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Abstract— Given a group photograph, it is interesting and
useful to judge whether the characters in it share specific
kinship relation, such as father–daughter, father–son, mother–
daughter, or mother–son. Recently, facial image-based kinship
verification has attracted wide attention in computer vision. Some
metric learning algorithms have been developed for improving
kinship verification. However, most of the existing algorithms
ignore fusing multiple feature representations and utilizing kernel
techniques. In this paper, we develop a novel weighted graph
embedding-based metric learning (WGEML) framework for
kinship verification. Inspired by the fact that family members
usually show high similarity in facial features like eyes, noses,
and mouths, despite their diversity, we jointly learn multiple
metrics by constructing an intrinsic graph and two penalty
graphs to characterize the intraclass compactness and interclass
separability for each feature representation, respectively, so that
both the consistency and complementarity among multiple fea-
tures can be fully exploited. Meanwhile, combination weights are
determined through a weighted graph embedding framework.
Furthermore, we present a kernelized version of WGEML to
tackle nonlinear problems. Experimental results demonstrate
both the effectiveness and efficiency of our proposed methods.

Index Terms— Weighted graph embedding, metric learning,
kinship verification.

I. INTRODUCTION

RECENT evidences in visual signal processing indicate
that human appearance may provide valuable clues for

biological relationship prediction [1], [2], which stimulates
efforts in kinship verification from facial images over the
last few years [3]–[7]. Kinship verification via facial image
analysis is an emerging and interesting task in computer vision.
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It aims at distinguishing parent-offspring relations by mea-
suring similarities between the facial appearance. Its practical
applications include a variety of fields, such as finding missing
children [8], fugitive identity confirmation and social media
analysis [9].

Besides its extensive applications, kinship study using
images is inspired by understanding single face image,
an essential part of face recognition. Face recognition is an
active research topic in the field of computer vision, and
thus has received a great deal of attention in the past few
decades [10]–[18]. The difficulties of face recognition stem
from the subtle differences between faces and numerous
impact factors on facial appearance [19]. As a special and hard
case of object recognition problem, there are two crucial stages
in a face recognition system, i.e., face representation and
face matching. Face representation is to extract discriminative
features to separate face images better, while face matching
aims to design effective models to distinguish different face
images. In general, face recognition can be categorized into
two primary tasks: face verification and face identification.
The former tries to ascertain whether a pair of face images is
from the same person or not. The latter attempts to recognize
the identity of a person by comparing the probe face image
with a set of gallery face images with known identities.

Kinship verification shares certain characteristics with con-
ventional face verification, as both of them are confronted
with similar sources of variation in facial appearance, which
can be classified into intrinsic factors (e.g., facial expression,
age, hair, glasses, etc.) and extrinsic factors (e.g., pose, scale,
illumination, etc.) [19]. Intrinsic factors are purely due to
the essential attributes of the face while extrinsic factors
are caused by interaction with the observer. Hence, face
representation and face matching are of vital importance to
both of these two tasks. Different from face verification which
focuses on relation between different face images of an entity,
kinship verification pays attention to relation between multiple
entities, making it a more challenging task. The difficulties can
be summarized in the following aspects [55]. First, compared
with face verification, the complex relation among multiple
entities puts forward a higher demand to feature representation.
Second, it is practically infeasible to collect a large number
of face images with kin relations. Therefore, how to make
full use of limited training samples and effectively solve
the small sample size problem poses a great challenge to
current learning algorithms. Last but not the least, despite the
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Fig. 1. Illustration of our proposed WGEML method for kinship verification, where each transformation matrix Up and weight wp are jointly learned for
their corresponding p-th modality, p = 1, 2, . . . , M. There are three pairs with mother-daughter relations, marked with red, green and blue colors. The squares
and circles represent mothers and their daughters, respectively. Both the intrinsic graph and penalty graph 1 are built with the class information, which are
called consistent graphs as they remain unchanged under different views. Penalty graph 2 is constructed based on the 1-nearest neighbor of the matching
samples and it is a directed graph, which is called complementary graph as it may vary under different views.

above mentioned various factors on face images, significant
gender differences and age gaps may exist in kinship verifica-
tion. Genetic diversity brings profound difficulties to accurate
description of general kinship verification patterns. According
to the above discussions, it is eager to develop effective and
robust metric in uncertain scenarios for improving kinship
verification performance.

In this paper, we focus on learning an appropriate metric for
kinship verification via facial image analysis in ambiguous
environment. To make full use of both the consistency and
complementarity among different types of features, we con-
struct an intrinsic graph as well as two penalty graphs to
characterize the intraclass compactness and interclass sepa-
rability under each view, respectively. Fig. 1 shows the main
idea of our proposed method. From Fig. 1, in the intrinsic
graph, each pair with kinship relation is connected. While
in the penalty graphs, pairs without kinship relation and the
K -nearest neighbors of their matching samples are connected
accordingly.

Our key contribution to the kinship verification problem is
four-fold:

• The main challenge of kinship verification comes from
the large intraclass variance and small interclass variance.
To cope with this, we introduce the relative difference for
modality importance evaluation, which is more objective
compared with the commonly used absolute difference.

• Since each type of features can capture distinctive charac-
teristics of images, we extract multiple visual features and

fuse them together through a weighted graph embedding
framework, where an intrinsic graph and two penalty
graphs are constructed on each modality to promote
consistency between the class information and distance
metrics.

• In order to solve nonlinear kinship verification problems,
we extend our method to a kernelized version by embed-
ding each linear metric into a kernel space.

• We conduct extensive experiments to verify both the
effectiveness and efficiency of our methods. Experimen-
tal results show that our methods perform favorably in
kinship verification by means of facial image analysis.

The remainder of this paper is organized as follows.
In Section II, we review the related work on kinship ver-
ification. The framework and solutions of our proposed
WGEML are introduced in Section III, respectively. The
kernelized version is developed in Section IV. In Section V,
we discuss the computational complexity. The experimental
results are presented in Section VI. Finally, we conclude this
paper in Section VII.

II. RELATED WORK

We briefly review two related topics: 1) kinship verification
and 2) metric learning.

A. Kinship Verification

In recent years, kinship verification via face analysis has
attracted great interest in computer vision community, which
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is partly attributed to its lower cost and shorter time com-
pared with biological techniques. Most of the current research
mainly focuses on feature representation [20]–[22] and metric
learning [11], [23], [24], which are also two essential steps
of kinship verification. Typical feature descriptors include
local binary pattern (LBP) [10], spatial face region descrip-
tor (SFRD) [11] and probabilistic elastic matching (PEM)
[20]. Although these hand-crafted features have shown strong
capability in capturing subtle variations in uncontrollable
factors like illumination and rotation, they still suffer from the
limitation of handcrafted selection. Under such circumstance,
several deep learning methods which aim at learning feature
representation automatically from original images have been
proposed recently [25]–[27]. Current representative models
include auto-encoder [13], [26], deep belief network (DBN)
[25], [28] and deep convolutional neural networks (DCNN)
[16], [29]. Among them, DCNN has achieved unprece-
dented success in a variety of practical applications such as
image classification [30], face recognition [16] and image
retrieval [29].

In terms of distance metric, the traditional rigid Euclidean
distance is not capable of mining the intrinsic underlying struc-
ture of face images. Therefore, it is necessary to learn proper
metrics for enhancing performance in kinship verification.

B. Metric Learning

An enormous amount of effort has been devoted to the
research of metric learning in the past decades [23], [31]–[37].
Typical algorithms include linear discriminant analysis (LDA)
[36], neighborhood repulsed metric learning (NRML) [23] and
marginal Fisher analysis (MFA) [37], etc. While those learned
metrics can significantly improve the performance, most of
them neglect the complementary information between different
modalities and fail to fuse multiple features effectively.

To address these drawbacks, researchers pay attention
to learning metrics with multi-modal features in recent
studies [4], [12], [38]–[40]. Hu et al. [4] proposed to learn
multiple metrics based on large margin concept, where both
discriminative and complementary information are exploited.
Yan et al. [38] utilized the maximum likelihood princi-
ple for learning discriminative multiple metrics, in which
the correlation of different features is maximized. In 2017,
Hu et al. [39] developed a sharable and individual multi-view
metric learning approach by jointly learning multiple metrics
on multi-view data. It not only retains specific property for
each view but also preserves common properties for different
views. In spite of the promising results obtained, these metric
learning algorithms still suffer from three limitations: 1) they
focus on maximizing the absolute difference of the intra-
class and interclass scatterness, however, the relative differ-
ence is considered more objective for measuring differences;
2) samples that are more likely to be misclassified should be
highlighted, nevertheless, most existing methods only utilize
the entire intraclass/interclass variance information and con-
sider all the samples equally in learning metrics; 3) the com-
monly used gradient descent strategy limits the scalability of
shallow metric learning methods, while deep learning methods

may encounter the small sample size problem. In this paper,
by jointly learning multiple metrics on multi-feature represen-
tations, we propose an effective and efficient weighted graph
embedding based metric learning method which can assign
greater importance to samples that are easily-misclassified for
kinship verification.

III. METRIC LEARNING WITH WEIGHTED

GRAPH EMBEDDING

Most existing discriminative metric learning algorithms
utilize either the entire interclass/intraclass variance [31]–[33],
[36] or the variance in a neighborhood [23], [37]. Although
there exist several methods which can promote consistency
between the distance functions and label information [34],
[35], they only aim at learning metrics for a single fea-
ture space and are thus not applicable to multi-modal prob-
lems. To tackle this issue, we integrate both the available
information and multiple visual features through a weighted
graph embedding framework and develop a new method
called WGEML.

A. Problem Statement

Suppose there are M facial representations, and let S p =
{(x p

i , yp
i )|i = 1, 2, . . . , N} be a training positive pair set

consisting of N image pairs with kinship relation in the
p-th feature representation space, Dp = {(x p

i , yp
j )|i =

1, 2, . . . , N, j �= i} be a training negative pair set containing
N image pairs without kinship relation under the p-th view,
p = 1, 2, . . . , M . The goal of WGEML is to seek a distance
between xi and y j

d2(xi , y j ) =
M∑

p=1

wp(x p
i − yp

j )T Ap(x p
i − yp

j )

=
M∑

p=1

wpd2
Ap

(x p
i , yp

j ) (1)

where wp is a weight and Ap is a D× D semidefinite positive
matrix. Under each view, we will find a matrix Ap such
that intraclass variance is minimized and interclass variance
is maximized, meanwhile, those nearby interclass samples
are pushed away. We construct two consistent graphs called
intrinsic graph and penalty graph 1, and one complementary
graph called penalty graph 2 to achieve these three goals,
as illustrated in Fig. 1. Furthermore, we formulate the fol-
lowing optimization problem

max
A,w

F =
M∑

p=1

wr
p[(

1

2
(

1

N K

N∑

i=1

K∑

n1=1

d2
Ap

(x p
i , yp

in1
)

+ 1

N K

N∑

i=1

K∑

n2=1

d2
Ap

(x p
in2

, yp
i ))

+ 1

N

N∑

i = 1
j �= i

d2
Ap

(x p
i , yp

j ))/
1

N

N∑

i=1

d2
Ap

(x p
i , yp

i )]
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=
M∑

p=1

wr
p[(

1

2
(

1

N K

N∑

i=1

K∑

n1=1

(x p
i − yp

in1
)T Ap(x p

i − yp
in1

)

+ 1

N K

N∑

i=1

K∑

n2=1

(x p
in2

− yp
i )T Ap(x p

in2
− yp

i ))

+ 1

N

N∑

i = 1
j �= i

(x p
i − yp

j )T Ap(x p
i − yp

j ))/

1

N

N∑

i=1

(x p
i − yp

i )T Ap(x p
i − yp

i )]

s.t .
M∑

p=1

wp = 1,

wp ≥ 0, p = 1, 2, . . . , M. (2)

where yp
in1

stands for the n1-th nearest neighbor of yp
i and x p

in2

denotes the n2-th nearest neighbor of x p
i , accordingly. To make

better use of complementary information from multiple views
and avoid over-fitting, we impose wr

p (r > 1) on the p-th view
in the objective function. The denominator of the objective
aims to pull intraclass samples x p

i and yp
i closer. Conversely,

the numerator attempts to push interclass samples (x p
i , yp

j ) as
well as those neighbors of their matching samples (x p

i , yp
in1

)

and (x p
in2

, yp
i ) far.

Since Ap is symmetric and positive semidefinite, we may
find a nonsquare matrix Up of size D × d , with d � D, such
that

Ap = UpUT
p (3)

Hence, the squared Mahalanobis distance between x p
i and yp

j
is

d2
Ap

(x p
i , yp

j ) = (x p
i − yp

j )T Ap(x p
i − yp

j )

= (x p
i − yp

j )T UpUT
p (x p

i − yp
j )

= (x̃ p
i − ỹp

j )T (x̃ p
i − ỹp

j ) (4)

where x̃ p
i = UT

p x p
i ∈ R

d and ỹp
j = UT

p yp
j ∈ R

d .
Therefore, (2) can be rewritten as the following constrained

optimization problem

max
U,w

M∑

p=1

wr
p

tr[UT
p ( 1

2 (D1p + D2p) + Dp)Up]
tr[UT

p SpUp]
s.t . UT

p Up = Ip,

M∑

p=1

wp = 1,

wp ≥ 0, p = 1, 2, . . . , M. (5)

where

Sp = 1

N

∑

(x p
i ,y p

i )∈S p

(x p
i − yp

i )(x p
i − yp

i )T

Dp = 1

N

∑

(x p
i ,y p

j )∈D p

(x p
i − yp

j )(x p
i − yp

j )T

Algorithm 1 Weighted Graph Embedding Based Metric
Learning

D1p = 1

N K

∑

(x p
i , yp

i ) ∈ S p

yp
k ∈ NK (yp

i )

(x p
i − yp

k )(x p
i − yp

k )T

D2p = 1

N K

∑

(x p
i , yp

i ) ∈ S p

x p
k ∈ NK (x p

i )

(x p
k − yp

i )(x p
k − yp

i )T . (6)

B. Optimization

As the above optimization problem involves two kinds of
variables U and w, we apply an alternating method to jointly
perform metric learning and dimensionality reduction.

First, we fix w = [w1, w2, . . . , wM ] and then solve U.
Suppose w is known, then (5) can be transformed into a series
of optimization problems as follows

max
UT

p Up=Ip

tr[UT
p ( 1

2 (D1p + D2p) + Dp)Up]
tr[UT

p SpUp] (7)

where p = 1, 2, . . . , M .
The problem (7) is a typical non-convex form of a general

trace ratio problem without closed form solution [41]. It can
be converted to an alternative ratio trace problem

max
Up

tr[(UT
p SpUp)

−1(UT
p (

D1p + D2p

2
+ Dp)Up)] (8)

which can be solved rapidly with the following generalized
eigenvalue decomposition

(
1

2
(D1p + D2p) + Dp)u = λSpu (9)

where λ1 ≥ λ2 ≥ . . . ≥ λd are the top d largest eigenvalues,
u1, u2, . . . , ud are the corresponding eigenvectors. Up =
[u1, u2, . . . , ud ] is the transformation matrix which projects
samples from the original feature space R

D to a new low-
dimensional space R

d .
However, when D is larger than N , the matrix Sp becomes

near-singular, which causes the eigenvalue decomposition
impossible. This kind of situation may always occur, since
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a variety of practical applications involve processing high-
dimensional data, including bioinformatics, image retrieval
and text mining [42]. To overcome this limitation, we add
an identity matrix as a regularizer

Sp = (1 − β)Sp + β
tr(Sp)

N
I (10)

where 0 ≤ β ≤ 1 is a regularization parameter. In our
experiment, β is set as 0.5 by default.

Second, we solve w with the obtained U = [U1,
U2, . . . , UM ]. We construct a Lagrange function as

L(w, λ) =
M∑

p=1

wr
p

tr[UT
p ( 1

2 (D1p + D2p) + Dp)Up]
tr[UT

p SpUp]

− λ(

M∑

p=1

wp − 1) (11)

Setting the derivative with respect to wp and λ as zero,
we have

∂L(w, λ)

∂wp
= rwr−1

p

tr[UT
p (

D1p+D2p
2 + Dp)Up]

tr[UT
p SpUp] − λ = 0

∂L(w, λ)

∂λ
=

M∑

p=1

wp − 1 = 0 (12)

Then, we get wp as

wp = (tr[UT
p SpUp]/tr[UT

p (
D1p+D2p

2 + Dp)Up])1/(r−1)

M∑
p=1

(tr[UT
p SpUp]/tr[UT

p (
D1p+D2p

2 + Dp)Up])1/(r−1)

(13)

The basic procedure of WGEML method is shown in
Algorithm 1.

IV. KERNELIZED VERSION

While linear metric learning methods have several advan-
tages like simplicity and good generalization capability,
the linear assumption may limit their application in cap-
turing nonlinear data structures [43]–[45]. To overcome
this deficiency, we extend WGEML to a nonlinear fea-
ture space induced by kernel functions and propose a
novel method, weighted kernelized graph embedding metric
learning (WKGEML).

A. Preliminaries

For convenience, we use z p
1 , z p

2 , . . . , z p
2N−1, z p

2N to repre-
sent x p

1 , yp
1 , . . . , x p

N , yp
N , i.e., x p

i → z p
2i−1 and yp

i → z p
2i ,

where i = 1, 2, . . . , N . Suppose φ p : R
D → F is a

nonlinear mapping which projects data under the
p-th view from the original space R

D to a high-
dimensional space F . Let K p = (�p)T �p , where
�p = [φ p(z p

1 ),φ p(z p
2 ), . . . ,φ p(z p

2N−1),φ
p(z p

2N )], and
the kernel Gram matrix be K p

i j = φ p(z p
i )T φ p(z p

j ). Thus,
the squared Euclidean distance between φ p(z p

i ) and φ p(z p
j )

is

d2(φ p(z p
i ),φ p(z p

j )) = K p
ii + K p

j j − 2K p
i j (14)

We denote

S p
φ = {(z p

2i−1, z p
2i )|i = 1, 2, . . . , N},

Dp
φ = {(z p

2i−1, z p
2 j )|i = 1, 2, . . . , N, j �= i},

D1p
φ = {(z p

2i−1, z p
2k)|(z p

2i−1, z p
2i ) ∈ S p

φ ,φ p(z p
2k)

∈ NK (φ p(z p
2i))},

D2p
φ = {(z p

2k−1, z p
2i )|(z p

2i−1, z p
2i ) ∈ S p

φ ,φ p(z p
2k−1)

∈ NK (φ p(z p
2i−1))}.

Then the objective function in (5) turns into

max
Uφ,wφ

M∑

p=1

(w
φ
p)r

tr[(Uφ
p )T ( 1

2 (Dφ
1p + Dφ

2p) + Dφ
p )Uφ

p ]
tr[(Uφ

p )T Sφ
p Uφ

p ]
(15)

where

Sφ
p = 1

N

∑

S p
φ

(φ p(z p
2i−1) − φ p(z p

2i))(φ
p(z p

2i−1) − φ p(z p
2i ))

T

Dφ
p = 1

N

∑

D p
φ

(φ p(z p
2i−1) − φ p(z p

2 j ))(φ
p(z p

2i−1) − φ p(z p
2 j ))

T

Dφ
1p = 1

N K

∑

D1p
φ

(φ p(z p
2i−1)−φ p(z p

2k))(φ
p(z p

2i−1)−φ p(z p
2k))

T

Dφ
2p = 1

N K

∑

D2p
φ

(φ p(z p
2k−1) − φ p(z p

2i))(φ
p(z p

2k−1)

− φ p(z p
2i ))

T . (16)

B. Solution

According to the Representer Theorem [46], the projection
matrix for the p-th view can be denoted as

Uφ
p =

2N∑

i=1

α
p
i φ p(z p

i ) = �pα p (17)

where α p is the expansion coefficient vector of φ p(z p
i ).

Therefore, we have

(Uφ
p )T Sφ

p Uφ
p

= (α p)T [ 1

N

∑

S p
φ

(�p)T (φ p(z p
2i−1) − φ p(z p

2i ))(φ
p(z p

2i−1)

− φ p(z p
2i ))

T �p]α p

= (α p)T [ 1

N

∑

S p
φ

(K p
.2i−1 − K p

.2i )(K p
.2i−1 − K p

.2i )
T ]α p (18)

(Uφ
p )T (

1

2
(Dφ

1p + Dφ
2p) + Dφ

p )Uφ
p

= (α p)T [1

2
(

1

N K

∑

D1p
φ

(�p)T (φ p(z p
2i−1)−φ p(z p

2k))(φ
p(z p

2i−1)

− φ p(z p
2k))

T �p + 1

N K

∑

D2p
φ

(�p)T (φ p(z p
2k−1) − φ p(z p

2i))

× (φ p(z p
2k−1) − φ p(z p

2i))
T �p) + 1

N

∑

D p
φ

(�p)T (φ p(z p
2i−1)

− φ p(z p
2 j ))(φ

p(z p
2i−1) − φ p(z p

2 j ))
T �p]α p
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Algorithm 2 Weighted Kernelized Graph Embedding Based
Metric Learning

= (α p)T [1

2
(

1

N K

∑

D1p
φ

(K p
.2i−1 − K p

.2k)(K p
.2i−1 − K p

.2k)
T

+ 1

N K

∑

D2p
φ

(K p
.2k−1 − K p

.2i )(K p
.2k−1 − K p

.2i )
T )

+ 1

N

∑

D p
φ

(K p
.2i−1 − K p

.2 j )(K p
.2i−1 − K p

.2 j )
T ]α p (19)

where K p
.i = (�p)T φ p(z p

i ) is the i -th column of K p .
Then, we can introduce matrices

S̃φ
p = 1

N

∑

S p
φ

(K p
.2i−1 − K p

.2i )(K p
.2i−1 − K p

.2i )
T

D̃φ
p = 1

N

∑

D p
φ

(K p
.2i−1 − K p

.2 j )(K p
.2i−1 − K p

.2 j )
T

D̃φ
1p = 1

N K

∑

D1p
φ

(K p
.2i−1 − K p

.2k)(K p
.2i−1 − K p

.2k)
T

D̃φ
2p = 1

N K

∑

D2p
φ

(K p
.2k−1 − K p

.2i )(K p
.2k−1 − K p

.2i )
T (20)

and derive the objective function for the p-th view

max
(α p)T α p=Ip

tr[(α p)T ( 1
2 ( D̃φ

1p + D̃φ
2p) + D̃φ

p)α p]
tr[(α p)T S̃φ

p α p]
(21)

Similar to (9), we obtain the optimal projections by solving
the following generalized eigenvalue decomposition

(
1

2
( D̃φ

1p + D̃φ
2p) + D̃φ

p)α = λS̃φ
p α (22)

α p = [α1, α2, . . . , αd ] is the optimal projection matrix to be
solved, which is composed of the eigenvectors corresponding
to the top d largest eigenvalues of (22).

Hence, w
φ
p can be calculated as follows

w
φ
p

= (tr[(α p)T S̃φ
p α p]/tr[(α p)T (

D̃φ
1p+D̃φ

2p
2 + D̃φ

p )α p])1/(r−1)

M∑
p=1

(tr[(α p)T S̃φ
p α p]/tr[(α p)T (

D̃φ
1p+D̃φ

2p
2 + D̃φ

p )α p])1/(r−1)

(23)

The new coordinate of sample z p
i is

z̃ p
i = (Uφ

p )T φ p(z p
i )=(α p)T (�p)T φ p(z p

i )=(α p)T K p
.i (24)

and the distance can be calculated as follows

d2(z p
i , z p

j ) = ( z̃ p
i − z̃ p

j )
T ( z̃ p

i − z̃ p
j )

= (K p
.i − K p

. j )
T α p(α p)T (K p

.i − K p
. j ) (25)

The WKGEML method is summarized in Algorithm 2.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

We now briefly analyze the computational complexity of
the WGEML and WKGEML methods, both of which involve
M modalities. For WGEML, the time complexity includes
M eigenvalue decompositions of D × D matrices and compu-
tation of w. Time complexity of these two steps is O(M D3)
and O(M(N K + D2)), respectively. Thus, the computational
complexity of WGEML is O(M D3 + M N K ). Similarly, for
WKGEML, its time complexity mainly comes from M eigen-
value decompositions of 2N × 2N matrices and computation
of wφ . Time complexity of these two steps is O(M N3) and
O(M N2). Thus, the computational complexity of WKGEML
is O(M N3).

VI. EXPERIMENTS

In this section, we conduct extensive experiments to
investigate the performance of our proposed WGEML and
WKGEML methods on three publicly available datasets,
i.e., KinFaceW-I [23], KinFaceW-II [23] and TSKinFace [5].
A brief description of these datasets is given at first, followed
by the analysis and discussions of the experiments.

A. Datasets

KinFaceW-I [23] and KinFaceW-II [23] are collected from
the Internet, including face images of public celebrities and
their parents or children. The major difference is that each
image pair with kinship relation of KinFaceW-I is obtained
from different photos while that of KinFaceW-II comes from
the same photo. There are four types of kinship relations
in these two datasets, i.e., Father-Son (F-S), Father-Daughter
(F-D), Mother-Son (M-S) and Mother-Daughter (M-D). The
former contains 156, 134, 116 and 127 pairs of images with the
above four kinship relations and the latter includes 250 pairs
for each kinship relation.

TSKinFace [5] is a tri-subject kinship face dataset, which is
also constructed from the family photos of public figures on
the Internet. Different from the aforementioned datasets, it has
three kinds of kinship relations, that is, Father-Mother-Son
(FM-S), Father-Mother-Daughter (FM-D) and Father-Mother-
Son-Daughter (FM-SD). There are 285, 274 and 228 groups
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Fig. 2. Some aligned and cropped kinship pairs from three kinship
datasets. From top to down are images from the KinFaceW-I, KinFaceW-II
and TSKinFace datasets, accordingly. The third row shows the Father-
Mother-Daughter (FM-D) and Father-Mother-Son (FM-S) relation families,
respectively.

for each relation in TSKinFace, accordingly. In our exper-
iments, we split those images into six types of relations
containing 513 F-S, 502 F-D, 513 M-S, 502 M-D, 513 FM-S
and 502 FM-D groups.

B. Experimental Settings

Face images in these three datasets are captured in an
uncontrolled environment with no restriction in terms of age,
expression, illumination and ethnicity, etc. Moreover, all the
face images are aligned and cropped into 64×64 pixels. Fig. 2
presents several sample pairs.

We extract the following four types of feature descriptors
for feature representation.

• Local Binary Pattern (LBP) [10]: We divide each face
image into 8 × 8 blocks with a 8 × 8 grid. Then,
a 59-dimensional uniform LBP descriptor is calculated
for each block and a 3776-dimensional vector is obtained
to represent the whole face image.

• Histogram Of Gradients (HOG) [47]: We divide each face
image into 16×16 blocks using a 4×4 grid at first, then
we divide image into 8 × 8 blocks using a 8 × 8 grid.
A 9-dimensional feature vector is computed for
each block. Finally, we concatenate all these vec-
tors together and get a 2880-dimensional feature
vector.

• SIFT: We divide each face image into 7 × 7 overlapping
patches with a 16 × 16 grid. Each patch is extracted
with a 128-dimensional SIFT feature vector. Thus, each
face image is represented as a 6272-dimensional feature
vector.

• CNN [14]: We extract the 4096-dimensional VGG-Face
CNN descriptor for each face image based on the
VGG-Very-Deep-16 CNN architecture.

There are two types of protocols for supervised learning on
KinFaceW-I and KinFaceW-II datasets: image-restricted and
image-unrestricted. In experiments, we evaluate our methods
on both of these two settings. We carry out the 5-fold cross
validation, where each fold owns nearly the same number
of image pairs. In each fold, we exploit all pairs of face
images with kin relation to form positive pairs. Meanwhile,

TABLE I

MEAN VERIFICATION ACCURACY (%) WITH DIFFERENT METRIC
LEARNING STRATEGIES ON KINFACEW-I DATASET

each parent image is combined with a child image who is not
his/her offspring to build negative pairs. To keep balance in
learning SVM classifier, each face image appear only once in
negative pairs. For kernel-based methods, we use three folds
as training set, one fold as validation set and the other one as
test set.

To verify the effectiveness of our methods, we take
several state-of-the-art metric learning algorithms in com-
parison, including seven single-metric methods LDA [36],
MFA [37], NRML [23], DML [38], MPDFL [48], RSBM-
block-FS [5] and GMP [6], and multi-metric methods
MLDA [49], MMFA [49], MNRML [23], DMML [38] and
LM3L [4]. For a comprehensive comparison, some deep learn-
ing methods such as CFT* [50], DDML [40], MvDML [39],
SMCNN [51], Gated autoencoder [3] and DKV [52] are also
included. For all the algorithms, we use PCA to project each
feature representation to a 200-dimensional space and then
set the reduced dimension as 100. For MFA, NRML and our
proposed methods, the neighborhood size K is empirically set
as 5. In our implementations, the parameter r is empirically
set as 5. For DDML, we follow the same parameter setting in
[40]. For WKGEML, the Gaussian kernel exp{−‖xi − y j ‖/σ 2}
is adopted and the scaling parameter is set as σ = γ σ0, γ =
16, 20, 24, 28, 32, where σ0 is the mean square deviation of
the dataset.

C. Results and Analysis

1) Comparison With Different Metric Learning Strategies:
We compare our method with the following three different
metric learning strategies:

• Graph Embedding based Metric Learning (GEML): we
learn a single distance metric by setting wp = 1 for the
specific pth feature representation of (5).

• Concatenated GEML (CGEML): we concatenate multiple
visual features into a long vector, and then use GEML to
learn a distance metric.

• WGEML-com: we remove penalty graph 1 terms
Dp (p = 1, 2, . . . , M) in (5).

Tables I-III show the mean verification accuracy of different
metric learning strategies on KinFaceW-I, KinFaceW-II and
TSKinFace datasets, respectively. For all kin relations, our
method obtains competitive performance with other compared
metric learning strategies.
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Fig. 3. Verification accuracy of different metric learning strategies with KNN classifier on KinFaceW-I and KinFaceW-II datasets. (a) KinFaceW-I.
(b) KinFaceW-II.

TABLE II

MEAN VERIFICATION ACCURACY (%) WITH DIFFERENT METRIC

LEARNING STRATEGIES ON KINFACEW-II DATASET

TABLE III

MEAN VERIFICATION ACCURACY (%) WITH DIFFERENT METRIC

LEARNING STRATEGIES ON TSKINFACE DATASET

We compare our kernelized approach with the following
metric learning strategies:

• Kernelized Graph Embedding based Metric Learning
(KGEML): we learn a single distance metric by setting
w

φ
p = 1 for the specific pth feature representation of (15).

• Concatenated KGEML (CKGEML): we concatenate mul-
tiple visual features into a long vector, and then use
KGEML to learn a distance metric.

• Individual KGEML (IKGEML): we learn the distance
metric for each type of features by (15), and combine
these features with equal weights to compute the distance
between each pair of images.

Fig. 3 presents the verification accuracy of different met-
ric learning strategies with KNN classifier on KinFaceW-I
and KinFaceW-II datasets, respectively. We observe that our
WKGEML consistently outperforms all the other strategies,

which is owing to both the learned proper weight as well as the
metric for each feature representation. It is clear that neither
CKGEML nor IKGEML can always exceed the single best
feature on KinFaceW-I.

2) Comparison With Shallow Metric Learning Algorithms:
Tables IV-V list the performance comparison of state-of-
the-art methods as well as our proposed method with dif-
ferent features on KinFaceW-I and KinFaceW-II datasets
under image-unrestricted and image-restricted settings, respec-
tively. Our method under image-restricted setting does not
include the complementary graph, i.e., penalty graph 2 terms
D1p, D2p, p = 1, 2, . . . , M in (5). To better distinguish
it from GEML/WGEML, we denote it as GEML-con/
WGEML-con. Table VI shows the verification results of
different methods on TSKinFace dataset, where the best
results are shown in bold. The similarity between parent-child
(FM-S/D) is calculated as the mean similarity of father-child
(F-S/D) and mother-child (M-S/D).

In general, our proposed WGEML method consistently
outperforms all the other competing methods, which indicates
that it is meaningful to exploit both the consistency and com-
plementarity among multiple modalities in metric learning.
On KinFaceW-I, WGEML outperforms MNRML and MPDFL
3.9% and 8.6% on average, respectively. On KinFaceW-II,
it achieves about 2.6% lowest gains over the follower on
average. Under image-restricted setting, while the number of
constraints is reduced, WGEML-con still has excellent perfor-
mance. It exceeds DMML 2.6% and 6.4% on KinFaceW-I and
KinFaceW-II datasets, respectively. Moreover, on KinFaceW-II
dataset, WGEML-con outperforms LM3L more than 4%.
On large datasets such as TSKinFace, our WGEML method
obtains best performance on each relation. Specifically, it out-
performs MNRML, DMML, RSBM-block-FS and GMP 7.6%,
7.1%, 8.4% and 2.9% in average, respectively.

Overall, multiple metrics can improve performance over the
single metric, implying that the complementary information
provided by multiple features is helpful for kinship verifica-
tion. Among all the single visual descriptors, CNN achieves
better performance compared with those hand-crafted features
like LBP, HOG and SIFT, which can be attributed to the
fact that it learns feature representation directly from original
images rather than artificial selection.
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TABLE IV

MEAN VERIFICATION ACCURACY (%) ON KINFACEW-I AND KINFACEW-II DATASETS UNDER IMAGE-UNRESTRICTED SETTING

TABLE V

MEAN VERIFICATION ACCURACY (%) ON KINFACEW-I AND KINFACEW-II DATASETS UNDER IMAGE-RESTRICTED SETTING

It is interesting to observe that the gender has a marked
impact on kinship verification, that is, for almost all the
cases, the verification accuracies on F/M/FM-S are rela-
tively higher than those on F/M/FM-D under the same
experimental settings. One plausible explanation is that

the appearance variations of inherited females are more
complicated than those of males. This is in accordance
with psychological research that the kin face appear-
ance similarity of females is less significant than that of
males [53].
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Fig. 4. ROC curves of different algorithms on kinship datasets. (a) KinFaceW-I. (b) KinFaceW-II. (c) TSKinFace.

TABLE VI

MEAN VERIFICATION ACCURACY (%) ON THE TSKINFACE DATASET

To make intuitive comparison of our method and other met-
ric learning algorithms, the receiver operating characteristic
(ROC) curves of different multi-metric learning algorithms
are presented in Fig. 4. It is clear that the ROC curves of
WGEML are higher than that of other metrics.

3) Comparison With Deep Metric Learning Algorithms:
In Tables IV-V, we present the experimental result of
several deep learning methods including CFT*, DDML,
MvDML, SMCNN and Gated autoencoder on KinFaceW-I
and KinFaceW-II datasets under image-unrestricted and
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Fig. 5. Mean verification accuracy of WGEML versus different values of K
on different datasets.

image-restricted settings. Compared with shallow metric learn-
ing methods such as MMFA and MNRML, CFT* improves
the performance by 0.2%-4.1%, which can be attributed to
its effectiveness of the coarse-to-fine transfer learning from a
large image dataset. It even obtains the best performance on
F-S relation of KinFaceW-I and M-D relation of KinFaceW-II
with the accuracy of 78.8% and 83.8%, which exceed the
follower 0.3% and 2.2%, respectively. However, on F-S rela-
tion of KinFaceW-II, it has a 11.2% lower accuracy than
WGEML. For DDML, while it has slightly better perfor-
mance than DMML, there is still a significant gap compared
with GEML-con. The reason may be that training with deep
learning model requires sufficient samples. Compared with
DDML, MvDML, SMCNN and Gated autoencoder obtain
relatively better performance. On KinFaceW-II dataset, these
three methods achieve the highest accuracy of 79.8%, 85.0%
and 83.4% on F-D, M-D and M-S relations, respectively.
Nevertheless, they still have a 2.6%, 3.5% and 0.6% lower
accuracy compared with WGEML-con on average. We observe
that the accuracy on KinFaceW-II seems to be higher than
KinFaceW-I. It is partly due to the fact that each pair of facial
image in KinFaceW-II is collected from the same photo and
thus sharing similar illumination conditions. Table VI lists the
accuracy of DDML and Gated autoencoder on TSKinFace.
It is clear that GEML significantly outperforms DDML
by 5%−9% on single feature representation. On multiple
feature representation, WGEML obtains 91.4% accuracy on
average and has an obvious advantage in performance com-
pared with Gated autoencoder.

4) Comparison of Different Classifiers: We evaluate per-
formance of WGEML by employing different classifiers: NN,
KNN and SVM. In experiments, we utilize LIBSVM [54] to
implement SVM and choose RBF kernel as kernel function.
Table VII reports the verification accuracy of different met-
ric learning algorithms using SVM on KinFaceW-I dataset.
To further analyze the performance differences, we introduce
the t-test in statistics to make qualitative examinations. The
significance level α is set as 0.05. The results are marked
with brackets after the verification accuracy, where number “1”
stands for significant difference compared with the best perfor-
mance which is highlighted by bold words and “0” otherwise.
On the whole, WGEML has better performance compared with
other algorithms, while MNRML is inferior to other metrics,

TABLE VII

VERIFICATION ACCURACY (%) OF SVM ON KINFACEW-I

Fig. 6. Mean verification accuracy of WGEML versus different values of
feature dimensions on different datasets.

which is mainly due to the fact that it projects all the features
onto a common space. As for DKV, it constructs a stacked
auto-encoder network with the hand-crafted LBP features, thus
failing to capture the underlying kinship data structure.

Table VIII summarizes the verification accuracy when dif-
ferent classifiers are applied for kinship verification. For NN
and KNN, the cosine similarity is utilized. As for KNN,
the parameter k is set as 31 in experiments. On the whole,
SVM achieves better performance compared with NN and
KNN, especially on large datasets such as TSKinFace.

5) Parameter Analysis: We explore the effect of relevant
parameter settings in our proposed methods. Fig. 5 shows the
mean verification accuracy of WGEML versus different values
of K on different datasets. We can see that WGEML has a
relatively stable performance with varied neighborhood sizes,
which provides convenience to choose proper parameters for
performance improvement in practical applications.

Fig. 6 plots the mean verification accuracy of WGEML ver-
sus different feature dimensions on different datasets. As the
figure demonstrates, a steady verification accuracy is reached
when the feature dimension exceeds 100.

Fig. 7 shows the verification accuracy of WKGEML with
KNN classifier versus different values of γ on different
datasets. As parameter γ varies from 16 to 32, the verifica-
tion accuracy only changes within 2%, which indicates that
WKGEML is not sensitive to scaling parameters in the selected
interval. In addition, the curve of F-S is consistently higher
than that of F-D. Therefore, we may conclude that males (or
sons) share similar face appearance with their fathers than
females (or daughters).

6) Computational Cost: We conduct experiments on a
Windows computer (Intel i7-3770 CPU @ 3.40 GHz and
8GB RAM) with the Matlab software. Table IX lists the time
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TABLE VIII

VERIFICATION ACCURACY (%) OF DIFFERENT CLASSIFIERS ON DIFFERENT DATASETS

Fig. 7. Verification accuracy of WKGEML with KNN classifier versus different values of γ on different datasets. (a) KinFaceW-I. (b) KinFaceW-II.
(c) TSKinFace.

TABLE IX

COMPUTATIONAL COST (IN SECONDS) OF DIFFERENT METRIC

LEARNING ALGORITHMS ON KINFACEW-II

cost of different multi-metric learning algorithms on
KinFaceW-II dataset under such experimental setting, where
the SVM classifier is used.

In training, the computational costs of MNRML and DMML
are relatively larger than other methods, which is mainly
due to their iterative solving strategy and time-consuming
update procedure. However, their recognition time are smaller
compared with other methods. As for our proposed WGEML,
we observe that either its training or testing process is quite
efficient in experiments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a weighted graph embedding
metric learning (WGEML) framework for kinship verification
using facial images. Unlike the current trend of metric learning
which focuses on learning a common feature space or treat-
ing different types of features equally, we aim at learning
multiple projections and combination weights through a joint
formulation of weighted graph embedding. Meanwhile, both
the intraclass compactness and interclass separability are fully
captured. Furthermore, to tackle non-linear problems, a kernel-
ized extension called WKGEML is also derived. Experimental
results validate both the effectiveness and efficiency of our
proposed methods.

In future, we will attempt to search a certain family that
a person belongs to from a group of families. As a variety
of factors including illumination, aging and poses should
be considered, we will focus on extracting robust feature
representation and learning effective metrics to further boost
the performance.
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