahead wind power fore-
casts are obtained by feeding the test data into the trained
BP neural networks. The experimental results are presented in
Table V. And Figs. 4 and 5 show the 10-min and 30-min ahead
wind power forecasts of different models on Dataset A.

In Table V, comparing the performances of ANN (P) and
ANN (P+S), HANN (P) and HANN (S+P), RANN (P) and
RANN (S+P), we find that wind speed will be helpful to en-
hance the accuracy of wind power forecasting. HANN (P) and
RANN (P) perform better than ANN (P). HANN (S+P) and
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TABLE V
RMSE (kW) OF DIFFERENT WIND POWER FORECASTING MODELS AND THE CORRESPONDING COMPUTATIONAL TIME (S)

Fig. 4. 10-min ahead wind power forecasts of all models on Dataset A.

Fig. 5. 30-min ahead wind power forecasts of all models on Dataset A.

RANN (S+P) also outperform ANN (S+P). The above phe-
nomenons show that inconsistent samples will prevent us from
obtaining satisfactory power forecasts, and processing those in-
consistent samples by HSRM and RSRM will help to improve
the forecasting accuracy.

For WTG1, in both winter and spring, RANN (S+P) always
has the best forecasting results in both 10-min and 30-min ahead
wind power forecasting from Table V. For WTG2, the forecast-
ing performances vary with the seasons and the forecasting
steps. In spring (Dataset C), RANN (S+P) performs better than
the other models in 10-min ahead wind power forecasting while
it is HANN (S+P) that performs better in winter. As to 30-min
ahead wind power forecasting, HANN (S+P) is better in spring
while RANN (S+P) outperforms the other models in winter.

In real applications, the computation cost of a forecasting
model also should be taken into consideration. For the two
proposed models, HANN (S+P) and RANN (S+P), there are
two processes, power curves modeling and BP neural networks
training, that take up most of the computation time. How-
ever, the total cost of the above two processes is less than

10 minutes. Therefore, considering the forecasting performance
and the computational cost, two proposed models may be good
choices to make wind power forecasting in real wind farms.
And, the data quality can be improved by HSRM and RSRM,
they are valid pre-processed methods for power data when wind
speed data are available.

V. CONCLUSION AND FUTURE WORK

In power curve modeling, inconsistent samples will prevent us
from obtaining the optimal power curves. However, the current
detection models cannot ensure that they can find all inconsistent
samples. Thus, the estimated errors will own two properties:
heteroscedasticity and long tail. In this paper, we propose two
models to deal with the above problem. The first one is HSRM
which assumes that the error of each sample is different. The
second one is RSRM which uses an infinite mixture of Gaussians
to model the long-tail error distribution. The results of power
curve modeling show that HSRM and RSRM perform better
than the other seven benchmark models in different seasons.
But, they need more time to be trained.

As the proposed models are optimized via variational
Bayesian, except the deterministic power curves, the proba-
bilistic power curves, which can be used to detect inconsistent
samples, are obtained accordingly. Additionally, the proposed
models can also be used as data processing methods for power
data, which replace the wind power in the detected inconsistent
samples with the wind power on the estimated power curves.
Hybrid models based on an ANN and the above data processing
methods are constructed to make wind power forecasting. The
results show that wind power forecasting accuracy will be en-
hanced using the proposed data processing methods, and taking
wind speed as additional inputs is also helpful to forecast future
wind power.

We describe effective power curve modeling and wind power
forecasting techniques if there are some inconsistent data. How-
ever, if the portion of inconsistent data is larger than 50%, the
proposed techniques will generate a wrong model. In this case,
we should introduce a prior knowledge to preprocess data and
reduce inconsistent samples. We will discuss the challenge in
the future.
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