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Abstract—Due to complex semantics, a sample may be associ-
ated with multiple labels in various classification and recognition
tasks. Multilabel learning generates training models to map feature
vectors to multiple labels. There are several significant challenges
in multilabel learning. Samples in multilabel learning are usually
described with high-dimensional features and some features may
be sequentially extracted. Thus, we do not know the full feature
set at the beginning of learning, referred to as streaming features.
In this paper, we introduce fuzzy mutual information to evaluate
the quality of features in multilabel learning, and design efficient
algorithms to conduct multilabel feature selection when the fea-
ture space is completely known or partially known in advance.
These algorithms are called multilabel feature selection with label
correlation (MUCO) and multilabel streaming feature selection
(MSFS), respectively. MSFS consists of two key steps: online rel-
evance analysis and online redundancy analysis. In addition, we
design a metric to measure the correlation between the label sets,
and both MUCO and MSFS take label correlation to considera-
tion. The proposed algorithms are not only able to select features
from streaming features, but also able to select features for ordinal
multilabel learning. However streaming feature selection is more
efficient. The proposed algorithms are tested with a collection of
multilabel learning tasks. The experimental results illustrate the
effectiveness of the proposed algorithms.

Index Terms—Feature selection, fuzzy mutual information, label
correlation, multilabel learning, streaming features.

I. INTRODUCTION

IN CLASSICAL supervised learning, each object only be-
longs to one of the candidate classes. This is inapplicable

to some real-world applications [3], [11], [16], [17], [40], [43],
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[57]. In fact, some objects are associated with multiple concepts
simultaneously. For example, a newspaper article concerning
the reactions of the scientific circle to the release of the Avatar
film can be classified to any of the three classes: arts, 3D, and
movies; an image showing a tiger in woods is associated with
several keywords such as trees and tiger. In sum, one label per
object is unable to fully describe such scenarios, and therefore,
the research topic of multilabel classification has attracted in-
creasing interest [31], [35], [39], [45], [48], [58], [62].

In multilabel learning, there are various challenges in multi-
label data that would affect the learning process, such as label
correlation [13] and [53], high dimensionality [28], [30], [32],
streaming features [47], class imbalance [6], [7], [42], and label-
specific features [58]. In this paper, we will focus on the first
three challenges. First, different from the traditional single-label
learning where the labels are mutually exclusive, the labels in
multilabel learning are typically correlated and interdependent,
which bring more difficulties to predict all relevant labels for a
given object [22], [26]. For example, in automatic image anno-
tation, “outdoor” and “sky” tend to appear in the same image; in
text categorization, a document is relevant to multiple themes,
such as “economy” and “sport”; in music information retrieval,
a piece of symphony could convey various messages such as
“piano,” “classical music,” and so on. On the other hand, it is
a possibility to infer the unknown labels of an object from the
known labels based on the label correlation. To fully utilize the
relation between labels, Yu et al. [53] constructed a multilabel
classification method based on the correlation between labels
and the uncertainty between feature space and label space. Elis-
seeff and Weston [13] proposed to learn the ranks of labels
for each instance, based on a large margin ranking system that
shares a lot of common properties with support vector machines.

The second challenge is the high dimensionality of multilabel
data, which usually has thousands or even tens of thousands of
features. This is a common characteristic in image annotation
and text categorization specially. For example, millions of in-
formative words are extracted from a collection of documents
or web pages to reflect their topics. As we know, some fea-
tures are redundant and/or irrelevant for a given learning task,
and high-dimensional data may bring several disadvantages to
a learner [1], [8], [9], [25], [27], [33], [36], [46], [54]. To solve
this problem, a number of multilabel dimensionality reduction
approaches have been proposed. These methods can be divided
into two groups: multilabel feature extraction and multilabel
feature selection. Multilabel feature extraction converts the orig-
inal high-dimensional feature space into a new low-dimensional
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feature space via mapping or transforming, however, it blurs the
information of the original features and is lack of semantic inter-
pretation. At present, several multilabel feature extraction tech-
niques have been presented, such as multilabel dimensionality
reduction via dependence maximization (MDDM) [59], linear
discriminant analysis [23], canonical correlation analysis [15],
and multilabel informed latent semantic indexing [52]. Different
from multilabel feature extraction, multilabel feature selection
ranks features based on the importance of each feature, and
keeps the physical interpretation for selected features. Recently,
a number of multilabel feature selection algorithms have been
presented from different computing paradigms, such as infor-
mation metric [30], [32], large margin [21], [41], and random
forest [18].

The third challenge is that the full feature space is unknown
in advance for some practical applications in various settings,
i.e., feature dimensions continuously increase and not all fea-
tures are available for learning while leaving the number of
objects constant. This scenario is called streaming feature se-
lection [47], [51]. For example, Mars crater detection [10] from
high-resolution planetary images provides the only solution for
remotely measuring the relative ages of planetary surfaces, and
it is infeasible to generate and store tens of thousands of texture-
based image features from planetary images to have a near global
coverage of the Martian surface. Streaming features embrace a
feature vector that flows in one by one over time while the num-
ber of training examples remains fixed, and the characteristics
of multilabel feature selection in streaming features include:
1) feature dimensions may grow over time and may even extend
to an infinite size; and 2) features flow in one at a time and each
feature is required to be processed online upon its arrival. There-
fore, we need to design an online feature selection method when
features arrive one at a time. In addition, streaming features also
exist in some real-world applications, such as email spam fil-
tering [34], [50], and texture-based image segmentation [60].
To date, several research efforts have been made to address
the challenge of streaming features, such as Grafting [37],
Alpha-investing [61], Online Streaming Feature Selection
(OSFS) [47], Online Group Feature Selection (OGFS) [60],
and Scalable and Accurate OnLine Approach (SAOLA) [51].
However, these streaming feature selection algorithms are pre-
sented for single-label learning. To the best of our knowledge,
no streaming feature selection algorithm for multilabel learning
has been reported so far.

Indeed, a number of existing multilabel dimensionality re-
duction algorithms are effective in selecting an optimal feature
subset for various multilabel learning tasks, but their solutions
are only originated from one or two challenges mentioned previ-
ously, and they therefore cannot deal with these three challenges
together, especially for streaming features. Motivated by these
observations, we present two new multilabel feature selection
algorithms to solve these challenges. First, we utilize fuzzy mu-
tual information as an evaluation criterion of multilabel feature
selection, and present a new data representation schema for
categorical label spaces when computing the fuzzy mutual in-
formation between features and the whole label space, in which
the data representation schema can capture the correlation be-
tween labels. Second, we present a standard multilabel feature

selection algorithm that combines fuzzy mutual information
with the Max-Relevance-Min-Redundancy strategy, and incor-
porates label correlation simultaneously. Finally, we propose
a multilabel streaming feature selection (MSFS) algorithm for
selecting features from streaming features, which is inspired
by online relevance analysis and online redundancy analysis,
and this algorithm can solve these three challenges in one
shot. Experiments on various benchmark multilabel datasets
show that the two proposed algorithms outperform existing
state-of-the-art methods.

In summary, the contributions of this paper are three folds.
First, we introduce a new data representation for nominal data,
and present a measure of the correlation between labels. Second,
two feature selection algorithms, i.e., multilabel feature selec-
tion with label correlation (MUCO) and MSFS, are designed
for selecting static and streaming features, respectively. Finally,
the effectiveness of the proposed algorithms is discussed with
extensive experimental analysis.

The rest of this paper is organized as follows. Section II in-
troduces multilabel learning and fuzzy mutual information. In
Section III, we present two multilabel feature selection algo-
rithms with label correlation for known and unknown feature
spaces, respectively. Our experiments on benchmark datasets
are demonstrated in Section IV. Finally, our conclusions and
future work are given in Section V.

II. PRELIMINARIES

A. Multilabel Learning

Let T = (U,F, L) be a multilabel decision table, where
U = {x1 , x2 , . . . , xn} are n objects, F = {f1 , f2 , . . . , fm} are
m features, and L = {l1 , l2 , . . . , lk} are k labels, respectively.
Each object belongs to a subset of L and this subset can be
described as a k-dimensional vector y = [y1 , y2 , . . . , yk ] where
yj = 1 only if x has label lj ; and 0 otherwise. The task of
multilabel learning is to learn a function h : U → 2L .

At present, a number of multilabel learning algorithms have
been proposed from different viewpoints, and these algorithms
can be grouped into two categories: problem transformation and
algorithm adaptation. The problem transformation approach
addresses the multilabel learning problem via transforming it
into other well-established learning scenarios, including binary
classification, label ranking, and multilabel classification.
On the other hand, the algorithm adaptation approach solves
multilabel learning via adapting other effective learning
techniques to deal with multilabel data directly, including
decision tree construction, kernel learning, lazy learning, and
information-theoretic induction. For analyzing different aspects
of multilearning, some insightful reviews on multilabel learning
are available in [20] and [57].

In multilabel experimental evaluation, we select some mea-
sures proposed in [40]. Let T = {(xi, yi)|1 ≤ i ≤ N} be a test
set where yi ⊆ L is a true label subset, and y

′
i ⊆ L be the binary

label vector predicted by a learner for object xi .
1) Average Precision (AP): This measure evaluates the av-

erage fraction of labels ranked higher than a particular label
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γ ∈ yi .

AP =
1
N

N∑

i=1

1
|yi |

∑

γ ∈ yi

|{γ ′ ∈ yi : ri(γ
′
) ≤ ri(γ)}|

ri(γ)
(1)

where ri(l) stands for the rank of label l ∈ L predicted by the
learner for xi .

2) Coverage (CV): This measure evaluates how many steps
are needed, on average, to go down the label ranking list so as
to cover all the ground-truth labels of the object.

CV =
1
N

N∑

i=1

max
λ∈ yi

rank(λ) − 1 (2)

where rank(λ) denotes the rank list of λ in terms of its likelihood.
For example, if λ1 > λ2 , then rank(λ1) < rank(λ2).

3) One Error (OE): This measure evaluates the fraction of
examples whose top-ranked label is not in the set of proper
labels.

OE =
1
N

N∑

i=1

[[[argmaxyi ⊆Lf(xi, yi)] /∈ y
′
i ]] (3)

where for any predicate π, [[π]] equals 1 if π holds and 0
otherwise.

4) Ranking Loss (RL): This measure evaluates the fraction
of reversely ordered label pairs.

RL =
1
N

N∑

i=1

1
|yi ||yi | |{(λ1 , λ2)|λ1 ≤ λ2 , (λ1 , λ2) ∈ yi × yi}|

(4)
where λj is a real-valued likelihood between xi and each label
li ∈ L based a classifier, and yi denotes the complementary set
of yi .

5) Hamming Loss (HL): This measure evaluates how many
times an instance-label pair is misclassified.

HL =
1
N

N∑

i=1

|y′
i ⊕ yi |
m

(5)

where ⊕ denotes the XOR operation.
6) Micro-F1 (F1): This measure calculates the F1 measure

on the predictions of different labels as a whole.

F1 =
2 ×∑N

i=1 ||y
′
i

⋂
yi ||1∑N

i ||yi ||1 +
∑N

i ||y′
i ||1

(6)

where
⋂

denotes the intersection operation, and || · ||1 is the
l1−norm.

For these evaluation criteria, AP, CV, OE, and RL concern
with the label ranking performance for each instance, and HL
and F1 concern with the performance on label set prediction for
each instance.

B. Fuzzy Entropy and Fuzzy Mutual Information

In this section, we introduce fuzzy entropy and fuzzy mutual
information.

Given a nonempty finite set of objects U = {x1 , x2 , . . . , xn}
described by a set of features F , and R is a fuzzy equivalence

relation over U generated by F , the fuzzy relation matrix M(R)
is defined as

M(R) =

⎡

⎢⎢⎢⎣

r11 r12 · · · r1n

r21 r22 · · · r2n

...
...

...
...

rn1 rn2 · · · rnn

⎤

⎥⎥⎥⎦

where rij ∈ [0, 1] is the relation value between xi and xj . Here,
R satisfies the followings.

1) Reflexivity: R(x, x) = 1 ∀x ∈ U .
2) Symmetry: R(x, y) = R(y, x) ∀x, y ∈ U .
3) Transitivity: R(x, z) ≥ miny{R(x, y), R(y, z)}.
For all x, y ∈ U , some operations on relation matrices are

defined as follows:
1) R1 = R2 ⇔ R1(x, y) = R2(x, y);
2) R = R1

⋃
R2 ⇔ R(x, y) = max{R1(x, y), R2(x, y)};

3) R = R1
⋂

R2 ⇔ R(x, y) = min{R1(x, y), R2(x, y)};
4) R1 ⊆ R2 ⇔ R1(x, y)≤R2(x, y).
A fuzzy equivalence class associated with xi and a fuzzy set

R can be written as

[xi ]R = [xi ]F = ri1/x1 + ri2/x2 + · · · + rin/xn

where rij is the degree of xi equivalent to xj , “+” means “union,”
and the symbol “/” means a separator.

Then, the fuzzy cardinality of the fuzzy equivalence class is
defined as

|[xi ]R | = |[xi ]F | =
∑n

j=1
rij .

Definition 1: [24]. Given an approximate space < U,R >,
the fuzzy information entropy of F is defined as

FH(R) = FH(F ) = − 1
n

n∑

i=1

log
|[xi ]R |

n
(7)

where |[xi ]R | =
∑n

j=1 rij .
If R is a crisp equivalence relation, namely rij ∈ {0, 1}, then

the fuzzy information entropy can be degenerated into Shan-
non’s information entropy.

Definition 2: [24]. Let F1 and F2 be two subsets of F , then
the fuzzy joint entropy is computed as

FH(F1 , F2) = − 1
n

n∑

i=1

log
|[xi ]F1

⋂
[xi ]F2 |

n
(8)

where [xi ]F1

⋂
[xi ]F2 = min{[xi ]F1 , [xi ]F2 }.

Definition 3: [24]. Let F1 and F2 be two subsets of F . The
fuzzy conditional entropy of F2 conditioned to F1 is defined as

FH(F2 |F1) = − 1
n

n∑

i=1

log
|[xi ]F1

⋂
[xi ]F2 |

|[xi ]F1 |
. (9)

Theorem 1: FH(F2 |F1) = FH(F1 , F2) − FH(F1).
Theorem 2: Let F1 and F2 be two subsets of F . Then, we

have
1) FH(F1 , F2) ≥ max{FH(F1), FH(F2)};
2) F1 ⊆ F2 or RF1 ⊆ RF2 : FH(F1 , F2) = FH(F1);
3) F1 ⊆ F2 or RF1 ⊆ RF2 : FH(F2 |F1) = 0.
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Definition 4: [24]. Let F1 and F2 be two subsets of F . Then,
the fuzzy mutual information between F1 and F2 is defined as

FMI(F1 ;F2) = − 1
n

n∑

i=1

log
|[xi ]F1 | · |[xi ]F2 |

n · |[xi ]F1

⋂
[xi ]F2 |

. (10)

Theorem 3: FMI(F1 ;F2) = FH(F1) − FH(F1 |F2) =
FH(F2) − FH(F2 |F1).

From (7)–(10), fuzzy entropy and fuzzy mutual information
can be used to compute hybrid data, and it overcomes the hybrid
data limitation of Shannon’s mutual information.

III. PROPOSED ALGORITHMS

A. Problem Statement

Given a feature space F on a training dataset, feature selection
is to select a compact feature subset from F without performance
degradation for prediction models. Based on the information
theory, Bell et al. [2] introduced a feature selection mechanism
according to the first axiomatic method.

Axiom 1.1 (Preservation of learning information): For a given
dataset described by features F and a decision variable C, if
there exists a feature subset S such that I(S;C) = I(F ;C), then
S is sufficient, where I(S;C) denotes the mutual information
between S and C.

Axiom 1.2 (Minimum encoding length): Suppose a given
dataset described by features F and a decision variable C, and
S is a feature subset. Every s ∈ S, which minimizes the joint
entropy H(s, C), should be favored with respect to its predictive
ability.

Axioms 1.1 and 1.2 provide an axiomatic description of a
good feature subset based on the information theory and the
principle of Occams razor. Similarly, we can give the second
axiomatic approach that is suitable for MUCO.

Axiom 2.1 (Preservation of learning information for multil-
abel feature selection): Given a feature space F and a label space
L in a multilabel decision table, if there exists S ⊆ F such that
FMI(S;L) = FMI(F ;L), then S is sufficient with respect to
the multilabel decision table.

Axiom 2.2 (Minimum encoding length for multilabel feature
selection): Given a feature space F , a label space L in a multil-
abel decision table, and a set of sufficient feature subset S, for
any s ∈ S, which minimizes the joint entropy FH(s, L), should
be favored with respect to its predictive ability for the multilabel
decision table.

Axioms 1.1 and 1.2 provide a criterion for single-label feature
selection, and Axioms 2.1 and 2.2 provide a criterion for multil-
abel feature selection from the information theory, respectively.
According to Axioms 1.1 and 1.2, Yu et al. [49] used fuzzy
mutual information to pursue heterogeneous feature selection
based on min-Redundancy-Max-Relevance, Max-Dependency,
and min-Redundancy-Max-Dependency, respectively. In addi-
tion, Peng et al. [36] proposed a popular single-label feature
selection method based on redundancy analysis and rele-
vance analysis, called minimal-redundancy and max-relevance
(mRMR). Based on Axioms 2.1 and 2.2, Lin et al. [33] utilized
conditional redundancy analysis and dependence analysis to do

multilabel feature selection. Different from [33], [36], and [49],
in this paper, the novelties of our proposed methods include:
1) MUCO extends the strategy of redundancy analysis and rele-
vance analysis to do multilabel feature selection based on fuzzy
mutual information; 2) MSFS addresses streaming feature se-
lection for multilabel learning; and 3) both MUCO and MSFS
incorporate label correlation.

According to the aforementioned discussion, in this paper,
we can first give the optimization objective function as follows
for standard multilabel feature selection.

S = argmin
S

{|S| : S = argmax
ς⊆F

FMI(ς;L)} (11)

where F denotes the whole known feature space, L is the label
space, and S ⊆ F is the final selected feature subset.

Equation (11) gives a criterion to do multilabel feature selec-
tion when the feature space is known, which includes two re-
spects: the discriminative ability of the selected features should
be more than or at least equal to the original feature space,
and the number of the selected features should be as small as
possible.

Different from the standard multilabel feature selection,
which is formulated by (11), the challenge of streaming fea-
ture selection is that, as we process one feature at a time, how to
online obtain a subset of informative features S

′
ti

to maximize
its predictive performance at any time ti . Therefore, we can
present the optimization objective function as (12) for MSFS.

S
′
ti

= argmin
S ′

{|S ′ | : S
′
= argmax

ς⊆(S ′
t i−1

⋃ {fi })
FMI(ς;L)} (12)

where fi is a new arriving feature at time ti , and S
′
ti−1

⊆ F is
the selected feature subset at time ti−1 .

Different from (11), (12) gives another criterion to do MSFS
when the feature space is unknown, which also includes two re-
spects: the distinguishing ability of the selected features should
be maximal for all arrived features at any specified time, and the
number of the selected features should be as small as possible.

B. Label Correlation

To capture the correlation between labels, we consider all
other labels’ influences on each label by building a similarity
matrix for data objects under the whole label space. In (11) and
(12), a key factor of multilabel feature selection is to compute
FMI(ς;L). Therefore, we need to construct a fuzzy relation ma-
trix M(R̄) for objects under the label space L. To describe the
correlation between labels precisely, we present a data repre-
sentation scheme for categorical label data, which maps a set
of categorical values of labels into a Euclidean space, then a
much finer-grained metric for measuring the similarity between
objects under the label space is proposed. The advantage of this
transformation is described in [38].

Let T = (U,F, L) be a multilabel decision table, where U =
{x1 , x2 , . . . , xn} are n objects, F = {f1 , f2 , . . . , fm} are m
features, and L = {l1 , l2 , . . . , lk} are k labels, where the li(xj )
is a categorical value to denote whether object xj has the label li .
Now, we give a new data representation scheme for categorical
label data. First, we use the Jaccard coefficient to measure the
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similarity degree between objects under L, which is formally
defined as

cij =
|L(xi)

⋂
L(xj )|

|L(xi)
⋃

L(xj )| (13)

where L(xi) represents the label set of xi .
Equation (13) maps a set of categorical label data into a

Euclidean space. However, the Jaccard coefficient ignores the
difference between objects without the same labels, and the
number of positive objects with respect to each class label is
far less than its negative counterparts in multilabel learning.
Therefore, we need to redefine a new metric to measure the
similarity between objects in the Euclidean space as follows:

rL
ij = 1 − d(xi, xj )

max(d(xs, xt)) − min(d(xs, xt))
(14)

where s, t = 1, 2, . . . , n, and d(xi, xj ) = (
∑n

r=1(cir −
cjr )2)

1
2 .

By (14), we can obtain the fuzzy relation matrix M(R̄) be-
tween objects under the label space L. Meanwhile, M(R̄) re-
flects the inner correlation between labels.

C. MUCO

From Axioms 2.1 and 2.2, we know that a straightforward way
to select an expected feature subset is to exhaustively evaluate all
features. However, this is not practical even given a medium size
of candidate features according to the exponential complexity.
Therefore, some efficient algorithms were designed to overcome
this problem, where the mRMR [36] is a popular criterion, and
has proven its efficiency and effectiveness. In this section, we use
the Max-Relevance and Min-Redundancy (MRMR) strategy for
multilabel feature selection, i.e., a candidate feature is selected
if it is totally relevant to all labels, and is not redundant with the
selected features.

The first step of the MRMR for multilabel feature selection
is to select a candidate feature that has the maximal relevance
with the label set, referred to as Max-Relevance. Let S be the
selected features and L be the label set. The Max-Relevance is
formulated as

max D(S,L), where D(S,L) =
1
|S|

∑

fi ∈S

FMI(fi ;L). (15)

However, multilabel feature selection with Max-Relevance
may include redundancy, i.e., the new selected feature fi is
strongly relevant to some features selected previously. There-
fore, we should measure the redundancy between a candidate
feature and the selected features in the process of feature selec-
tion, then a Min-Redundancy metric is defined as

min R(S), where R(S) =
1

|S|2
∑

fi ,fj ∈S

FMI(fi ; fj ). (16)

The metric combining the aforementioned two constraints is
called Max-Relevance and Min-Redundancy. Then, we define
an operator Φ(D,R) to combine D and R, and optimize D and
R via Φ(D,R), simultaneously

max Φ(D,R),Φ(D,R) = D(S,L) − R(S). (17)

Algorithm 1: MUCO.
Input: F : A set of candidate features; U : A set of objects;
L: A set of labels, f : A candidate feature.
Output: s: the feature vector: s = (s1 , s2 , . . . , s|F |).

1: Initialize s = [], k = 1;
2: while |F | �= ∅ do
3: find f ∈ F by maximizing (18);
4: sk = f ;
5: F = F − {f};
6: k = k + 1;
7: end while
8: return s.

Given the set Sk−1 with k − 1 features selected, the kth fea-
ture can be determined by

max
fj ∈F −Sk −1

[FMI(fj ;L) − 1
k − 1

∑

fi ∈Sk −1

(FMI(fi ; fj ))]. (18)

In the aforementioned equation, the first term analyzes the
relevance between the candidate feature fj and the label set L,
and the second term focuses on the redundancy between the
candidate feature fj and the selected features Sk−1 . Therefore,
based on MRMR and label correlation, we propose a multilabel
feature selection algorithm as Algorithm 1.

There are two key steps in Algorithm 1. The first step is to
construct a fuzzy relation matrix under the feature space and
the label space, respectively, and their time complexities are
both O(|U | · |U |). The other step is an incremental search, and
its time complexity is O(|S| · |F |), where |S| is the number of
selected features , and |F | is the number of candidate features.
Therefore, the computational complexity of this algorithm is
O(|U | · |U | + |S| · |F |).

D. MSFS With Label Correlation

MUCO assumes that all candidate features are available for a
learner before feature selection takes place. In contrast, MSFS
assumes that the size of the feature set is unknown, and not
all features are available for learning while leaving the number
of objects constant. Based on Axioms 2.1 and 2.2, we present
an MSFS method with two steps: online relevance analysis and
online redundancy analysis.

1) Online Relevance Analysis: Assume S
′
ti−1

is the selected
feature subset at time ti−1 , and a new feature fi comes
at time ti . Given a relevance threshold δ, if FMI(fi ;L) ≥
δ(0 < δ < 1), fi is said to be a relevant feature to L;
otherwise, fi is discarded as an irrelevant feature and will
never be considered again.

2) Online Redundancy Analysis: Assume S
′
ti−1

is the se-
lected feature subset at time ti−1 , and a relevant feature
fi comes at time ti . If there exists fs ∈ S

′
ti−1

such that
FMI(fi ;L|fs) = 0, it testifies that adding fi alone to S

′
ti−1

does not increase the predictive capability of S
′
ti−1

. Based
on this observation, we give the following lemma.
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Algorithm 2: MSFS.
Input: L: A set of labels; fi : Features arrive at time ti ; δ: A
relevance threshold (0 ≤ δ ≤ 1); S

′
ti−1

: The selected features
at time ti−1 .
Output: S

′
ti

: The selected features at time ti .
1: Build fuzzy relation matrix M(RL) on label space L and

fuzzy equivalence relation matrix M(Rf ) on feature f ;
2: repeat
3: a new feature fi arrives at time ti ;
4: if FMI(fi ;L) ≤ δ then
5: discard fi and go to step 16;
6: end if
7: for each feature fs ∈ S

′
ti−1

do
8: if FMI(fi ;L) < FMI(fs ;L) then
9: discard fi and go to step 16;

10: end if
11: if FMI(fi ;L) > FMI(fs ;L) then
12: S

′
ti−1

= S
′
ti−1

− {fs};
13: end if
14: end for
15: S

′
ti

= S
′
ti−1

⋃ {fi}.
16: until no features are available

Lemma 1: With the current feature subset S
′
ti−1

at time ti−1

and a new feature fi at time ti , if there exists fs ∈ S
′
ti−1

such
that FMI(fi ;L|fs) = 0, then FMI(fs ;L) > FMI(fi ;L).

Proof: As FMI(fi ; fs |L) − FMI(fi ; fs) = FMI(fi ;L|fs) −
FMI(fi ;L). If FMI(fi ;L|fs) = 0, then

FMI(fi ; fs) = FMI(fi ; fs |L) + FMI(fi ;L). (19)

�
Making use of the identity FMI(fs ;L|fi) = FMI(fs ;L) +

FMI(fs ; fi |L) − FMI(fi ; fs) and (19), we can get (20) as
follows:

FMI(fs ;L|fi) = FMI(fs ;L) − FMI(fi ;L). (20)

Since fs is in the current feature set S
′
ti−1

, FMI(fs ;L|fi) > 0.
Accordingly, the following holds.

FMI(fs ;L) > FMI(fi ;L). � (21)

Based on the aforementioned analysis, we can get
Proposition 1 to select or discard the feature fi .

Proposition 1: With the current feature subset S
′
ti−1

at time
ti−1 and a new feature fi at time ti , if FMI(fi ;L) < δ, then
fi is discarded. Moreover, if there exists fs ∈ S

′
ti−1

such that
FMI(fi ;L) ≥ δ and FMI(fi ;L) < FMI(fs ;L), then fi is
discarded. Otherwise, fi is added to S

′
ti−1

.
With the combination of online relevance analysis and on-

line redundancy analysis, the algorithm of the MSFS with label
correlation (MSFS for short) can be formed in Algorithm 2.

The major computation in MSFS is to compute the correla-
tions between features. At time ti , assuming S

′
ti

is the number of
the currently selected features, and the total number of features is
up to Q, then the time complexity of the MSFS is O(|Q| · |S ′

ti
|).

TABLE I
CHARACTERISTICS OF BENCHMARK MULTILABEL DATASETS

Dataset Instances Features Labels Training Test Card Density

Arts 5000 462 26 2000 3000 1.636 0.063
Birds 645 260 19 322 323 1.470 0.074
Business 5000 438 30 2000 3000 1.588 0.053
Cal500 502 68 174 251 251 26.044 0.150
Computer 5000 681 33 2000 3000 1.508 0.046
Education 5000 550 33 2000 3000 1.461 0.044
Emotions 593 72 6 391 202 1.869 0.311
Health 5000 612 32 2000 3000 1.662 0.052
Recreation 5000 606 22 2000 3000 1.423 0.065
Reference 5000 793 33 2000 3000 1.169 0.035
Society 5000 636 27 2000 3000 1.692 0.063
Yeast 2417 103 14 1499 918 4.238 0.303

IV. EXPERIMENTAL ANALYSIS

In this section, we empirically demonstrate the superiority
of the proposed algorithms. We first present the characteristics
of our datasets, comparative methods, evaluation metrics, and
base classifier, respectively. Then, the performance analysis on
MUCO and MSFS is reported. Finally, we analyze the efficiency
between MUCO and MSFS.

A. Datasets and Experimental Settings

1) Datasets: To test MUCO, we select 12 benchmark
datasets from different application domains in Mulan Library
[44], [59]. Among these datasets, Arts, Business, Computer,
Health, Recreation, Reference, and Society are frequently used
to text categorization. CAL500 is composed of 500 popular
western musical tracks. Birds is a real-world dataset of bird
sounds collected in field conditions, which consists of 645 ten-
second audio recordings in uncompressed WAV format, and
there are 19 species of birds. Emotions is a benchmark for mu-
sic, which contains 593 music objects and each object belongs
to a subset of six labels. Yeast has 2 417 objects where each
object represents a yeast gene and there are 14 labels indicating
gene functional groups. Table I displays these characteristics of
these multilabel datasets.

To verify the effectiveness of the MSFS, we select eight rela-
tively high-dimensional multilabel datasets from Mulan Library
[44], [59]. To fully illustrate the relationship between the MUCO
and MSFS, we choose six datasets whose feature dimensions
are higher than 500 from Table I, i.e., Computer, Education,
Health, Recreation, Reference, and Society. In addition, we add
other two high-dimensional multilabel datasets, i.e., Enron and
Science. A summary of these eight datasets is given in Table II.

2) Experimental Settings: To illustrate the effectiveness of
our proposed algorithms, we select five state-of-the-art multi-
label feature selection methods as baselines, including Multi-
label Dimensionality reduction via Dependence Maximization
for uncorrelated projection dimensionality reduction (MDDM-
spc) [59], Multi-label Dimensionality reduction via Dependence
Maximization for uncorrelated subspace dimensionality reduc-
tion (MDDMproj) [59], Pairwise Multivariate Mutual Infor-
mation (PMU) [29], ReliefF for Multi-Label feature selection
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TABLE II
SUMMARY OF HIGH-DIMENSIONAL MULTILABEL DATASETS

WITH STREAMING FEATURES

Dataset Instances Features Labels Training Test Card Density

Computer 5000 681 33 2000 3000 1.508 0.046
Education 5000 550 33 2000 3000 1.461 0.044
Enron 1702 1001 53 1123 579 1.953 0.037
Health 5000 612 32 2000 3000 1.662 0.052
Recreation 5000 606 22 2000 3000 1.423 0.065
Reference 5000 793 33 2000 3000 1.169 0.035
Science 5000 743 40 2000 3000 1.451 0.037
Society 5000 636 27 2000 3000 1.692 0.063

(RF-ML) [41], and feature selection for Multi-Label Naive
Bayes classification (MLNB) [56]. In MDDMspc, μ is set as
0.5. In PMU, continuous features are discretized into two bins,
and the categorical features are left untouched, as recommend
in [29]. In MSFS, the parameter δ is set to 0.08. Meanwhile, the
classification performance of all feature selection algorithms
are evaluated using MLKNN (K = 10) [55]. Finally, we select
AP, CV, OE, RL, HL, and F1 as criteria to evaluate the perfor-
mance of feature selection. Note that the six criteria were origi-
nated from different evaluation viewpoints, and usually few al-
gorithms could outperform other algorithms on all these criteria.

B. Performance Analysis on MUCO

In this section, we group experiments by three aspects. In the
first aspect, we compare MUCO with MDDMspc, MDDMproj,
RF-ML, and PMU, as these algorithms obtain a feature rank
list as their results of feature selection. In the second aspect,
we compare the classification performance among MDDM-
spc, MDDMproj, PMU, MLNB, RF-ML, and MUCO, in which
the number of selected features of other algorithms is equal to
MLNB, for an impartial comparison. In the third aspect, we per-
form performance analysis based on statistical analysis among
the comparing algorithms in a systematical way. In addition,
similar to the five comparative feature selection algorithms, and
for an impartial comparison, we also use the training set and test
set as they have been already separated in Mulan Library.

To compare MUCO with MDDMspc, MDDMproj, RF-ML,
and PMU, we conduct a number of experiments to demon-
strate the change tendency of classification performance as the
number of the selected features increases. Figs. 1–6 display the
classification performance with all datasets on different evalu-
ation metrics. In these figures, the horizontal axis represents
the size of the selected features, and the vertical axis indi-
cates the classification performance of different measures after
feature selection, respectively. There are five lines in each fig-
ure, corresponding to MDDMspc, MDDMproj, RF-ML, PMU,
and MUCO, respectively. For all criteria, the results of all these
datasets are showed as variation tendency of different algorithms
growing with the number of selected features. Finally, Figs. 1–6
show that MUCO obtains superior classification performance
compared to other five popular feature selection methods on all
datasets with different criteria.

TABLE III
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF AP (↑)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 0.5072 0.4943 0.4823 0.4944 0.4991 0.5192
Birds 0.6949 0.6949 0.6949 0.6949 0.5996 0.6949
Business 0.8736 0.8732 0.8739 0.8754 0.8713 0.8770
Cal500 0.4823 0.4823 0.4788 0.4796 0.4776 0.4828
Computer 0.6345 0.6284 0.6285 0.6276 0.6391 0.6403
Education 0.5389 0.5425 0.5365 0.5465 0.5478 0.5753
Emotions 0.7734 0.7627 0.7532 0.7081 0.7529 0.7755
Health 0.6654 0.6502 0.6686 0.6802 0.6880 0.6857
Recreation 0.4717 0.4703 0.4465 0.4365 0.4790 0.4775
Reference 0.6126 0.6106 0.6151 0.6169 0.6234 0.6301
Society 0.5615 0.5681 0.5900 0.5881 0.5894 0.5939
Yeast 0.7213 0.7210 0.7471 0.7473 0.7355 0.7350

Average 0.6281 0.6249 0.6263 0.6246 0.6252 0.6406

TABLE IV
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF RL (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 0.1521 0.1555 0.1540 0.1527 0.1542 0.1504
Birds 0.1251 0.1251 0.1251 0.1251 0.1744 0.1251
Business 0.0422 0.0422 0.0417 0.0413 0.0419 0.0403
Cal500 0.1908 0.1908 0.1904 0.1891 0.1913 0.1905
Computer 0.0916 0.0934 0.0931 0.0941 0.0910 0.0896
Education 0.0914 0.0924 0.0939 0.0911 0.0922 0.0856
Emotions 0.1762 0.1940 0.2028 0.2656 0.2055 0.1850
Health 0.0663 0.0698 0.0643 0.0638 0.0641 0.0608
Recreation 0.1838 0.1859 0.1917 0.1955 0.1879 0.1857
Reference 0.0888 0.0889 0.0856 0.0868 0.0889 0.0865
Society 0.1500 0.1484 0.1443 0.1442 0.1456 0.1416
Yeast 0.1990 0.2041 0.1815 0.1786 0.1871 0.1909

Average 0.1298 0.1325 0.1307 0.1357 0.1353 0.1277

To demonstrate the effectiveness of MUCO more specifically
and clearly, we select the top P features as the selected features,
and P is determined by MLNB. For example, the number of the
selected features with MLNB in Health is 303, and then, we set
P = 303 for all algorithms on Health. Tables III–VIII show the
classification performance obtained with MLNB, MDDMspc,
MDDMproj, PMU, RF-ML, and MUCO, respectively. In these
tables, bold font indicates the best performance for each dataset,
italics indicates the average classification performance for each
algorithm on all datasets, “↑” indicates “the larger the better,”
and “↓” denotes “the smaller the better,” respectively. For all
experimental results in these tables, we can observe that

1) MUCO totally outperforms MDDMspc, MDDMproj,
PMU, RF-ML, and MLNB with all evaluation metrics;

2) MUCO achieves better performance against comparing
algorithms on at least nine datasets with AP and RL, re-
spectively. Note that the performance of the MUCO gets
suboptimal on the other two datasets with AP and RL;

3) for CV, HL, and OE, MUCO performs better than com-
paring algorithms on at least seven datasets, and the per-
formance of the MUCO is extremely close with the best
value on other five datasets;
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Fig. 1. Performance variation of selected features with respect to AP. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.

Fig. 2. Performance variation of selected features with respect to RL. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.
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Fig. 3. Performance variation of selected features with respect to CV. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.

Fig. 4. Performance variation of selected features with respect to OE. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.
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Fig. 5. Performance variation of selected features with respect to HL. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.

Fig. 6. Performance variation of selected features with respect to F1. (a) Arts. (b) Birds. (c) Business. (d) Cal500. (e) Computer. (f) Education. (g) Emotions.
(h) Health. (i) Recreation. (j) Reference. (k) Society. (l) Yeast.
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TABLE V
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF CV (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 5.4740 5.5553 5.4853 5.4917 5.5040 5.4187
Birds 3.3994 3.3994 3.3994 3.3994 4.3653 3.3994
Business 2.3460 2.3303 2.3147 2.3187 2.3483 2.2687
Cal500 130.3506 130.3506 129.4462 129.8008 131.4343 130.2629
Computer 4.3987 4.4437 4.4427 4.5013 4.3740 4.3487
Education 3.8987 3.9203 3.9920 3.8990 3.9183 3.6930
Emotions 1.9455 2.0495 2.0792 2.4059 2.0743 2.0149
Health 3.5057 3.6217 3.4257 3.4070 3.4163 3.3153
Recreation 4.9403 4.9470 5.0860 5.1367 4.9953 5.0033
Reference 3.4390 3.4460 3.3270 3.3660 3.4313 3.3580
Society 5.8423 5.8000 5.6740 5.6603 5.7390 5.6107
Yeast 6.8137 6.8181 6.4771 6.4913 6.6928 6.6057

Average 14.6962 14.7235 14.5958 14.6565 14.8578 14.6083

TABLE VI
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF OE (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 0.6340 0.6487 0.6790 0.6537 0.6433 0.6137
Birds 0.3901 0.3901 0.3901 0.3901 0.5418 0.3901
Business 0.1287 0.1280 0.1273 0.1227 0.1317 0.1207
Cal500 0.1474 0.1474 0.1195 0.1195 0.1434 0.1076
Computer 0.4403 0.4490 0.4483 0.4467 0.4320 0.4330
Education 0.6100 0.5973 0.6100 0.5920 0.5827 0.5520
Emotions 0.3218 0.3515 0.3614 0.3911 0.3762 0.3168
Health 0.4270 0.4403 0.4370 0.4080 0.3947 0.4013
Recreation 0.6793 0.6827 0.7113 0.7210 0.6643 0.6670
Reference 0.4843 0.4887 0.4930 0.4867 0.4703 0.4637
Society 0.4953 0.4813 0.4593 0.4593 0.4540 0.4533
Yeast 0.2593 0.2527 0.2397 0.2331 0.2560 0.2527

Average 0.4181 0.4215 0.4230 0.4187 0.4242 0.3977

4) for F1, although MUCO is superior to other comparing
algorithms on only six datasets, the average performance
of the MUCO is better than other comparing algorithms
significantly.

From these results shown in Tables III–VIII, we can conclude
that MUCO shows better performance compared to the other five
state-of-the-art algorithms with different evaluation measures.

To further explore the statistical significance among the
six feature selection algorithms, the Friedman test [14] and
Bonferroni-Dunn test [12] are employed. Given k comparing
algorithms and N datasets, let rj

i be the rank of the jth algo-
rithm on the ith dataset. Ri = 1

N

∑N
i=1 rj

i is the average rank
of algorithm i among all datasets. Under the null-hypothesis
(i.e., all the algorithms are equivalent), the Friedman statistic is
distributed according to χ2

F with k − 1 degrees of freedom.

FF =
(N − 1)χ2

F

N(k − 1) − χ2
F

where χ2
F =

12N

k(k + 1)

(
k∑

i=1

R2
i −

k(k + 1)2

4

)
(22)

TABLE VII
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF HL (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 0.0607 0.0612 0.0627 0.0615 0.0612 0.0605
Birds 0.0536 0.0536 0.0536 0.0536 0.0748 0.0536
Business 0.0277 0.0277 0.0278 0.0273 0.0283 0.0273
Cal500 0.1396 0.1396 0.1399 0.1399 0.1426 0.1395
Computer 0.0406 0.0406 0.0521 0.0413 0.0401 0.0407
Education 0.0426 0.0422 0.0425 0.0409 0.0405 0.0401
Emotions 0.2409 0.2450 0.2426 0.2508 0.2450 0.2318
Health 0.0441 0.0456 0.0465 0.0446 0.0415 0.0444
Recreation 0.0620 0.0616 0.0630 0.0633 0.0611 0.0608
Reference 0.0322 0.0311 0.0345 0.0306 0.0296 0.0309
Society 0.0580 0.0577 0.0575 0.0561 0.0559 0.0545
Yeast 0.2209 0.2246 0.2058 0.2089 0.2080 0.2090

Average 0.0852 0.0859 0.0849 0.0849 0.0857 0.0828

TABLE VIII
COMPARISON BETWEEN MUCO AND OTHER FIVE ALGORITHMS

IN TERMS OF F1 (↑)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MUCO

Arts 0.1427 0.1253 0.0880 0.1261 0.1093 0.1484
Birds 0.4897 0.4897 0.4897 0.4897 0.0511 0.4897
Business 0.6826 0.6856 0.6869 0.6915 0.6792 0.6905
Cal500 0.3225 0.3225 0.3240 0.3227 0.3460 0.3317
Computer 0.3915 0.4141 0.4210 0.3774 0.4282 0.4248
Education 0.1414 0.1797 0.1293 0.2176 0.2070 0.2448
Emotions 0.5978 0.5775 0.5689 0.5529 0.5811 0.6113
Health 0.3924 0.3269 0.3962 0.3187 0.4141 0.3535
Recreation 0.1304 0.1401 0.0930 0.0825 0.1575 0.1621
Reference 0.2704 0.3245 0.2782 0.3299 0.3817 0.3188
Society 0.2066 0.2034 0.3499 0.3009 0.2699 0.3272
Yeast 0.6197 0.6174 0.6158 0.6086 0.6212 0.6215

Average 0.3656 0.3672 0.3701 0.3682 0.3539 0.3937

TABLE IX
SUMMARY OF THE FRIEDMAN STATISTICS FF (k = 6, N = 12) AND THE

CRITICAL VALUE ON DIFFERENT EVALUATION MEASURES(k : COMPARING

ALGORITHMS; N : DATASETS)

Evaluation Measure FF Critical Value (α = 0.10)

AP 4.6301 1.95
RL 4.7277
CV 3.7486
OE 4.6832
HL 2.9017
F1 2.9472

where FF follows a Fisher distribution with (k − 1) and
(k − 1)(N − 1) degrees of freedom. Table IX shows the Fried-
man statistic FF on different evaluation metrics and the cor-
responding critical values. According to Table IX, the null
hypothesis, which is all algorithms are performing equivalently,
is clearly rejected in different evaluation measures at signifi-
cance level α = 0.10. Then, certain posthoc tests such as the
Bonferroni–Dunn test can be used to further analyze the relative
performance among the comparing algorithms. Here, the differ-
ence between the average ranks of MUCO and one baseline is
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Fig. 7. Comparison of MUCO (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test. (a) RL; (b) OE; (c) CV; (d) AP; (e) HL;
(f) F1.

compared with the following critical difference (CD):

CDα = qα

√
k(k + 1)

6N
. (23)

Therefore, we have qα = 2.326 at significance level α =
0.10, and thus, CD=1.7765 (k = 6, N = 12).

To visually show the relative performance of MUCO com-
paring with other algorithms, Fig. 7 provides the CD diagrams
on different evaluation metrics, where the average ranks of each
comparing algorithm are plotted along the axis. The lowest
(best) ranks on the axis are to the right since we perceive the
algorithms on the right side as better. In each subfigure, any
comparing algorithm with the average rank within one CD is
interconnected with MUCO (the control algorithm). Otherwise,
any comparing algorithm whose average rank outside one CD
is considered to have significantly different performance with
MUCO. Based on the aforementioned results, we can conclude
that: 1) for OE, AP, and F1, MUCO performs significantly bet-
ter than RF-ML, MDDMproj, MDDMspc, and PMU; 2) for HL,
MUCO achieves statistically better than MDDMproj, PMU, and
RF-ML; and 3) for RL and CV, MUCO is superior to MDDM-
proj and MLNB.

C. Performance Analysis on MSFS

To verify the effectiveness of MSFS, we compare its perfor-
mance against static multilabel feature selection methods, i.e.,
MDDMspc, MDDMproj, RF-ML, PMU, and MLNB. To make
our performance comparison authentic and reliable, we use eight
benchmark multilabel datasets to effectively simulate streaming
features, i.e., features arrive one at a time with a random or-
der, and use the average value of classification performance as
the final result after ten random runs. For space considerations,
we here selected two datasets to demonstrate the effectiveness
of the MSFS. Figs. 8 and 9 show the classification situation
with different evaluation measures on Recreation and Refer-
ence. There are seven lines in each figures, corresponding to

TABLE X
NUMBERS OF SELECTED FEATURES WITH MLNB AND MSFS

Dataset MLNB MSFS

Computer 344 130
Education 278 173
Enron 482 410
Health 303 166
Recreation 304 181
Reference 406 119
Science 367 207
Society 280 206

Original, MDDMspc, MDDMproj, RF-ML, PMU, MLNB, and
MSFS, respectively. On these lines, Original denotes the final
classification performance for all features selected.

From Figs. 8 and 9, we first observe that: 1) for traditional
multilabel feature selection, we assume the process of feature
selection is conducted on an offline/batch learning manner, and
all features of the training set are given a priori. The batch
manner performs a global search for the best feature at each
round, and then, gets a feature rank according to the significance
of features; 2) for the MSFS, it assumes that features arrive one
at a time, and maintains a best feature subset from the features
seen so far by processing each feature upon its arrival. Therefore,
we can find that the beginning of the MSFS curve is inferior to
traditional multilabel feature selection methods, but it gets better
classification performance with a certain number of features.
This phenomenon fully shows the difference between MSFS and
other baselines and meets the actual streaming configuration.

To demonstrate the effectiveness of the MSFS clearly, we
compare the classification performance with five other static
multilabel feature selection algorithms, i.e., MDDMspc, MD-
DMproj, PMU, RF-ML, and MLNB. As MDDMspc, MDDM-
proj, PMU, and RF-ML get a feature rank list as the result
of their feature selection, we select the same number of fea-
tures determined by MLNB as the final feature subset size, as
MLNB gets a feature subset directly. Table X shows the num-
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Fig. 8. Classification performance with different evaluation measures on Recreation. (a) AP; (b) RL; (c) CV; (d) OE; (e) HL; (f) F1.

Fig. 9. Classification performance with different evaluation measures on Reference. (a) AP; (b) RL; (c) CV; (d) OE; (e) HL; (f) F1.

TABLE XI
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF AP (↑)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 0.6345 0.6284 0.6285 0.6276 0.6391 0.6352
Education 0.5389 0.5425 0.5365 0.5465 0.5478 0.5595
Enron 0.6335 0.6179 0.6362 0.6344 0.6242 0.6474
Health 0.6654 0.6502 0.6686 0.6802 0.6880 0.6848
Recreation 0.4717 0.4703 0.4465 0.4365 0.4790 0.4946
Reference 0.6126 0.6106 0.6151 0.6169 0.6234 0.6308
Science 0.4547 0.4430 0.4690 0.4416 0.4613 0.4851
Society 0.5615 0.5681 0.5900 0.5881 0.5894 0.5942
Average 0.5716 0.5664 0.5738 0.5715 0.5815 0.5915

bers of selected features between MLNB and MSFS. Tables XI–
XVI show the classification performance obtained with MLNB,
MDDMspc, MDDMproj, PMU, RF-ML, and MSFS, respec-
tively.

TABLE XII
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF RL (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 0.0916 0.0934 0.0931 0.0941 0.0910 0.0931
Education 0.0914 0.0924 0.0939 0.0911 0.0922 0.0896
Enron 0.0969 0.0976 0.0928 0.0942 0.0937 0.0924
Health 0.0663 0.0698 0.0643 0.0638 0.0641 0.0606
Recreation 0.1838 0.1589 0.1917 0.1955 0.1879 0.1786
Reference 0.0888 0.0889 0.0856 0.0868 0.0889 0.0851
Science 0.1388 0.1417 0.1369 0.1394 0.1364 0.1295
Society 0.1500 0.1484 0.1443 0.1442 0.1456 0.1416
Average 0.1135 0.1148 0.1128 0.1136 0.1125 0.1088

For all experimental results in these tables, we can conclude
that

1) the average classification performance of the MSFS is su-
perior to comparing algorithms for all evaluation metrics;
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TABLE XIII
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF CV (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 4.3987 4.4437 4.4427 4.5013 4.3740 4.4700
Education 3.8987 3.9203 3.9920 3.8990 3.9183 3.8303
Enron 13.5561 13.5147 13.0466 13.2470 13.1831 13.0380
Health 3.5057 3.6217 3.4257 3.4070 3.4163 3.2800
Recreation 4.9403 4.9470 5.0860 5.1367 4.9953 4.8333
Reference 3.4390 3.4460 3.3270 3.3660 3.4313 3.3040
Science 6.9483 7.0840 6.8587 6.9987 6.8367 6.5600
Society 5.8423 5.8000 5.6740 5.6603 5.7390 5.6150
Average 5.8161 5.8472 5.7316 5.7770 5.7368 5.6171

TABLE XIV
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF OE (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 0.4403 0.4490 0.4483 0.4467 0.4320 0.4403
Education 0.6100 0.5973 0.6100 0.5920 0.5827 0.5707
Enron 0.2832 0.3178 0.2936 0.2798 0.3161 0.2729
Health 0.4270 0.4403 0.4370 0.4080 0.3947 0.4093
Recreation 0.6793 0.6827 0.7113 0.7210 0.6643 0.6490
Reference 0.4843 0.4887 0.4930 0.4867 0.4703 0.4623
Science 0.6823 0.6943 0.6573 0.7010 0.6713 0.6337
Society 0.4953 0.4813 0.4593 0.4593 0.4540 0.4497
Average 0.5127 0.5189 0.5137 0.5118 0.5076 0.4860

TABLE XV
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF HL (↓)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 0.0406 0.0406 0.0421 0.0413 0.0401 0.0394
Education 0.0426 0.0422 0.0425 0.0409 0.0405 0.0407
Enron 0.0522 0.0527 0.0524 0.0518 0.0525 0.0509
Health 0.0441 0.0456 0.0465 0.0446 0.0415 0.0420
Recreation 0.0620 0.0616 0.0630 0.0633 0.0611 0.0607
Reference 0.0322 0.0311 0.0345 0.0306 0.0296 0.0296
Science 0.0347 0.0348 0.0342 0.0352 0.0346 0.0343
Society 0.0580 0.0577 0.0575 0.0561 0.0559 0.0560
Average 0.0458 0.0458 0.0466 0.0455 0.0455 0.0422

TABLE XVI
COMPARISON BETWEEN MSFS AND OTHER FIVE ALGORITHMS

IN TERMS OF F1 (↑)

Dataset MDDMspc MDDMproj RF-ML PMU MLNB MSFS

Computer 0.3915 0.4141 0.4210 0.3774 0.4282 0.3847
Education 0.1414 0.1797 0.1293 0.2176 0.2070 0.2414
Enron 0.4745 0.4138 0.4777 0.4881 0.4597 0.4829
Health 0.3924 0.3269 0.3962 0.3187 0.4141 0.4144
Recreation 0.1304 0.1401 0.0930 0.0825 0.1575 0.1669
Reference 0.2704 0.3245 0.2782 0.3299 0.3817 0.3661
Science 0.0915 0.0736 0.1282 0.0658 0.1128 0.1225
Society 0.2066 0.2034 0.3499 0.3009 0.2699 0.2749
Average 0.2623 0.2595 0.2842 0.2726 0.3039 0.3067

TABLE XVII
SUMMARY OF THE FRIEDMAN STATISTICS FF (k = 6, N = 8) AND THE

CRITICAL VALUE ON DIFFERENT EVALUATION MEASURES (k : COMPARING

ALGORITHMS; N : DATASETS)

Evaluation Measure FF Critical Value (α = 0.10)

AP 10.0433 2.00
RL 3.6089
CV 4.4285
OE 8.6956
HL 7.2029
F1 2.7756

2) for the label ranking evaluation performance, MSFS
gets better performance against all comparing algorithms
on at least six datasets. Note that the classification
performance of the MSFS is extremely close with the
best value on other two datasets for all evaluation
metrics;

3) for the label set prediction accuracy, MSFS is superior to
other comparing algorithms on the average performance,
and obtains the best value on at least four datasets;

4) the number of selected features with MSFS is less
than MLNB and other comparing algorithms, but MSFS
achieves superior or at least comparable performance
against all comparing algorithms.

These results indicate that MSFS performs better than all
baselines when facing streaming features.

To provide performance analysis among the comparing
algorithms in a systematical way, we also employ the Friedman
test [14] and Bonferroni–Dunn test [12] to perform statistical
analysis. For Bonferroni–Dunn test, we have qα = 2.326 at sig-
nificance level α = 0.10, and thus, CD = 2.1757 (k = 6, N =
8), as shown in Table XVII. Accordingly, the performance be-
tween the MSFS and a comparing algorithm is deemed to be
significantly different if their average ranks over all datasets
differ by at least one CD.

To visually illustrate the relative performance of the MSFS
and other comparing algorithms, Fig. 10 shows the CD diagrams
on different evaluation measures. From Fig. 10, we can conclude
that

1) for AP, OE, HL, and RL, MSFS significantly outperforms
MDDMspc, MDDMproj, PMU, RF-ML, and MLNB, and
at least obtains comparable performance against MLNB;

2) for CV and F1, MSFS achieves statistically better than
MDDMspc, MDDMproj, and PMU, and obtains compa-
rable performance against RF-ML and MLNB;

3) across all evaluation metrics, MSFS carries comparable
performance against MLNB, however, the number of se-
lected features of the MSFS is far fewer than MLNB, as
shown in Table X.

To summarize, MSFS provides highly competitive perfor-
mance against comparing algorithms when facing streaming
features.
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Fig. 10. Comparison of the MSFS (control algorithm) against other comparing algorithms with the Bonferroni–Dunn test. (a) RL; (b) OE; (c) CV; (d) AP;
(e) HL; (f) F1.

Fig. 11. Comparisons between MUCO and MSFS (the labels of the x-axis from 1 to 8 denote the datasets: 1: Computer; 2: Education; 3: Enron; 4: Health; 5:
Recreation; 6: Reference; 7: Science; 8: Society). (a) AP and F1. (b) HL and RL. (c) CV and OE.

D. Comparisons Between MUCO and MSFS

A comparison between MUCO and MSFS in Fig. 11 demon-
strates that MSFS is a little inferior to MUCO, but selects less
features than MUCO, as MUCO obtains a feature rank list ul-
timately. Both MUCO and MSFS perform multiple statistical
comparisons to assess whether a feature is relevant or redun-
dant. In the relevance and redundancy analysis phrase, MUCO
needs to evaluate each feature within the whole feature space.
MSFS, on the other hand, can significantly reduce the total num-
ber of comparisons, because it first examines the relevance of a
new feature, and then, checks the redundancy between the new
feature and only one feature of selected features.

Based on the comparative analysis between MUCO and
MSFS, we can use MSFS when features are no longer static
but flow in one by one, and each new feature needs to be pro-
cessed upon its arrival. Different from MSFS, MUCO needs to
wait a long time for all features to become available, and then,
carries out multilabel feature selection.

E. Runtime Analysis

To show the computational efficiency of our proposed
algorithms, in this section, we give a comparison on efficiency

TABLE XVIII
RUNTIME ANALYSIS (S) OF PMU, MUCO, AND MSFS

Dataset PMU MUCO MSFS

Computer 9268 123633 5451
Education 6246 72403 4440
Health 25043 92834 4984
Recreation 51342 92270 4849
Reference 24162 174233 6294
Society 9925 104166 5166

among PMU, MUCO, and MSFS. Because all of these three
multilabel feature selection algorithms are based on the infor-
mation theory. Moreover, for illustrating the results impartially
and clearly, we select six datasets that all exist in Tables I and II,
i.e., Computer, Education, Health, Recreation, Reference, and
Society. In addition, the hardware platform for our experiments
is a PC equipped with 32-G main memory and 3.1-GHZ CPU.
The software is Windows 7 and MATLAB (Version 2012a).
The results in Table XVIII show that: 1) PMU is faster than
MUCO, because the runtime of MUCO is significantly influ-
enced by the computation of fuzzy mutual information and
the Max-Relevance and Min-Redundancy strategy, but PMU
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maximizes the dependence between the selected features and
labels only considers 3-D interactions among features and la-
bels; and 2) MSFS is much faster than MUCO on all datasets,
because MSFS selects an effective feature subset by online
analysis, and does not need to obtain the whole feature space
in advance.

V. CONCLUSION

When the knowledge of the full feature space is either known
or unknown in advance, in this paper, we have presented two
new algorithms based on fuzzy mutual information for multil-
abel feature selection: MUCO and MSFS, respectively. MUCO
addresses label correlation and feature selection simultaneously,
and MSFS solves label correlation, streaming features, and fea-
ture selection in one shot. Compared to the five state-of-the-art
methods, MDDMspc, MDDMproj, PMU, RF-ML, and MLNB,
the presented algorithms MUCO and MSFS have shown that
they can measure the quality of features effectively. In the ex-
periments, our study has shown that:

1) for a known feature space, MUCO can obtain a better
feature list via the strategy of Max-Relevance and Min-
Redundancy;

2) for an unknown feature space, MSFS can select a small
number of features to train a much stronger model;

3) the experiments have demonstrated that the prediction
accuracy of the proposed algorithms is mostly higher than,
or at least as good as, other methods.

In some real-world applications, such as drug repositioning
and image analysis, features may arrive by groups. Therefore,
in future work, we will study online multilabel group feature
selection.
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