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A Recursive Regularization Based Feature
Selection Framework for Hierarchical Classification

Hong Zhao, Qinghua Hu, Senior member, IEEE, Pengfei Zhu, Yu Wang, Ping Wang

Abstract—The sizes of datasets in terms of the number of samples, features, and classes have dramatically increased in recent years. In
particular, there usually exists a hierarchical structure among class labels as hundreds of classes exist in a classification task. We call these
tasks hierarchical classification, and hierarchical structures are helpful for dividing a very large task into a collection of relatively small subtasks.
Various algorithms have been developed to select informative features for flat classification. However, these algorithms ignore the semantic
hyponymy in the directory of hierarchical classes, and select a uniform subset of the features for all classes. In this paper, we propose a new
feature selection framework with recursive regularization for hierarchical classification. This framework takes the hierarchical information of the
class structure into account. In contrast to flat feature selection, we select different feature subsets for each node in a hierarchical tree structure
with recursive regularization. The proposed framework uses parent-child, sibling, and family relationships for hierarchical regularization. By
imposing `2,1-norm regularization to different parts of the hierarchical classes, we can learn a sparse matrix for the feature ranking at each
node. Extensive experiments on public datasets demonstrate the effectiveness and efficiency of the proposed algorithms.

Index Terms—Feature selection, hierarchical classification, recursive regularization, semantic hyponymy.

F

1 Introduction

I n the era of big data, the scale of classification tasks increases
with respect to the size of samples and features, as well as

the number of candidate class labels [1]. For example, tens of
millions of image samples from tens of thousands of class labels
are collected in ImageNet [2], where each sample is described
with thousands of attributes. It is remarkable that the number of
classes in various tasks exceeds 100 with the rapid surge of data.
Some large-scale classification tasks have hundreds, thousands, or
even tens of thousands of class labels [3]. As the number of labels
increases, there typically exists a semantic structure among the
labels, which leads to a structural learning task. This structure can
typically be represented by a hierarchical tree, and we call such
tasks hierarchical classification [4].

The hierarchical class structure is obviously important aux-
iliary information for classification learning. This information
helps to divide a large and complex task into a set of relatively
small and easy subtasks. Growing attention has been paid to this
topic in recent years [5], [6]. A collection of algorithms have
been developed to exploit hierarchies in training classification
models, including text categorization [7], visual recognition [8],
lung disease classification [9], gene function prediction [10], and
plant species identification [11].

Feature selection has gotten much attention in classification
learning [12], [13]. Redundant and irrelevant features are gathered
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during data collection because users typically do not know which
features are useful for current tasks. It is well accepted that su-
perfluous features lead to classification performance deterioration
because of the curse of dimensionality. Selecting a subset of
features from the data can provide a compact representation of
a classification task [14], [15]. A great number of algorithms
have been proposed in recent years for conventional classification.
These algorithms select a common subset of features for discrim-
inating all objects. These algorithms need to select many features
if there are many classes to be discriminated. In fact, some of the
selected features are only useful for recognizing one or several
classes. Thus, these algorithms are not applicable to large-scale
classification tasks.

To combat the challenge of feature selection for large-scale
classification, hierarchical structures can also be considered. It is
not feasible to assume that all of the classes share the same set
of relevant features for hierarchical feature selection [16]. The
useful features for distinguishing some classes may be useless for
others [17]. Thus we should select different features for different
subtasks to construct an effective feature subset which leads to a
compact and powerful classification model. We believe a machine
learning system can and should leverage such information as well
for better performance [16].

However, little work has been conducted to deal with hierar-
chical feature selection. For such tasks, we divide a large-scale
classification task into a set of smaller classification problems,
where each subtask uses an independent feature subset [17].
In 2011, a method for joint feature selection and hierarchical
classifier was developed using genetic algorithms [18]. In 2015,
a feature selection algorithm was proposed for hierarchical text
classification [19]. They did not consider the dependence among d-
ifferent classes in the hierarchical tree, and independently selected
features for each node. However, classes in a hierarchical structure
have both parent-child and sibling relationships. Classes with a
parent-child relationship are similar to each other and may share
common features for classification, while distinguishing among
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classes with a sibling relationship may require different features.
However, these algorithms evaluate the importance of features
individually.

In this paper, we design a hierarchical feature selection frame-
work with recursive regularization for hierarchical classification.
This framework considers the hierarchical information of the class
structure. First, we model the loss term for each node with the hi-
erarchical class structure. We then model the hierarchical informa-
tion as a hierarchical regularization with parent-child relationship,
sibling relationship, and family relationship, respectively. We use
square loss function to measure the dependencies of hierarchical
structure among parent and children. We then use the Hilbert-
Schmidt Independence Criterion (HSIC) [20] to measure the
independence of the sibling classes, and penalize the dependence
among the features selected at sibling nodes. Thus the final subsets
are similar if the nodes have a parent-child relationship, while they
are different if there is a sibling relationship. The contributions of
this paper are summarized as follows.

• We design a hierarchical feature selection framework using
the hierarchical class structure and select different feature
subsets for different class nodes.

• We attempt to conduct hierarchical feature selection by
considering the hierarchical class structure of parent-child
relationship, sibling relationship, and family relationship,
respectively. These relationships are modeled by hierar-
chical recursive regularization, which is more reasonable
for representing the relationships between nodes than flat
approaches.

• In contrast to existing algorithms, we model hierarchi-
cal feature selection as a convex objective function and
explore an alternation minimization strategy to solve the
optimization problem with guaranteed convergence.

• We use six metrics to evaluate the performance of the pro-
posed feature selection algorithms. Extensive experiments
on six hierarchical datasets demonstrate the effectiveness
of our algorithms in terms of efficiency and accuracy.

The original idea in this work appeared in [21]. We extend it
here in the following aspects.

• Based on different hierarchical relationships, we propose
Hier-FS, HiRRpar-FS and HiRRsib-FS models respective-
ly. We discuss the relationships among different models.

• We add several hierarchical feature selection methods to
compare with our methods.

• Instead of considering local classification accuracy on each
node, we include experiments using hierarchical classifi-
cation to compare the global effectiveness of the proposed
models.

• Finally, we include two hierarchical evaluation methods to
evaluate the selected feature subsets.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present some preliminaries about feature selection and
hierarchical tree structure. We then present four models of hier-
archical feature selection framework with recursive regularization
in Section 3. Four hierarchical feature selection algorithms are
designed in this section. In Section 4, we discuss experimental
results, and analyze the effectiveness of the hierarchical feature
selection algorithm. Section 5 concludes this paper and outlines
the research direction in the future.

2 Preliminaries

We introduce some basic knowledge on feature selection and
hierarchical tree structure in this section.

2.1 Feature selection

Let X ∈ Rm×n be a data matrix, where m and n are the numbers
of samples and features, respectively. We use x1, x2, · · · , xm to
represent the m samples, where xi ∈ Rn and X = [x1; x2; · · · ; xm].
Let Y ∈ Rm×d be a class matrix, where d is the number of classes.
We use yi ∈ {0, 1}d to represent the class of sample xi, and Y =

[y1; y2; · · · ; ym].
Feature selection, i.e., the task of choosing a small subset of

features which is sufficient to predict the target labels well, is
crucial for efficient learning [22], [23]. Many feature selection
algorithms can be formulated as a penalized optimization problem:

min
W

L(XW,Y) + λR(W), (1)

where L(·) is the empirical loss function. The least squares loss,
logistic loss and hinge loss are three popularly used loss functions
in learning. W = [wi j] ∈ Rn×d is the feature weight matrix, and
R(W) is the regularizer imposed on W and λ is a positive constant.
The selected features have large weights across all classes.

Recently, sparse learning via `1 regularization [24] and its
various extensions has received increasing attention in many areas
including machine learning, signal processing, and statistics [25],
[26]. The `2,1-norm based regression loss function is proposed
in [27], which is convex and can be easily optimized. The
`2,1-norm based feature selection method imposes the structural
sparsity in feature selection.

2.2 Hierarchical tree structure

A hierarchical tree is defined as a pair (D,≺), whereD = {1, 2, · · · }
is the set of all classes and “≺” represents the “IS-A” relationship,
which is the subclass-of relationship with the following proper-
ties [28]:

(1) Asymmetry: if i ≺ j then j ⊀ i for every i, j ∈ D.
(2) Anti-reflexivity: i ⊀ i for every i ∈ D.
(3) Transitivity: if i ≺ j and j ≺ k, then i ≺ k for every

i, j, k ∈ D.

TABLE 1
Description of symbols used throughout the article.

Symbol Meaning
pi The parent category of class i
Ci The set of child categories of class i
S i The set of sibling categories of class i
|Ci | The number of child categories of class i
|S i | The number of sibling categories of class i

In a hierarchical tree structure,
(1) pi is the parent of node i ∈ D;
(2) S i is the set of all siblings of node i ∈ D, and |S i| is the

number of the siblings of i;
(3) Ci is the set of all children of node i ∈ D, and |Ci| is

the number of the children of i. Table 1 describes the most
frequent symbols used throughout this paper.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMITTED ON DECEMBER 15, 2019. 3

3 Hierarchical recursive regularization for feature se-
lection

In this section, we first describe the hierarchical feature selection
model with recursive regularization for tasks with a hierarchical
tree structure. We also define three models by considering different
relationships, namely parent-child, sibling, and family relation-
ships. Four algorithms are designed in this section.

3.1 Basic framework

In this paper, we focus on hierarchical feature selection based on
different hierarchical relationships. Flat feature selection methods
assume that the relevant features are shared by all classes. This
is too restrictive in real-world applications. In a hierarchical
class structure, the classifier at each internal node need only
distinguish among a small number of classes [29]. Thus, each
subtask is significantly simpler than the original classification task.
Hierarchical feature selection aims to learn the features specific to
each internal node of the class structure.

Let Xi ∈ Rmi×n be a data matrix, where mi is the number of
the samples in subtree of node i, and n is the number of features.
We use x1, x2, · · · , xmi to represent the samples of the i-th internal
node, where xi ∈ Rn and Xi = [x1; x2; · · · ; xmi ]. Let Yi ∈ Rmi×d

be a class matrix of the i-th internal node, where d is the largest
number of sub-classes. We use yi ∈ {0, 1}d to represent the class
of sample yi, and Yi = [y1; y2; · · · ; ymi ].

An example of a tree-based hierarchical class structure is
shown in Fig. 1. We compute the feature weight matrix Wi for
each internal node.

d0

d1 d2

d3 d4 d5

d7d8 d9 d10 d11 d12 d13 d14

W2

W0

W1

W3 W4

d6
W5 W6

Fig. 1. Tree structure.

From this figure, we observe the following.
(1) d0 is the root of the class tree. X0 is a data matrix containing

all samples in the dataset. The samples are divided into
classes d1 and d2. We select a feature subset for this node
that can distinguish these two classes.

(2) dN is one of the internal nodes of the class tree. XN is a
data matrix containing samples in classes d13 and d14.

(3) In this tree, node d2 has the largest number of sub-classes,
and specifically sub-classes are d5, d7, and dN . This means
that d = 3.

Let ‖ · ‖F denote the Frobenius norm of a matrix, and let ‖ · ‖2,1
denote the `2,1-norm of a matrix. In the context of hierarchies, the
optimization problem is to minimize J(W0,Wi, · · · ,WN):

J(W0,Wi, · · · ,WN) =

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1), (2)

where Wi ∈ Rn×d is the feature weight matrix, the first term is the
loss item, the second term is the regularization imposed on Wi, λ is
a positive constant, and N is the number of internal nodes. Linear

regression is one of the most broadly and frequently used statistical
tools. For convenience, we use least squares loss in this study.
A more appropriate convex loss such as hinge loss or logistic
loss could be used, but this would require different optimization
methods that could not benefit to the closed form solutions used
with the mean square error.

`2,1-norm is already successfully applied in Group Lasso,
multi-task feature learning, joint covariance selection and joint
subspace selection. We use `2,1-norm on the parameter Wi, which
leads to row-sparsity of the projection matrix. Hence, it is able
to discard the irrelevant features and transform the relevant ones
simultaneously [27]. The model for hierarchical feature selection
is shown in Fig. 2.

X0

X1

XN

...

n features

mN
Y0

Y1

YN
...

m0

N+1

Feature Matrices 

Xi∈R
mi×n

Class  Matrices 

Yi∈R
mi×d

N+1

W1 ... WNWi

W0

...

...

...

Sample0

Sample1 SampleN

n

WN

... 

W1

 W0

Parameter Matrices

Wi∈R
n×d

Global features

Local features

L
ea

rn
in

g

Fig. 2. Model of hierarchical feature selection.

It is difficult to derive a closed solution to the optimization
problem in Equation (2) directly because of the non-smoothness
of the `2,1-norm. There are a number of convex optimization
techniques for dealing with this non-smooth optimization such
as Bregman operator splitting algorithm and alternative algorithm.
According to [27], this problem can be solved in an alternative
way. When wi , 0 for i = 1, · · · , d, the derivative of ||W||2,1 with
respect to W is

∂(||W||2,1)
∂W

= 2DW, (3)

where D ∈ Rd×d is a diagonal matrix with the i-th diagonal element
as D j j = 1

2||w j ||2
. We set D j j = ε when w j = 0.

It can be easily verified that the derivative in Equation (3) can
also be regarded as the derivative of Tr(WT DW).

For the root and internal nodes of the tree, by setting the
derivative of Equation (2) with respect to Wi to 0, we have

∂J
∂Wi

= 2XT
i (XiWi − Yi) + 2λDiWi

= (2XT
i Xi + 2λDi)Wi − 2XT

i Yi,

(4)

where i is the i-th internal node of the tree. Therefore, we have

Wi = (XT
i Xi + λDi)−1(XT

i Yi). (5)

A hierarchical feature selection algorithm (Hier-FS) is formu-
lated in Algorithm 1. We use a top-down strategy to exploit a priori
knowledge of the class structure to divide a large classification task
into some small sub-classification tasks. The tree structure consists
of a root node, internal nodes, and leaf nodes. We update the root
node and internal nodes using Lines 7 to 9. Given a hierarchical
structure, the node di is the i-th internal node, where i ∈ {0, · · · ,N}.
We consider the child classes of the node di to compute the weight
vector Wi when we deal with the current sub-classification task.
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We focus on selecting the feature subset that can distinguish the
child classes of the current node. For example, all the data are
divided into two classes d1 and d2 for the root classification task
according to the hierarchical class structure in Fig. 1. We design
different hierarchical feature selection algorithms using different
hierarchical class structures in the following sections. This algo-
rithm determines the weight vector W = [W0,W1, · · · ,WN]. We
sort the n features for the i-th internal node (sub-classification
task) in descending order according to ||wi

j||F ( j = 1, · · · , n), and
select the top-ranked subset for this sub-classification task, where
i = 0, · · · ,N and N is the number of internal nodes.

Algorithm 1 Hierarchical Feature Selection (Hier-FS)
Input: Input data Xi ∈ Rmi×n and labels Y ∈ {0, 1}mi×d, where
i = 0, 1, · · · ,N, and N is the number of internal nodes. To
facilitate the calculation, we let d be the maximum number of
classes of internal nodes. Regularization parameter is λ, and the
maximal iteration number is T .
Output: Matrix W ∈ Rn×d(N+1).

1: Set t = 0 and initialize Wi ∈ Rn×d randomly;
2: W = [W0,W1, · · · ,WN];
3: while t < T do
4: for i = 0 : N do
5: Compute the diagonal matrix D(t)

i according to di
j j =

1
2‖wi

j‖2
;

6: end for
// Update the root node and internal nodes.

7: for i = 0 : N do
8: Update Wi by W(t+1)

i = (XT
i Xi + λD(t)

i )−1(XT
i Yi);

9: end for
10: Update W(t+1) = [W0,W1, · · · ,WN];
11: t = t + 1;
12: end while
13: return W;

Hier-FS degrades to a conventional feature selection algorithm
if there are no internal nodes. The optimization problem degen-
erates to min

W
‖XW − Y||2F + λ‖W‖2,1 when N = 0. Therefore,

the hierarchical feature selection algorithm is a generalization of
feature selection.

3.2 Hierarchical recursive regularization with parent-child
relationship

We incorporate the dependencies of the hierarchical structure into
the regularization structure of the parameters. In general, cate-
gories from the same subtree share more domain knowledge than
those from different subtrees [30]. Parent-child relationship is the
closest relationship among all nodes in a tree. That is, they relate
to neighboring nodes in the hierarchical structure. We expect that
these classes are similar to each other and should share common
features for classification. We introduce these relationships into
the learning process by incorporating a recursive structure into the
regularization term.

The regularization term for parent-child relationship is

N∑
i=1

‖Wi −Wpi‖
2
F . (6)

In the context of hierarchies, the primary optimization problem for
parent-child relationship is to minimize Jpar(W0,Wi, · · · ,WN):

Jpar(W0,Wi, · · · ,WN) =

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1)

+ α

N∑
i=1

‖Wi −Wpi‖
2
F .

(7)

We call this task parent-child relationship based hierarchical
recursive regularization for feature selection (HiRRpar-FS).

Jpar(W0,Wi, · · · ,WN) = ‖X0W0 − Y0‖
2
F + λ‖W0‖2,1

+

N∑
i=1

(‖XiWi − Yi‖
2
F + λ‖Wi‖2,1 + α‖Wi −Wpi‖

2
F).

(8)

For the root of the tree, by setting the derivative of Equation
(8) with respect to W0 to 0, we have

∂Jpar

∂W0
= 2XT

0 (X0W0 − Y0) + 2λD0W0 − 2α
∑
i∈C0

(Wi −W0)

= (2XT
0 X0 + 2λD0 + 2α|C0|I)W0 − 2XT

0 Y0 − 2α
∑
i∈C0

Wi = 0,

(9)

where i is the i-th child of root node C0, and |C0| is the number of
all children of root node. Therefore, we have

W0 = (XT
0 X0 + λD0 + α|C0|I)−1(XT

0 Y0 + α
∑
i∈C0

Wi). (10)

By setting the derivative of Equation (8) with respect to
internal node Wi to 0, we have

∂Jpar

∂Wi
= 2XT

i (XiWi − Yi) + 2λDiWi + 2α(Wi −Wpi )

= (2XT
i Xi + 2λDi + 2αI)Wi − 2XT

i Yi − 2αWpi = 0.
(11)

Therefore, we have

Wi = (XT
i Xi + λDi + αI)−1(XT

i Yi + αWpi ). (12)

Algorithm 2 Parent-Child Relationship Based Hierarchical Fea-
ture Selection with Recursive Regularization (HiRRpar-FS)

Input: W(t). Regularization parameters are λ and α.
Output: An iteration result W(t+1) of HiRRpar-FS.

1: Update W0 by W(t+1)
0 = (XT

0 X0 + λD(t)
0 + α|C0|I)−1(XT

0 Y0 +

α
∑

i∈C0
W(t)

i ); // Update the root node.
// Update the internal nodes.

2: for i = 1 : N do
3: Update Wi by W(t+1)

i = (XT
i Xi+λD(t)

i +αI)−1(XT
i Yi+αW(t)

pi );
4: end for
5: Update W(t+1) = [W0,W1, · · · ,WN];

We present an algorithm for parent-child relationship
based hierarchical feature selection with recursive regularization
(HiRRpar-FS) in Algorithm 2. This is a sub-function of Algorith-
m 1. The input and output are the same as in Algorithm 1 except
for the parameter α. The root node is updated separately because
the root node does not have a parent node.
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3.3 Hierarchical recursive regularization with sibling rela-
tionship

Sibling relationship is also an important relationship among nodes
in a hierarchical class tree structure. Although two internal sibling
nodes share a parent node, they each have their own subtree.
The classifier for internal nodes should distinguish subcategories.
Internal nodes that have a sibling relationship come from different
subtrees. Therefore, we should select discriminative features for
each subcategory.

...

Objects

...

Fig. 3. Example of sibling relationship.

Fig. 3 shows an example of a sibling relationship. This
example is a subtree of the PASCAL Visual Object Classes
(VOC) dataset, which is a benchmark for visual object category
recognition and detection and provides the vision and machine
learning communities with a standard dataset of images with an-
notation [31]. For example, textural features can identify animals,
but edge features are more representative for furniture. Therefore,
we expect the features at sibling nodes to be different from each
other.

We measure the independence using a kernel dependence
measure (the HSIC) by mapping variables into a reproducing
kernel Hilbert space (RKHS). This criterion measures the high-
order joint moments between the original distributions [32]. We
use the HSIC to penalize the dependence between the selected
features at sibling nodes in an RKHS.

Let Ki and Kl be kernel matrices on Wi ∈ Rn×d and Wl ∈ Rn×d,
where l ∈ S i is the l-th sibling node of node i. Matrixes Wi and
Wl are the projection matrices for the i-th node and the l-th sibling
node, respectively. Then

HSIC(Wi,Wl) = tr(KiHKlH), (13)

where Ki = WiWT
i , Kl = WlWT

l , and 1 ≤ l ≤ |S i|. H = I− 1
n 1n1T

n ∈

Rn×n centers both the feature space and the sample space to have
zero mean, where 1n ∈ Rn is a column vector with all elements
being 1.

The primary optimization problem for sibling relationship is
to minimize Jsib(W0,Wi, · · · ,WN):

Jsib(W0,Wi, · · · ,WN) =

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1)

+ β

N∑
i=1

∑
l∈S i

HSIC(Wi,Wl),

(14)

where l is a sibling of node i and |S i| is the number of siblings
of node i. We call this task sibling relationship based hierarchical
recursive regularization for feature selection (HiRRsib-FS).

The root node needs to be computed separately. Therefore, the
objective function can be rewritten as

Jsib(W0,Wi, · · · ,WN) = ‖X0W0 − Y0‖
2
F + λTr(WT

0 D0W0)

+

N∑
i=1

(‖XiWi − Yi‖
2
F + λTr(WT

i DiWi))

+ β

N∑
i=1

∑
l∈S i

Tr(WiWT
i HWlWT

l H).

(15)

For the root of the tree, by setting the derivative of Equa-
tion (15) with respect to W0 to 0, we have

∂Jsib

∂W0
= 2XT

0 (X0W0 − Y0) + 2λD0W0

= (2XT
0 X0 + 2λD0)W0 − 2XT

0 Y0 = 0.
(16)

Therefore, we have

W0 = (XT
0 X0 + λD0)−1(XT

0 Y0). (17)

Let Ul = HWlWT
l H. By setting the derivative of Equation (15)

with respect to internal node Wi to 0, we have

∂Jsib

∂Wi
= 2XT

i (XiWi − Yi) + 2λDiWi + β
∑
l∈S i

(Ul + UT
l )Wi

= (2XT
i Xi + 2λDi + β

∑
l∈S i

(Ul + UT
l ))Wi − 2XT

i Yi = 0.
(18)

Finally, we have

Wi = (XT
i Xi + λDi + β

∑
l∈S i

(Ul + UT
l ))−1(XT

i Yi). (19)

Algorithm 3 Sibling Relationship Based Hierarchical Feature
Selection with Recursive Regularization (HiRRsib-FS)

Input: W(t). Regularization parameters are λ and β.
Output: An iteration result W(t+1) of HiRRsib-FS.

1: Update W0 by W(t+1)
0 = (XT

0 X0 +λD(t)
0 )−1(XT

0 Y0); //Update the
root node.
// Update the internal nodes.

2: for i = 1 : N do
3: Update Wi by W(t+1)

i = (XT
i Xi + λD(t)

i + β
∑

l∈S i
(Ul +

UT
l ))−1(XT

i Yi);
4: end for
5: Update W(t+1) = [W0,W1, · · · ,WN];

We present an algorithm for sibling relationship based hier-
archical feature selection with recursive regularization (HiRRsib-
FS) in Algorithm 3. This is a sub-function of Algorithm 1. The
input and output are the same as in Algorithm 1 except for
parameter β. The update process for the root node is same as
in Algorithm 1 because the root node does not have sibling nodes.

3.4 Hierarchical recursive regularization with family rela-
tionship

In this section, we consider parent-child and sibling relationships
between categories in a hierarchy simultaneously. We expect that
parent and children share common features. In addition, we also
expect that internal nodes that have a sibling relationship have
their own unique features.
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The primary optimization problem when considering parent-
child and sibling relationships simultaneously is to minimize
Jfam(W0,Wi, · · · ,WN) [21]:

Jfam(W0,Wi, · · · ,WN) =

N∑
i=0

(‖XiWi − Yi||
2
F + λ‖Wi‖2,1)

+ α

N∑
i=1

‖Wi −Wpi‖
2
F + β

N∑
i=1

∑
l∈S i

HSIC(Wi,Wl),

(20)

where i = 0 indicates a root node with no parent node or sibling
nodes. Therefore, the value of i in the two regularization terms
starts at 1. We call this task family relationship based hierarchical
recursive regularization for feature selection (HiRRfam-FS).

The root node needs to be computed separately. Therefore, the
objective function is rewritten as

Jfam(W0,Wi, · · · ,WN) = ‖X0W0 − Y0‖
2
F + λTr(WT

0 D0W0)

+

N∑
i=1

(‖XiWi − Yi‖
2
F + λTr(WT

i DiWi)) + α‖Wi −Wpi‖
2
F

+ β

N∑
i=1

∑
l∈S i

Tr(WiWT
i HWlWT

l H).

(21)

For the root of the tree, by setting the derivative of Equa-
tion (21) with respect to W0 to 0, we have

∂Jfam

∂W0
= 2XT

0 (X0W0 − Y0) + 2λD0W0

= (2XT
0 X0 + 2λD0)W0 − 2XT

0 Y0 = 0,
(22)

where i is the i-th child of root node C0, and |C0| is the number of
all children of root node. Therefore, we have

W0 = (XT
0 X0 + λD0 + α|C0|I)−1(XT

0 Y0 + α
∑
i∈C0

Wi). (23)

Let Ul = HWlWT
l H. By setting the derivative of Equation (21)

with respect to internal node Wi to 0, we have

∂J
∂Wi

=2XT
i (XiWi − Yi) + 2λDiWi + 2α(Wi −Wpi )

+ β
∑
l∈S i

(Ul + UT
l )Wi

=(2XT
i Xi + 2λDi + 2αI + β

∑
l∈S i

(Ul + UT
l ))Wi

− 2XT
i Yi − 2αWpi = 0.

(24)

Finally, we have

Wi = (XT
i Xi + λDi + αI + β

∑
l∈S i

(Ul + UT
l ))−1(XT

i Yi + αWpi ). (25)

We present an algorithm for family relationship based hierar-
chical feature selection with recursive regularization (HiRRfam-
FS) in Algorithm 4. This is a sub-function of Algorithm 1. The
input and output are the same as in Algorithm 1 except for the
parameters α and β.

From Algorithm 4, the time complexity for each iteration
largely depends on the calculation for updating W. This requires
O(n3 + n2d + n2mi + nmid) operations for the i-th internal node
in each iteration, where n is the number of features, d is the
maximal number of classes, and mi is the number of samples
for the i-th internal node. In our experiments, each of XT

i Xi and
XT

i Yi for the i-th internal node is prepared once. These require

Algorithm 4 Family Relationship Based Hierarchical Feature
Selection with Recursive Regularization (HiRRfam-FS)

Input: W(t). Regularization parameters λ, α, and β.
Output: An iteration result W(t+1) of HiRRfam-FS.

1: Update W0 by W(t+1)
0 = (XT

0 X0 + λD(t)
0 + α|C0|I)−1(XT

0 Y0 +

α
∑

i∈C0
W(t)

i ); //Update the root node.
// Update the internal nodes.

2: for i = 1 : N do
3: Update Wi by W(t+1)

i = (XT
i Xi + λD(t)

i + αI + β
∑

l∈S i
(Ul +

UT
l ))−1(XT

i Yi + αW(t)
pi );

4: end for
5: Update W(t+1) = [W0,W1, · · · ,WN];

n2mi and nmid operations, respectively. For all internal nodes, this
requires n2m and nmd, where m is the number of samples for
all internal nodes. Hence, the time complexity of HiRRfam-FS
is O(R(n3 + n2d) + n2m + nmd), where R is the total number of
iterations.

4 Experiments and Discussion
In this section, we introduce the datasets, evaluation measures,
and experiment setup used in our experiments1. We then present
four metrics to verify the effectiveness of the proposed hierarchical
feature selection framework. Finally, we analyze the convergence
of the algorithm.

4.1 Datasets

There are six datasets used in the experiments, including two
protein datasets and four image datasets. All these datasets are
single-labeled, and the examples are assigned to the leaf nodes
in the hierarchy. All of the tasks incorporate information about
the class hierarchy. For two protein datasets, Fig. 4 is the feature
distribution, which is extracted from [33]. There are 473 features
(five group: amino acid, 1-gram, 2-gram, global, local) in two
protein datasets, where from 441 to 446 are global features. For
VOC dataset, we use the features from [31]. For other image
datasets, we extract features with the VGG19 model [34] pre-
trained with the ImageNet dataset2.

20 D 20 D 6 D400 D 27 D

473 Features

Structure ProfileGlobal Feature1-gram 2-gram

PSSM PSI-BLAST PSI-Pred

Protein Sequence

Fig. 4. Feature distribution of DD dataset.

Detailed information about the datasets is summarized in
Table 2. The number of features varies from 473 to 4096.

1. The code and data underlying this study have been uploaded to Github and
are accessible using the following link: https://github.com/fhqxa/TKDE2019.

2. The VGG19 model and its parameters can be downloaded from:
https://github.com/SnailTyan/caffe-model-zoo/tree/master/VGG19.
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Object
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Seating Dining talbe
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Domestic Farmyard Bird

Cat Dog Cow Horse Sheep

Person

Bottle

Fig. 5. Hierarchy of PASCAL VOC dataset.

TABLE 2
Data description.

No. Dataset Train Test Feature Node Leaf Height
1 F194 7105 1420 473 202 194 3
2 DD 3020 605 473 32 27 3
3 VOC 7178 5105 1000 30 20 5
4 Cifar100 50000 10000 4096 121 100 3
5 SUN 45109 22556 4096 343 324 4
6 ILSVRC65 12346 11845 4096 65 57 4

The first dataset is a protein dataset called F194 [35]. It
has 8525 samples and 473 features. There are 194 classes in
this dataset, which are all leaf nodes. The second dataset is DD
dataset [36], which is also a protein dataset. It has 27 real classes
and four major structural classes.

The third dataset is the PASCAL VOC dataset. Fig. 5 shows
the hierarchy for VOC. In Table 2, there are 7178 samples in the
training dataset and 5105 samples in the test dataset for PASCAL
VOC [31]. The fourth dataset is Cifar100 [37], which contains
labeled subsets of 80 million tiny image datasets collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. This dataset has
100 classes containing 600 images each. There are 500 training
images and 100 test images per class. The 100 classes in Cifar100
are grouped into 20 superclasses. Each image comes with a “fine”
label (leaf node) and a “coarse” label (the superclass to which it
belongs). The hierarchical class structure is shown in Fig. 6.

The fifth dataset is Scene UNderstanding (SUN) [38], [39]
which is an extensive database that contains 397 well-sampled
classes. There are multi-label objects in the SUN dataset. As we
do not discuss this kind of task in this study, we remove these
multi-label samples. The sixth dataset is ILSVRC65 dataset [40].
There are 65 class nodes in this hierarchical structure and the
number of internal nodes is N = 7.

4.2 Evaluation measures

The proposed method implements hierarchical classification,
which is different from flat classification. Accordingly, the e-
valuation measures for hierarchical feature selection should be
different. Some measures for evaluating hierarchical classification
were introduced in [28]. We select the feature subsets from the
training sets and test them on the test sets. We also perform 10-
fold cross-validation with the same parameter setup. We use the
hierarchical F1-measure to evaluate the experimental results and
use the tree induced error to consider different errors caused by
the hierarchy [28].

In hierarchical classification, different classification errors re-
sult from different levels of penalty. In our model, this penalty

is defined by the tree distance, which is called the tree induced
error (TIE) in [41]. The TIE is computed by predicting the label
dv when the correct label is du:

TIE(du, dv) = |EH(du, dv)|, (26)

where EH(du, dv) is the set of edges along the path from du to dv

in the hierarchy, and | · | denotes the count of elements. That is,
TIE(du, dv) is defined to be the number of edges along the path
from du to dv in the tree of D.

The hierarchical F1-measure takes into account entire sets of
predicted and true classes including their ancestors or descendants.
Hierarchical F1-measure has two distinct phases: (1) The augmen-
tation of D and D̂ with information about the hierarchy. (2) The
calculation of a cost measure based on the augmented sets.

The augmentation of D and D̂ is a crucial step that attempts to
capture the hierarchical relationships between classes. There are
different measures based on different ways of augmenting the sets
of predicted and true classes. We select a measure that augments
the sets with the ancestors of the true and predicted classes [42],
[43] as follows: Daug = D ∪ anc(D), and D̂aug = D̂ ∪ anc(D̂).

Hierarchical precision and recall are defined as follows:

PH =
|D̂aug ∩ Daug|

|D̂aug|
,

RH =
|D̂aug ∩ Daug|

|Daug|
,

(27)

where | · | denotes the count of elements. The hierarchical F1-
measure is defined as follows:

FH =
2 · PH · RH

PH + RH
. (28)

4.3 Experiment setup

To evaluate the performance of our hierarchical feature selection
algorithms, we compare them with other hierarchical feature
selection algorithms. We set up our experimental study as follows:

1) Baseline: All original features are selected.
2) The proposed algorithms are compared with three hi-

erarchical feature selection algorithms. (1) HierMRMR [44] is
a hierarchical feature selection method based on mRMR [45],
which can be run independently for each classifier. This method
actually selects different sets of features for each sub-classifier.
(2) HierFisher is a hierarchical feature selection method modified
from the Fisher score [46]. (3) HierFSNM is a hierarchical feature
selection method modified from FSNM [47]. We take FSNM
algorithm and HierFSNM algorithm as examples to introduce the
difference between the flat algorithm and the hierarchical classi-
fication algorithm. FSNM selects a feature subset for all classes.
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Fig. 6. Hierarchy of Cifar100 dataset.

The hierarchical class structure divides a large classification task
into a set of relatively small and easy sub-classification tasks.
In HierFSNM, we recursively execute FSNM on the hierarchical
classification from root classification task until the leaf node. We
can select the features for current sub-classification task.

3) We use a top-down SVM classifier to test the effectiveness
of our algorithms. For the SVM classifier, 10-fold cross-validation
is performed using a linear kernel and c = 1. For all algorithms, we
use different feature subsets for each internal node. Additionally,
we use the TIE and hierarchical F1-measure to evaluate the feature
selection algorithms.

4) There are four algorithms: Hier-FS, HiRRpar-FS, HiRRsib-
FS, and HiRRfam-FS. We set λ = 10 for all the algorithms, and
set α = 1 for HiRRpar-FS and HiRRfam-FS. We set β = 1 for the
HiRRsib-FS and HiRRfam-FS. For parameter sensitivity analysis,
we vary α and β over the set {0.01, 0.1, 1, 10, 100}.

4.4 Results and analysis

We use seven metrics to evaluate the performance of the proposed
feature selection algorithms: (1) a performance comparison with
the baseline method (all features are selected); (2) a performance
comparison using TIE and the hierarchical F1-measure evaluation;
(3) a performance comparison for the regularization terms; (4)
the running time for obtaining the feature subset; (5) parameter
sensitivity analysis; (6) results on text dataset; and (7) convergence
analysis.

4.4.1 Performance comparison with the baseline method

To verify the effectiveness of the proposed methods, compari-
son experiments are performed between our algorithm and the
baseline. We select the feature subset for each internal node,
which is the sub-classification task. A top-down classifier is used
to test the selected features for each sub-classification from the
different numbers of selected features. Fig. 7 is used to compare
the hierarchical F1-measure of the feature selection method with
that of all features (baseline algorithm). From these figures, we

have the following observations. Hier-FS reduces the dimensions
of data without changing the hierarchical F1-measure. For DD,
40 features (approximately 10%) selected by Hier-FS achieve
the same hierarchical F1-measure as all features. For four im-
age datasets, 20% of features achieve the same hierarchical F1-
measure as the baseline algorithm.
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Fig. 7. Hierarchical F1-measure on different features on each internal node.
(a) F194 ; (b) DD; (c) VOC; (d) Cifar100; (e) SUN; (f) ILSVRC65.

Furthermore, Table 3 shows the running time of the classifi-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMITTED ON DECEMBER 15, 2019. 9

TABLE 3
Running time (s) of the classification between with and without feature

selection.

Dataset 20% features ALL features
F194 0.709 0.729
DD 0.858 0.860
VOC 256 1041
Cifar100 1172 6552
SUN 779 3925
ILSVRC65 4855 27232

cation between the approaches with and without feature selection.
For two protein datasets, this table lists the running time com-
parison of the classifier based on 40 features (approximately 10%)
and all features. For four image datasets, this table lists the running
time comparison of the classifier based on 20% of all features and
all features. The classification complexity substantially reduces
after hierarchical feature selection. Specifically, the running time
of classification after feature selection on VOC, SUN, and ILSVR-
C65 is an order of magnitude faster than that of the baseline
method. From these results, we select 20% of features for four
image datasets and 10% of features for two protein datasets.

4.4.2 Performance comparison of different algorithms
First, we compare the effectiveness of the three hierarchical differ-
ent feature selection algorithms with the Hier-FS and HiRRfam-FS
algorithms based on TIE and hierarchical F1-measure evaluation.
TIE results are affected by the number of samples in the testing
dataset, which is not helpful to the comparison among different
datasets. Therefore, we removed the influence of the number of
samples and computed the normalized TIE results on the testing
datasets. It is helpful to reduce the range changes substantially
among the datasets.

The normalized TIE results of different feature selection al-
gorithms on different datasets are listed in Table 4. The best
results are highlighted in bold, and the smaller the better. The
experiments show that our algorithm, with the family relationship,
dramatically outperforms other hierarchical algorithms for all
datasets. HiRRfam-FS performs better and stabler than Hier-FS
in most cases.

TABLE 4
Normalized TIE results of different feature selection algorithms on different

datasets.

Dataset HierFisher HierFSNM HierMRMR Hier-FS HiRRfam-FS
F194 0.1945 0.2123 0.1800 0.1746 0.1730
DD 0.1355 0.0886 0.0919 0.0850 0.0836
VOC 0.2271 0.2144 0.2188 0.2143 0.2138
Cifar100 0.1285 — 0.1273 0.1269 0.1272
SUN 0.1341 — 0.1322 0.1280 0.1271
ILSVRC65 0.0336 0.0350 0.0335 0.0328 0.0329

The hierarchical F1-measure results of different feature selec-
tion algorithms on different datasets are listed in Table 5. Re-
garding the hierarchical F1-measure, the higher the better. We can
draw the same conclusion as that for TIE. Finally, we introduce
statistical methods to evaluate the performance of these algo-
rithms. Dems̆ar [48] advised statistically comparing algorithms
on multiple datasets using the Friedman test [49] followed by the
Bonferroni-Dunn test [50]. We perform these two tests to explore

the statistical significance of the results. The Friedman test is a
non-parametric test that can be used to compare k algorithms on
N datasets by ranking each algorithm separately on each dataset.
The best performing algorithm is given a rank of 1, the second
best is given a rank of 2, and so on. In the case of ties (equal data
values), average ranks are assigned.

TABLE 5
Hierarchical F1-measure results of different feature selection algorithms on

different datasets.

Dataset HierFisher HierFSNM HierMRMR Hier-FS HiRRfam-FS
F194 0.6758(4) 0.6462(5) 0.7000(3) 0.7089(2) 0.7117(1)
DD 0.7741(5) 0.8524(3) 0.8468(4) 0.8584(2) 0.8606(1)
VOC 0.6576(5) 0.6739(3) 0.6669(4) 0.6754(2) 0.6758(1)
Cifar100 0.7859(4) —(5) 0.7879(3) 0.7885(1) 0.7880(2)
SUN 0.8324(4) —(5) 0.8348(3) 0.8400(2) 0.8411(1)
ILSVRC65 0.9580(4) 0.9563(5) 0.9581(3) 0.9591(1) 0.9588(2)
Avg. Rank 4.33 4.33 3.33 1.67 1.33

Table 5 shows the hierarchical F1-measure ranks for differ-
ent algorithms. The average rank of each algorithm on all the
datasets is computed. The null-hypothesis of the Friedman test
is that all the feature algorithms are equivalent in terms of the
hierarchical F1-measure. Under the null-hypothesis, we compute
the value FF = 21.94, which is distributed according to an F
distribution with k − 1 and (k − 1)(N − 1) degrees of freedom,
where k is the number of methods, and N is the number of
datasets. With five algorithms and six datasets, the critical value
of F(5 − 1, (5 − 1) × (6 − 1)) = F(4, 20) for α = 0.05 is 2.866,
so we reject the null-hypothesis. Thus, the five methods under
comparison are not equivalent and there are significant differences
between the methods.

The Bonferroni-Dunn post-hoc test is used to detect whether
the proposed method is better than the existing methods. The
performance of the two compared algorithms are significantly
different if the distance between the average ranks exceeds the

critical distance (CD) CDα = qα
√

k(k+1)
6N , where qα is given in

Table 5 in [48]. Note that q0.1 = 2.241 when k = 5. Therefore,
CD0.1 = q0.1

√
5×6
6×6 = 2.046.
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Fig. 8. Performance comparison of Hier-FS algorithm against the others with
the Bonferroni-Dunn test.

Fig. 8 shows the results of the Bonferroni-Dunn post-hoc test
for α = 0.1 on the six datasets. The results indicate that the
hierarchical F1-measure for HiRRfam-FS is statistically better
than those for HierFSNM and HierFisher. There is no consistent
evidence to indicate statistical differences between the hierarchical
F1-measure among HiRRfam-FS, Hier-FS, and HierMRMR.

4.4.3 Performance comparison for regularization terms
We investigate the performance of the regularization terms in our
four algorithms experimentally. We fix λ = 10 and compare the
effectiveness of Hier-FS, HiRRpar-FS (α = 1), HiRRsib-FS (β =

1), and HiRRfam-FS (α = 1 and β = 1) for all datasets.
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Figs. 9(a) and 9(b) show the hierarchical F1-measure using
40 features for the two protein datasets. The results for the two
protein datasets demonstrate that HiRRfam-FS, which considers
the regularization terms for parent-child and sibling relationships,
works well. For the two protein datasets, the performance of
the HiRRpar-FS algorithm is better than that of the HiRRsib-
FS algorithm. The results are better when we consider family
relationship rather than only sibling relationship.
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Fig. 9. Hierarchical F1-measure on different algorithms. (a) F194 ; (b) DD;
(c) VOC; (d) Cifar100; (e) SUN; (f) ILSVRC65.

Figs. 9(c), 9(d), 9(e), and 9(f) show the hierarchical F1-
measure with 80 features for four image datasets VOC, Cifar100,
SUN, and ILSVRC65. The performance of sibling relationship
is not good on most datasets, except Cifar100. However, the
performance is best when we consider both the parent-child and
the sibling relationships among the four algorithms. Thus, the
independence among siblings is based on the dependence between
parent and children.

The proposed methods select the feature subset for each
internal node, which is the sub-classification task. To introduce the
selected features of each node, we give a semantic interpretation
of the selected features for DD dataset according to family-
relationship regularization. We select 24 features for each node
from DD as our example. The results of selected features are
listed in Table 6. In DD, there are 473 features, where features
from 441 to 446 are global features. From Table 6, the selected
features include {441, 443, 444, 445, 446} which are almost all
global features for the root node. There are from 9 to 12 same
features between root node and each internal node. For the 1st and
2nd internal nodes, there are 10 different features to classify their
subclasses, where 6 features are 2-gram features and 4 features are
local features.

TABLE 6
The selected 24 features from each non-leaf node of the DD dataset

No. Root Node1 Node2 Node3 Node4 No. Root Node1 Node2 Node3 Node4
1 425 421 422 421 421 13 451 435 437 439 452
2 426 422 423 422 422 14 452 436 438 440 453
3 430 423 425 423 424 15 454 439 451 446 454
4 433 424 427 424 425 16 455 440 455 448 456
5 437 425 428 426 426 17 457 448 458 449 457
6 441 426 430 427 431 18 458 454 460 451 458
7 443 427 431 428 433 19 460 457 463 452 462
8 444 428 432 429 434 20 461 463 464 453 463
9 445 429 433 430 437 21 463 464 465 457 465
10 446 431 434 432 440 22 464 467 467 460 466
11 449 433 435 434 449 23 467 468 469 467 469
12 450 434 436 435 451 24 469 469 470 470 470

4.4.4 Efficiency comparison

We next compare the efficiency of the four different feature se-
lection algorithms with the Hier-FS and HiRRfam-FS algorithms
using running time. All experiments were executed on an Intel
Core i7-3770 running at 3.40 GHz with 16.0 GB memory on a
64-bit Windows 7 operating system.

The results presented in Table 7 demonstrate that the Hier-
FS algorithm has a significantly shorter running time than the
other algorithms, except for the HierFisher algorithm. HierFSNM
cannot process the Cifar100 and SUN datasets with running out
of memory. Although HierFisher is faster than our methods, the
performance is not good, which is shown in Tables 4 and 5.

TABLE 7
Running time (s) of the five feature selection algorithms.

Dataset HierFisher HierFSNM HierMRMR Hier-FS HiRRfam-FS
F194 5.83(3) 112.6(5) 50.93(4) 0.96(1) 5.59(2)
DD 0.95(2) 27.24(5) 23.87(4) 0.52(1) 1.66(3)
VOC 0.73(1) 122.1(4) 251.9(5) 6.42(2) 13.4(3)
Cifar100 14.8(1) —(5) 24162(4) 597(2) 8763(3)
SUN 29.7(1) —(5) 32953(4) 525(2) 2195(3)
ILSVRC65 6.37(1) 1042(4) 9574(5) 227(2) 450(3)
Ave. Rank 1.5 4.67 4.33 1.67 2.83

To further explore whether the running time of the five feature
selection algorithms are significantly different, we performed a
Friedman test. The null-hypothesis of the Friedman test is that
the feature algorithms are equivalent in terms of running time.
Under the null-hypothesis, we compute the value FF = 30.86;
thus, we reject the null-hypothesis. Thus, the five feature selection
algorithms are different in terms of running time. A post-hoc
Bonferroni-Dunn test was also conducted.
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Fig. 10. Running time comparison of Hier-FS algorithm against the others
with the Bonferroni-Dunn test.

From Fig. 10, we observe that the running time of Hier-FS
is statistically better than those of HierMRMR and HierFSNM.
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There is no consistent evidence to indicate a statistical difference
in the running time between Hier-FS and HierFisher.

4.4.5 Parameter sensitivity analysis

We analyze parameter sensitivity using the average hierarchical
F1-measure for different parameters as listed in Table 8. The
hierarchical F1-measure is computed based on 20% of selected
features on each dataset. A “grid-search” is used to tune the
parameters α and β within certain ranges. It is noted that the results
reported in Table 8 are achieved using the fixed value λ = 10. The
parameters α and β are chosen from the set {0.01, 0.1, 1, 10, 100}.

TABLE 8
Parameter sensitivity evaluation on different datasets.

(a) F194

β
α

0.01 0.1 1 10 100

0.01 0.7171 0.7176 0.7176 0.7176 0.6329
0.1 0.7176 0.7178 0.7176 0.7171 0.6481
1 0.7176 0.7181 0.7176 0.7169 0.6974
10 0.7171 0.7176 0.7176 0.7169 0.7190
100 0.7174 0.7178 0.7178 0.7164 0.7169

(b) DD

β
α

0.01 0.1 1 10 100

0.01 0.8601 0.8601 0.8601 0.8601 0.8601
0.1 0.8601 0.8601 0.8601 0.8601 0.8601
1 0.8601 0.8601 0.8601 0.8601 0.8601
10 0.8601 0.8601 0.8601 0.8601 0.8601
100 0.5851 0.5851 0.5851 0.7731 0.8292

(c) VOC

β
α

0.01 0.1 1 10 100

0.01 0.6752 0.6756 0.6752 0.6757 0.6759
0.1 0.6752 0.6749 0.6750 0.6756 0.6754
1 0.6737 0.6738 0.6740 0.6745 0.6749
10 0.6714 0.6711 0.6705 0.6713 0.6714
100 0.6751 0.6695 0.6721 0.6707 0.6705

(d) Cifar100

β
α

0.01 0.1 1 10 100

0.01 0.7883 0.7885 0.7886 0.7884 0.7881
0.1 0.7883 0.7884 0.7887 0.7883 0.7881
1 0.7880 0.7877 0.7875 0.7880 0.7876
10 0.7881 0.7877 0.7879 0.7876 0.7879
100 0.7883 0.7884 0.7885 0.7883 0.7886

(e) SUN

β
α

0.01 0.1 1 10 100

0.01 0.8403 0.8407 0.8408 0.8414 0.8412
0.1 0.8403 0.8406 0.8408 0.8412 0.8414
1 0.8409 0.8411 0.8412 0.8412 0.8418
10 0.8400 0.8405 0.8406 0.8407 0.8407
100 0.8374 0.8388 0.8387 0.8392 0.8396

(f) ILSVRC65

β
α

0.01 0.1 1 10 100

0.01 0.9590 0.9590 0.9591 0.9591 0.9589
0.1 0.9589 0.9589 0.9589 0.9588 0.9589
1 0.9587 0.9587 0.9588 0.9589 0.9590
10 0.9592 0.9591 0.9592 0.9594 0.9592
100 0.9592 0.9592 0.9592 0.9591 0.9595

From Table 8, we can observe the followings.
(1) For F194 dataset, the hierarchical F1-measure is 0.7171

when α = 0.01 and β = 0.01. However, the hierarchical F1-
measure reduces to 0.6329 when α = 100 and β = 0.01. The
results demonstrate that there is not a good result when a parent-
child relationship is strongly restricted for this dataset.

(2) The hierarchical F1-measure is 0.8601 when α = 0.01
and β = 0.01 for DD dataset. However, the hierarchical F1-
measure reduces 0.5851 when α = 0.01 and β = 100. The results
demonstrate that too restrictive sibling relationship is not suitable
for DD dataset. There are similar results for the SUN and VOC
dataset when β = 100 and α ∈ {0.1, 1, 10, 100}.

(3) Our method is not sensitive to parameters on Cifar100 and
ILSVRC65 datasets.

4.4.6 Results on text dataset

To illustrate the advantage of the proposed method in dealing
with large-scale features, we test the proposed method on 20
Newsgroups dataset which contains 26,214 features [52]. The
20 Newsgroup dataset was collected and originally used for
document classification by Lang [51]. This dataset includes 18,446
messages collected from 20 different Netnews newsgroups. One
thousand messages from each of the 20 newsgroups were chosen
at random and partitioned by newsgroup name. The hierarchical
structure of the class is shown in Fig. 11. We use the “bydate”
version, which contains 951 documents evenly distributed across
20 classes.

We experimentally compare Hier-FS algorithm, HierFisher
and HierFSNM, and demonstrate that our algorithm significantly
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Fig. 11. Hierarchy of the 20 Newsgroup dataset.
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Fig. 12. Performance comparison of Hier-FS algorithm against the others
on the 20 Newsgroup dataset.

outperforms other algorithms. The hierarchical F1-measure results
are shown in Fig. 12, we observe the followings.

(1) The experiments show that Hier-FS algorithm can dramat-
ically outperform the other two algorithms. The method presented
in this paper shows good classification ability especially when
the number of features is less than 1000. The less the number
of features is, the more obvious the advantage is, which shows
that the preferential features have a good ability of classification
discrimination.

(2) The hierarchical F1-measure result of Hier-FS when it
selects 300 features exceeds that of all features.

4.4.7 Convergence analysis for HiRRfam-FS
We study the convergence of the proposed HiRRfam-FS algorithm
presented in Algorithm 4. Fig. 13 shows the convergence curves
based on the objective function value in Equation (20) for all
datasets. In our experiments, we set the maximal iteration number
T = 10 for all datasets. This figure demonstrates that the objective
function value decreases monotonically and converges within no
more than ten iterations for all datasets.

5 Conclusions and FutureWork
We have proposed a hierarchical feature selection framework
based on recursive regularization for hierarchical classification.
We have exploited parent-child, sibling, and family relationships
in hierarchical class structures to optimize our model. The sibling
relationship performs poorly for some datasets. However, in con-
junction with the parent-child relationship, the sibling relationship
can improve effectiveness. In contrast to existing feature selection
approaches, we take advantage of the hierarchical class structure,
which provides significant information for classification learning.
We have also provided efficient Hier-FS, HiRRpar-FS, HiRRsib-
FS, and HiRRfam-FS algorithms to select different feature subsets
for each node in a hierarchical tree structure. Compared with
the other three hierarchical feature selection approaches, our
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Fig. 13. Convergence curves of the objective function value. (a) F194 ; (b)
DD; (c) VOC; (d) Cifar100; (e) SUN; (f) ILSVRC65.

algorithms achieve competitive results in terms of hierarchical
classification accuracy.

The current implementation of the algorithm only deals with
a tree structure for class labels in which each node (class) has
a single parent. In the future, we will design feature selection
approaches for general graph structures where a node can have
multiple parents. We use classical least-squares linear regression
as loss function in this paper. In the future, we will try other no-
linear regression to design the optimization objective function.
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