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Semisupervised Online Multikernel Similarity
Learning for Image Retrieval
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Abstract—Metric learning plays a fundamental role in the
fields of multimedia retrieval and pattern recognition. Recently,
an online multikernel similarity (OMKS) learning method has
been presented for content-based image retrieval (CBIR), which
was shown to be promising for capturing the intrinsic nonlinear
relations within multimodal features from large-scale data.
However, the similarity function in this method is learned only
from labeled images. In this paper, we present a new framework to
exploit unlabeled images and develop a semisupervised OMKS
algorithm. The proposed method is a multistage algorithm
consisting of feature selection, selective ensemble learning, active
sample selection, and triplet generation. The novel aspects of our
work are the introduction of classification confidence to evaluate
the labeling process and select the reliably labeled images to train
the metric function, and a method for reliable triplet generation,
where a new criterion for sample selection is used to improve the
accuracy of label prediction for unlabeled images. Our proposed
method offers advantages in challenging scenarios, in particular,
for a small set of labeled images with high-dimensional features.
Experimental results demonstrate the effectiveness of the proposed
method as compared with several baseline methods.

Index Terms—Image retrieval, metric learning, multikernel
learning, online multikernel similarity (OMKS), similarity
learning, semisupervised, semisupervised online multikernel
similarity (SSOMKS).

I. INTRODUCTION

W ITH the rapid growth of multimedia data such as images
and videos, measuring the similarity between visual ob-

jects becomes an increasingly important task in a variety of ap-
plications including classification, clustering and retrieval [1]–
[3]. Conventionally, this can be achieved by using pre-defined
functions, such as the Euclidean distance and cosine similarity.
With these functions, however, the underlying distribution of
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the data is often implicitly assumed. As a result, the complex
intrinsic structures within the data may not be well captured by
these functions.

To address this problem, an increasing amount of effort has
been made to learn an appropriate metric directly from the data,
for applications such as content-based image retrieval (CBIR),
which is our focus here. In the pioneering work by Xing et al. [4],
metric learning is formulated as a convex optimization problem
with a set of similarity and dissimilarity constraints, where a
global Mahalanobis distance is learned by keeping similar pairs
of objects close to each other while dissimilar pairs apart from
each other [5]. This earlier work has inspired the development
of a number of methods for learning global linear metrics, such
as the information-theoretic method [6], [7], nearest neighbor
classification method [8], Laplace regularized metric learning
(LRML) [9], and more recently, the geometric mean metric
learning (GMML) method [10].

These global metric learning techniques, however, are often
limited for large-scale problems due to their high computational
complexity. They may also suffer from the issue of the so-called
curse of dimensionality [11]. To overcome these limitations,
a number of algorithms have been presented for learning lo-
cal metrics [12]–[16], which are deemed to be more flexible
for capturing the variations across multiple feature spaces, and
offering better performance, as compared with global metrics.
However, the local metrics tend to be prone to the problem of
overfitting [5].

The aforementioned algorithms aim to learn linear metrics
which may have limitations in characterising the relations be-
tween the different modalities in multi-modal data, since they
often have non-linear relations, and are in different spaces and
dimensions. To address these issues, multiple kernel techniques
have been introduced [17]–[20], by mapping the images to a
high-dimensional feature space with a nonlinear kernel ma-
trix. In [17], an optimal ensemble of kernel transformations
is learned for integrating features of multiple modalities into
a unified space. However, it is computationally expensive, and
consequently not applicable to high-dimensional and large-scale
datasets. In [18], a multi-modal distance metric learning frame-
work is proposed by projecting data from different modalities
into a latent feature space based on the multi-wing harmonium
model. In [19], a weighted kernel embedding technique is pre-
sented for metric learning, which is shown to be flexible in
combining multiple features. Using multiple kernel techniques,
the complementary nature of different features extracted from
an image can be better exploited. For this reason, multi-kernel
learning techniques are also considered in our work.
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In applications with large-scale data, however, the algorithms
discussed above are often limited in their scalability. The com-
putational complexity and memory requirement of these algo-
rithms may increase significantly when dealing with large-scale
data [5]. To address this challenge, online techniques have been
proposed in e.g. [21]–[23]. In [23], an online multiple kernel
similarity learning (OMKS) algorithm is presented, where a
flexible nonlinear proximity function with multiple kernels is
learned in a supervised manner and applied to visual search. In
[21], an online multimodal deep similarity learning (OMDSL)
framework is proposed to improve multimedia similarity search
by integrating multiple deep networks with a scalable online
scheme. In [22], an online multi-modal distance metric learn-
ing (OMDML) scheme is proposed, where the optimal metrics
are learned in individual modality space and the weights for
combining different modalities are obtained with a joint formu-
lation. These algorithms rely overwhelmingly on the availability
of labeled data in their training. In practice, however, labelling
data by human is time consuming and costly. In addition, the la-
bels provided by different labellers are not always consistent and
could be noisy. Therefore, it is highly desirable if the large-scale
unlabelled data could be directly used in metric learning.

The use of unlabelled data in metric learning has been con-
sidered in previous work e.g. [9], [24], [25]. However, these
methods were proposed for learning global Mahalanobis met-
rics, but not for local metrics. In this paper, inspired by the
OMKS algorithm in [23], we propose a novel multi-stage semi-
supervised online multi-kernel similarity (SSOMKS) learning
framework for using the unlabelled data in metric learning. More
specifically, we present a new method for triplet generation to
allow the incorporation of the unlabelled data in the OMKS al-
gorithm. An important challenge in the use of unlabelled data
comes from the risk associated with the unreliability and noise
in the training samples. To counter this problem, a new active
sample selection method based on the concept of margin is pro-
posed for measuring the classification confidence. This leads to
a new method for reliable triplet generation where the labeling
process is evaluated in order to select the reliably labeled images
for learning the metric function. To our knowledge, such an idea
has not yet been exploited in metric learning.

The remainder of this paper is organized as follows.
Section II briefly summarises the baseline OMKS algorithm in
[23]. In Section III, we introduce our proposed SSOMKS learn-
ing framework which is a multi-stage method including feature
selection, selective ensemble learning, active sample selection,
and triplet generation. Section IV presents experimental results
on both qualitative and quantitative analysis, including the eval-
uation of each stage of the proposed method and its comparison
with several baseline methods. We conclude the paper with an
outlook for future work in Section V.

II. THE OMKS LEARNING METHOD

In this section, we give a brief introduction to the OMKS
algorithm presented in [23].

Suppose there is a kernel κ(·, ·) and the corresponding Hilbert
space H, and consider a linear operator L: H �→ H that maps

a function f ∈ H to another one L[f ] ∈ H. Assume there is
a collection of m kernel functions K = {κi : χ× χ→ R, i =
1, . . . ,m}. A similarity function for visual search is defined as

f(q, p) =
m∑

i=1
θiSi(q, p) =

m∑

i=1
θi〈κi(q, ·), Li [κi(p, ·)]〉Hκ i

(1)
where q ∈ χ is a query image, and p ∈ χ is an image in the
pooling set to be retrieved. Si(q, p) = 〈κi(q, ·), Li [κi(p, ·)]〉Hκ i

is the similarity function based on the linear operator Li . The
goal is to learn the weights {θi}mi=1 and the linear operators
{Li}mi=1 simultaneously.

Given a set of T triplets {(pt , p+
t , p

−
t )}Tt=1 where pt should

be more similar to p+
t than to p−t , the objective function that

needs to be optimised is given as follows:

min
θ∈�

min
{Li }mi= 1

1
2

m∑

i=1
θi‖Li‖2

HS+C
T∑

t=1
�(f(pt , p+

t )−f(pt , p−t )) (2)

where ‖ · ‖HS is the Hilbert Schmidt norm of the linear operator,
C ≥ 0 is the loss parameter, �(z) is the hinge loss and � is
defined as

� = {θ ∈ Rm
+ |θT em = 1}. (3)

To solve the problem (2), online learning techniques are in-
troduced. In particular, for kernel κi , the corresponding weight
θi and linear operator Li are updated in T iterations. That is,
when the tth triplet (pt , p+

t , p
−
t ) arrives, the weight θi(t− 1)

and linear operator Lt−1,i in kernel κi are updated to obtain
θi(t) and Lt,i , respectively.

Starting with L0,i = I , Lt,i for the tth triplet is updated as

Lt,i = Lt−1,i + τt,iZt (4)

where h ∈ H, Zt [h](·) = κ(pt , ·)(h(p+
t ) − h(p−t )) ∈ L (L =

{L : H �→ H, L is a linear operator} is the space including lin-
ear operators in H) and τt,i is computed as

τt,i

= min

{

C,
max{0, 1 − SLt−1 , i (pt , p

+
t ) + SLt−1 , i (pt , p

−
t )}

κ(pt , pt)(κ(p+
t , p

+
t ) − 2κ(p+

t , p
−
t ) + κ(p−t , p

−
t ))

}

.

(5)

Then, the weight of kernel κi is updated as

θi(t) = θi(t− 1)βzi (t) (6)

where β ∈ (0, 1) is a discounting parameter which is used
to penalize the kernel that makes incorrect predictions in
each iteration, and zi(t) equals to 1 when SLt−1 , i (pt , p

+
t ) −

SLt−1 , i (pt , p
−
t ) ≤ 0, and 0 otherwise.

The OMKS algorithm is a supervised algorithm trained with
labelled data. The triplet generation does not consider the use of
unlabeled data. To address this issue, we propose a new semi-
supervised multi-stage learning framework, by extending the
OMKS algorithm to the scenario where only a small amount
of training data is labelled while the majority of the data are
unlabeled, as discussed next.



LIANG et al.: SSOMKS LEARNING FOR IMAGE RETRIEVAL 1079

Fig. 1. Flow chart of the semisupervised online multiple kernel similarity framework for image retrieval. For each image in the dataset, we extract nine types
of features (e.g., SIFT, PHOG, etc.) and then select several dimensions in each modality. Then, we learn metrics (e.g., DCA, LRML, etc.) as well as classifiers
(e.g., random forest, subspace, etc.) for each modality with the labeled training set. Specifically, we apply the learned metrics for constructing the nearest neighbor
classifier. To select appropriate classifiers, selective ensemble learning is performed on the validation set. Unlabeled training set is viewed as test data. By searching
the nearest and farthest class of these images with the selected classifiers, we obtain unlabeled-labeled-labeled triplets. Unlabeled-unlabeled-unlabeled triplets can
be generated by finding the nearest and farthest samples, while labeled-labeled-labeled triplets are produced by supervision information of labeled training set. For
the first two types of triplets, we also make the first attempt to perform active sample selection with margin. Please refer to Section IV for details.

III. PROPOSED SEMISUPERVISED OMKS LEARNING METHOD

Our new framework of SSOMKS is a multi-stage method con-
sisting of feature selection, selective ensemble learning, active
sample selection, and triplet generation. The key contribution
in this framework is a new method for generating the triplets,
as well as a new approach for controlling the potential risk in
using unlabelled data with active sample selection based on the
concept of margin.

The diagram of the proposed method is shown in Fig. 1.
First, feature selection is performed to obtain discriminative
feature space. Then, ensemble learning is introduced to train the
classifiers for each type of features, and the classifiers that offer
better classification performance are selected. Third, an active
sample selection method is proposed to ensure that the samples
with correctly predicted labels are used. Finally, the triplets with
these selected samples are generated to perform metric learning
for visual search. The details of each stage are discussed below.

A. Feature Selection

High-dimensional multiple features extracted from images
may contain redundant information. Feature selection is helpful
for choosing the discriminative dimensions in the feature space.
Here, we apply the Multi-Cluster Feature Selection (MCFS) [26]
method, as it is computationally efficient and also independent
of the choice of classifiers.

Given an image training set X = {x1 ,x2 , . . . ,xN },xi ∈
RD ofN images withD dimensions inK clusters. Suppose we
want to select d dimensions and the number of nearest neigh-
bors is set as p. For each image xi , we construct a p nearest
neighbor graph by finding its p nearest neighbors and form an
edge between xi and its neighbors. We define the weight ma-
trix W on the graph and a diagonal matrix D based on W ,
Dii =

∑
j W ij . The graph Lapalcian L = D − W . Solve the

generalized eigen-problem [27]

Ly = λDy. (7)

Let Y = [y1 , . . . ,yK ] be the topK eigenvectors correspond-
ing to the smallest eigenvalues λ = [λ1 , . . . , λK ]. For each clus-
ter, we solve the equivalent formulation of LASSO using Least
Angle Regression (LARs) algorithm [28] by specifying the car-
dinality as d

min
ak

‖yk − XT ak‖2

s.t. ‖ak‖1 = d.
(8)

Then we get K sparse coefficient vectors {ak}Kk=1 ∈ RD . The
MCFS score for each feature j is computed as

MCFS(j) = max
k

|ak,j |. (9)

We obtain the top d features according to the ranking.
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B. Selective Ensemble Learning

Following feature selection, classification is performed to pre-
dict the labels of unlabelled samples. Here, ensemble learning
is employed due to its advantage over a single classifier in
its generalization ability to unseen data [29]. The performance
of ensemble learning algorithms may vary. It was shown that
ensembling many of the available learners can be better than en-
sembling all of them [30]. Therefore, selective ensemble learn-
ing is introduced to remove the under-performed learners. Here,
we adopt the Margin based Pruning (MP) [31] algorithm to
select proper classifiers. An advantage with the MP algorithm
is that the distribution of the sample intervals can be further
optimised during the process of ensemble selection. The MP
procedure is discussed as follows.

Suppose X = {x1 ,x2 , . . . ,xN } is the training image set,
h1 , . . . , hL are the base classifiers, yi is the true class label of
xi , and ŷij (j = 1, 2, . . . , L) is the classification decision of xi

estimated by the classifier hj . The margin of xi is defined as

m(xi) =
L∑

j=1
wjΛij (10)

where wj is the weight of hj

Λij =
{

1, if yi = ŷij

−1, if yi �= ŷij .

For xi ∈ X , its classification loss is defined as

l(xi) = [1 −m(xi)]2 . (11)

The loss of classification is computed as

l(X) =
N∑

i=1
l(xi) = ‖u − Dw‖2

2 (12)

where u=[1, · · ·, 1]TN×1 ,w=[w1 , · · ·, wL ]TL×1 ,D={Λij}N×L .
The L2-norm regularization is added to the loss function [32]

Fw = ‖u − Dw‖2
2 + λ‖w‖2 . (13)

The weights wj (j = 1, 2, . . . , L) can be obtained by minimiz-
ing Fw using open software packages such as [33]. Then, the
classifiers hsj (sj = 1, 2, . . . , L) are ranked in terms of the de-
scending order of the weights wj (j = 1, 2, . . . , L). After this,
we compute the average precision ψj with {hs1 , hs2 , . . . , hsj}.
Finally, {hs1 , hs2 , . . . , hsB } are the selected classifiers with
B =maxj∈{1,...,L}ψj .

C. Sample Selection With Classification Confidence

For unlabelled data, the labels predicted by voting in the
above section may not be reliable. As a result, the triplet could
be wrongly generated, which can have negative impact on both
the computational efficiency and learning performance of metric
learning. To address this problem, we propose a new technique to
select samples, based on the concept of margin, which has been
previously used to measure the confidence of classification. If a
trained model gives a large margin, it will have a higher degree
of confidence and reliability. Inspired by the work in [34]–[37],
we introduce the concept of classification confidence to sample

Fig. 2. Voting results of samples in Class 1. Each classifier outputs a label
for each sample. The final predicted class is the one which gets the most votes.
Samples 1 and 4 fall into Class 1, while samples 2 and 3 fall into Class 5.

selection. Our method is based on three hypotheses. First, each
selected classifier has considerable classification ability, which
means it is better than random guess. Second, the accuracy is
positively related to the votes of the largest class. Third, the
accuracy is positively related to the margin between the first and
the second largest class.

Assume the L classifiers are independent, where L = 2k + 1
is odd. LetXi be a variable indicating whether the classification
by the ith classifier is correct or not. If the prediction accuracy
of each classifier is p, then we have Xi ∼ Bernouli(p), and
the number of correct classifications with the ensemble major-
ity voting method is Y =

∑L
i=1 Xi∼binomial(L, p) [38]. The

majority vote accuracy is

Pmajority(L) =
L∑

i=k+1

(
L
i

)
pi(1 − p)L−i . (14)

It has been shown that the sequence {Pmajority(2k+1)}
strictly increase when p > 0.5 [39]. In addition,
limk→∞ Pmajority(2k+1) = 1, and the prediction accuracy
of the ensemble voting method converges to 1 when p > 0.5.
As the probability for the largest number of votes may be
smaller than half, (14) is the lower bound of the actual
probability.

Suppose there are Nu unlabeled training images, B clas-
sifiers and K classes. We introduce a parameter c to balance
between the maximum and the margin, and define the crite-
rion for selection as cmax+ (1 − c)margin. We denote the
voting accuracy of validation images with these B classifiers
as Accv. After ranking the Nu images in a descending order
of cmax+ (1 − c)margin, we select the top Nu ∗Accv unla-
beled images to generate triplets.

Fig. 2 gives an example of the voting results for four unlabeled
samples from Class 1. We observe that only sample 1 and 4 are
correctly classified. Two incorrectly labeled samples will be
introduced with all classifiers. The accuracy on validation set
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is 37.5%. Thus we may select 2 out of 4 samples with relevant
strategies. If we adopt the max criterion, then sample 1 and
3 are chosen, introducing one mistake. If we use the margin
or max+margin criterion, then sample 1 and 4 are selected
without a mistake. This illustrates that our sample selection
strategy can improve classification accuracy.

D. Triplet Generation

To exploit a certain unlabeled image xi for metric learning,
it is necessary to find its nearest neighbor xj and farthest image
xk to generate the triplet (xi ,xj ,xk ).

Given an unlabeled sample xi , the triplets can be divided
into two types, i.e., unlabeled-labeled-labeled and unlabeled-
unlabeled-unlabeled ones according to whether xj and xk are
labeled or not. For the former, we first label xi with the se-
lected base classifiers. The farthest class is the one to which
the farthest sample found with learned metrics belongs. Then,
xj s can be the labeled training samples that belong to the same
class with xi , whereas xk s are the labeled training samples that
belong to its farthest class. For the latter, we are required to
find the nearest and farthest samples to xi in unlabeled training
set. Without supervision information, we consider exploiting
the learned metrics. Therefore, xj s are the nearest unlabeled
samples while xk s are the farthest unlabeled ones obtained by
the metrics.

E. Summary of the Proposed SSOMKS Learning Framework

The implementation steps of the proposed SSOMKS method
are summarised in Algorithm 1. It can be seen that the proposed
SSOMKS differs from the OMKS algorithm in the process on
how the triplet is generated. In the proposed method both the
labeled and unlabeled images are used to learn a metric, while
in the baseline OMKS method, only the labeled images are
considered.

In constrast to [23], where a theoretical analysis is presented
for the OMKS method, we do not yet have a theoretical proof
for the convergence property of the proposed SSOMKS method.
However, a simulation study is provided in Section IV-A for the
analysis of its convergence.

IV. EXPERIMENTS

In this section, we evaluate the performance of SSOMKS and
compare it with several baseline methods. We first introduce the
experimental setting and then show the results as well as the
analysis to these results.

A. Experimental Setting

1) Datasets and Experiment: We conduct the experiments
on image datasets including Corel [40], ImageCLEF,1 Indoor,2

Caltech256,3 Flickr4 and Oxford Buildings.5 We pick 10, 20 and

1[Online]. Available: http://imageclef.org/
2[Online]. Available: http://web.mit.edu/torralba/www/indoor.html
3[Online]. Available: http://www.vision.caltech.edu/Image_DataSets/

Caltech256/
4[Online]. Available: http://press.liacs.nl/mirflickr/mirdownload.html
5[Online]. Available: http://www.robots.ox.ac.uk/vgg/data/oxbuildings/index.

html

Algorithm 1: The SSOMKS algorithm
Input:

Labeled training set with M modalities
Dl = {Dl

j}Mj=1 ;
Unlabeled training set Du = {Du

j }Mj=1 ;
Validation set Dv = {Dv

j }Mj=1 ;
Trade-off parameter c;

Output:
f(q, p);

1: for j = 1 to M do
2: Feature selection from the jth modality Dl

j

(Section III-A), then we get the labeled, unlabeled
training set and validation set Dsl

j , Dsu
j , Dsv

j ;
3: Learn metrics and train classifiers with Dsl

j ;
4: end for
5: Select classifiers with Dsv (Section III-B);
6: Vote for Dsu , compute max and margin for each

sample;
7: Rank Dsu in a descending order of cmax+ (1 − c)

margin, then perform sample selection
(Section III-C);

8: Exploit the selected samples to generate triplets
(Section III-D);

9: Input these triplets to the OMKS framework;
10: Output f(q, p).

50 classes in Caltech256 to form three subsets, i.e. Caltech10,
Caltech20 and Caltech50, respectively. In other datasets, we
pick 10 classes. For each dataset, the number of images for
each class equals the number of images of the class that has the
minimum size in its sample set. We select half of the images for
training, 10% for validation, 10% for query, and the remaining
30% for retrieval evaluation. The experiment is performed on a
machine with 3.40 GHz Intel processor, 8 GB memory, and the
Matlab software.

2) Descriptors and Kernels: Both global and local feature
descriptors are extracted to represent images. The global fea-
tures we tested include: 1) color histogram (256 dimensions for
gray images and 768 dimensions for color images); 2) GLCM
coefficients (16 dimensions); 3) Local Binary Pattern (59 di-
mensions); and 4) GIST features (512 dimensions). The local
features we used include: 1) SIFT; 2) dense-SIFT; 3) SURF; 4)
Geometric Blur; and 5) PHOG (680 dimensions). We set the
vocabulary size as 200 to represent Bag-of-Words (BOW) fea-
tures except for the PHOG descriptor. Since CNN is effective for
image content representation and is trained with color images,
we extract DCNN feature (4096 dimensions) using CaffeNet,
except for the dataset ImageCLEF. Then we apply PCA to each
type of features and retain the first 50 principle components.
The full dimension of the original features is retained if it is
smaller than 50.

Based on these features, we construct 4 kernels [23]:
RBF kernel: κ(x, x′) = exp(−‖x−x ′‖2

rσ 2 ), where the parame-
ter r is the mean of the pairwise distance and σ ∈ {10−2 , 2 ∗
10−2 , 4 ∗ 10−2} is the scale parameter.
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Cosine similarity: κ(x, x′) = 〈x,x ′〉
‖x‖2 ‖x ′‖2

. To ensure the sim-
ilarity value in the range of [0, 1], we adopt κ(x, x′) =
0.5 〈x,x ′〉

‖x‖2 ‖x ′‖2
+ 0.5.

3) Base Classifiers: We perform the feature selection algo-
rithm MCFS on each feature and select 50 dimensions. All di-
mensions are kept if the original feature is less than 50. To make
predictions for unlabeled training images, we construct a series
of base classifiers for each kind of feature, i.e. Adaboost_M1
[41] + CART [42], discriminative analysis [43], random for-
est [44], subspace as well as nearest neighbor with Euclidean
distance, RCA [6], DCA [40], LRML [9] and SERAPH [15]
metrics.

4) Evaluation Criteria: For each query image, we can rank
all of the test images according to their similarities. Here we
use the mean Average Precision (mAP) to evaluate the perfor-
mance of retrieval. Given a query and its R retrieved images,
the Average Precision is defined as

AP = 1
L

R∑

r=1
prec(r)δ(r) (15)

where L is the size of the relevant images in the retrieved set,
prec(r) is the precision at the rth position, and δ(r) represents
whether the rth retrieved image is relevant to the query or not.
δ(r) = 1 when they are relevant; δ(r) = 0, otherwise. The mAP
is defined based on the average AP values of all the queries. R
is set as the number of images for each class in the pooling set.

5) Compared Methods and Parameter Setting: We compare
SSOMKS with the following state-of-the-art metric learning
algorithms. For each metric, we concatenate all types of features,
and then report the retrieval result.

1) DCA: An efficient supervised metric learning scheme
which can exploit both positive and negative constraints [40].

2) LRML: A semi-supervised distance metric learning tech-
nique that integrates both labeled and unlabelled samples into
an effective graph regularization framework [9].

3) OASIS: A supervised online dual approach that learns a
bilinear similarity measure over sparse representations [45].

4) EMR: A scalable graph-based manifold ranking algorithm
for image retrieval [46].

5) ITML: An information-theoretic method which minimizes
the differential relative entropy between two multivariate Gaus-
sians with constraints [7].

6) DML-eig: An efficient eigenvalue optimization framework
for metric learning [16].

7) OMKS: An efficient online metric learning algorithm
which learns a flexible nonlinear proximity function with mul-
tiple kernels for improving visual search [23].

8) SERAPH: An information-theoretic metric learning ap-
proach that does not rely on the manifold assumption [15].

9) HDS: A deep learning framework to learn hash codes and
image representations in a point-wise manner [47].

Table I shows the parameter setting of SSOMKS. It was ob-
served that MCFS performs well when the number of selected
features is smaller than 50 [26]. Therefore, we set d as 50. The
parameter k of kNN in LRML controls the number of nearest
neighbors linked in a KNN graph. Commonly, it is tuned in 5-20.

TABLE I
PARAMETER SETTING OF SSOMKS

Parameter d k num λ C β

Value 50 20 50 10000 [0,1] (0,1)

Fig. 3. Retrieval performance versus parameterC andβ for the Indoor dataset.
The solid lines represent the first round of parameter tuning and dashed lines
represent the second round. In each round, first we fix parameter C while
tuning β , and then we fix parameter β while tuning parameterC . The algorithm
converges after two rounds. Noticing that the curves in the right column are
not smooth, and this seems to suggest that the algorithm converges to a local
optimum.

As the number of labeled images per class is greater than 20, we
set k as 20. For ensemble learning methods including Adaboost,
random forest and subspace, we set num as 50. The trade-off
parameter λ in MP is used to avoid overfitting. By tuning it in
{10−4 , 10−3 , 10−2 , 10−1 , 1, 10, 102 , 103 , 104} on the validation
set, we set it as 10000. The choices of C and β follow from
OMKS.

Fig. 3 gives an example of parameter tuning. We only tune
several key parameters and set all the remaining to default val-
ues. In particular, we set the regularization parameters γs , γd as
1 due to the lack of prior information and vary the parameter
k of kNN in LRML in the range of 5-20. We set the number
of the landmarks picked p in EMR as 50 after tuning it on the
validation set. For DML-eig, we tune the parameter k in kNN
from 1 to the number of the labeled training images per class
minus one. All these intervals are chosen as in their released
source codes. As for HDS, we use the trained network due to
the limited number of labeled images.

B. Performance Analysis

In this section, we conduct a series of experiments on fea-
ture selection, classifier and feature analysis, classifier selection,
sample selection as well as performance comparisons between
the proposed method and other methods.

1) Feature Selection: We compare MCFS [26] with PCA,
Laplacian score (LS) [48], discriminative least squares re-
gression (DLSR) [49], CfsSubetEval + GreedyStepwise
(CSE+GS) and the original ones (i.e. without feature se-
lection). The feature selection methods select the dimension
d = 10, 20, . . . , 100, 120, . . . , 200 (15 sets), except CSE+GS,
which can search the optimal number automatically. We per-
form k-means with the selected features for clustering and use
the normalized mutual information (NMI) for evaluation.
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Fig. 4. Clustering performance comparison in terms of NMI versus the number of selected dimensions.

Fig. 5. Performance comparison of different methods on three datasets with varying labeling rates.

Fig. 4 shows the plots of clustering performance versus the
number of selected dimensions. In general, PCA offers per-
formance comparable with the original features without per-
forming feature selection. It is clear that MCFS performs
well in most cases, while CSE+GS has a poor performance
due to the lack of supervision information. It can be seen
that MCFS significantly outperforms the original ones with
SIFT features. This can be attribute to its strong ability in se-
lecting discriminative information in high-dimensional feature
spaces.

2) Classifier and Feature Analysis: Fig. 5 shows the vot-
ing accuracy of each classifier versus the labeling rate, which
represents the proportion of labeled images in the training set.
For unlabeled-labeled-labeled triplets, it is clear that the per-
formance of the subspace and random forest is lower than that
of other classifiers. In contrast, nn+DCA and Adaboost_M1
+ CART consistently exhibit significant advantages, which is
partly due to the utilization of supervision information as well
as error adaptive adjustment.

Fig. 6 shows the voting accuracy of each feature versus
the labeling rate. It can be observed that the performance for
each specific feature is data dependent. For instance, the color

histogram outperforms almost all the other features on the Corel
dataset, however, it has poor performance on other datasets,
which is caused by the single color of the background (i.e. the
sunrise is golden, the sky is blue and so on) in Corel. In contrast,
as a kind of local features, SIFT is more sensitive to subtle vari-
ation in the complex scene, thus having excellent performance
on the ImageCLEF and Indoor datasets.

We learn the weight of each feature-classifier pair by min-
imizing (13), and then report the results in Fig. 7. Generally
speaking, it is much easier for the feature-classifier pairs to
find the farthest class than the correct class. Therefore, we may
observe that these pairs get comparative weights in searching
the farthest class. Intuitively, pairs having better performance re-
ceive larger weights. We can see that on the ImageCLEF dataset,
the weights of Adaboost_M1 + CART and nn+DCA are much
larger, while those of subspace and random forests are close
to zero in terms of unlabeled-labeled-labeled triplets, which is
consistent with the results in Fig. 5.

3) Selective Ensemble Learning Analysis: The process of se-
lective ensemble with different labeling rates is shown in Fig. 8.
Intuitively, it is not necessary to exploit all the classifiers for
achieving the optimal performance because a part of them may
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Fig. 6. Performance comparison of nine different features on three datasets with varying labeling rates.

Fig. 7. Obtained weights by different features and classifiers.

not be necessary. For unlabeled-labeled-labeled triplets, the re-
quired number of classifiers is closely related to the complexity
of the scene. For instance, the best performance can be obtained
with fewer than 50 base classifiers on the Corel and Image-
CLEF datasets. However, due to the complicated background in
the Indoor dataset, almost all the classifiers are needed when the
labeling rate equals 20%. In general, for a certain dataset, the
optimal number of fused classifiers decreases with the increase
in the labeling rate.

4) Sample Selection Evaluation: Fig. 9 summarizes the per-
formance comparison of different strategies. On the whole, the
introduction of sample selection significantly improves the per-
formance. Commonly, voting achieves a higher accuracy than
using the best one. As the distribution of the decision-making on

the test and validation set may differ, MP does not always outper-
form using all the samples. The performance of a certain strat-
egy is data dependent. For instance, as for unlabeled-unlabeled-
unlabeled triplets, MP+max performs better than MP+margin
on the Corel dataset when the labeling rate is 10%, while the
latter performs better on the Indoor dataset when the labeling
rate is 20%.

The classification accuracy under a much smaller training
ratio is listed in Table II. It is clear that the performance is
still acceptable with a relatively small training ratio, especially
when sample selection is adopted. The performance is also
data-dependent. In particular, a higher accuracy is obtained for
ImageCLEF, which is a gray medical dataset having simpler
background structure.

5) Performance Comparisons: Tables III–VI summarize the
comparison results on the nine datasets, where mAP-9 means
mAP with 9 kinds of features, while mAP-10 means adopting
DCNN feature as well. Tables III–V imply that SSOMKS sig-
nificantly outperforms other algorithms with 9 features, while
as the labeling rate increases, the supervised algorithm DCA
gradually shows its superiority. In the beginning, SSOMKS im-
proves the most, around 15% over the OMKS. With the increase
in labeling rate, the improvement decreases. Comparing mAP-9
with mAP-10, it is clear that the utilization of DCNN feature
obtains significant improvement. In fact, the performance differ-
ences become smaller with better image representation. From
Table VI, the deep learning method HDS does not reveal su-
periority in that the generalization capability is limited without
parameter tuning. In terms of computational efficiency, the Eu-
clidean metric takes the least time. Owing to the massive triplets
production as well as the time-consuming multiple kernel learn-
ing, the time cost of OMKS/SSOMKS grows rapidly as the la-
beling rate increases, whereas the test process only takes a few
seconds. Several techniques such as distributed parallel learning
[50] and mini-batch processing [51] could be applied to further
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Fig. 8. Performance comparison in terms of classification accuracy versus the number of fused classifiers.

Fig. 9. Performance comparison of six different strategies in terms of classification accuracy with different labeling rates on three datasets.

TABLE II
CLASSIFICATION ACCURACY(%) ON COREL, IMAGECLEF, AND INDOOR DATASETS WHEN THE TRAINING RATIO IS 20%

Datasets Triplets MP MP+margin MP+max MP+max+margin

Corel unlabeled-labeled-labeled 54.67 71.01 76.81 75.36
unlabeled-unlabeled-unlabeled 54.67 60.71 69.05 69.05

ImageCLEF unlabeled-labeled-labeled 85.00 94.06 93.07 94.06
unlabeled-unlabeled-unlabeled 82.50 81.13 81.13 81.13

Indoor unlabeled-labeled-labeled 50.00 60.00 60.00 57.78
unlabeled-unlabeled-unlabeled 58.89 62.22 64.44 62.22

reduce the time cost. Furthermore, as 50% is a relatively high
ratio, we can also reduce the proportion of the training set. The
average ranks of mAP demonstrate that our proposed method
outperforms most of the baseline methods.

Finally, we randomly pick up several query images and com-
pare the top 5 ranked images retrieved with different metric

learning algorithms. Fig. 10 shows the qualitative compar-
isons of six distinct queries obtained by four diverse algo-
rithms, including OMKS, SSOMKS-max, SSOMKS-margin
and SSOMKS-max+margin. From the visual results, it can be
observed that SSOMKS retrieves more relevant images than
OMKS. For example, for query 1, SSOMKS obtains 4 relevant
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TABLE III
PERFORMANCE COMPARISON IN TERMS OF MAP (9 AND 10 TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON

COREL DATASET WITH LABELING RATE EQUALS TO 10%, 15%, 20%, 25%, AND 30%. HDS USES DCNN FEATURE EXTRATED

BY ITSELF. THE BEST AND THE SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS
-max -max+margin -margin

10% mAP-9 0.1589 0.1597 0.1604 0.1378 0.0427 0.1284 0.1078 0.0626 0.0280 0.0413 0.0419 0.0579
mAP-10 0.3883 0.3881 0.3886 0.3837 0.0855 0.2011 0.1413 0.2997 0.2618 0.3166 0.0529 0.0255 0.4368
time(s) 99.77 97.90 98.15 67.38 0.40 0.60 2.96 3.02 21.68 336.46 0.41 1.04

15% mAP-9 0.1541 0.1535 0.1541 0.1374 0.0427 0.1320 0.1065 0.0576 0.0428 0.0697 0.0419 0.0486
mAP-10 0.3924 0.3924 0.3924 0.3872 0.0855 0.2842 0.1368 0.3078 0.2732 0.2773 0.0529 0.0799 0.4401
time(s) 377.80 377.80 377.80 137.78 0.52 0.61 3.06 3.07 26.80 311.47 0.43 2.24

20% mAP-9 0.1561 0.1561 0.1571 0.1452 0.0427 0.1280 0.0965 0.0600 0.0389 0.0424 0.0419 0.0638
mAP-10 0.3980 0.3980 0.3980 0.3915 0.0855 0.3093 0.1354 0.3093 0.3071 0.2516 0.0529 0.2042 0.4435
time(s) 1330.55 1330.55 1289.27 522.66 0.34 0.88 4.56 2.14 144.84 274.28 0.43 4.42

25% mAP-9 0.1628 0.1624 0.1642 0.1535 0.0427 0.1274 0.0860 0.0602 0.0565 0.0426 0.0419 0.0651
mAP-10 0.4032 0.4032 0.4032 0.3986 0.0855 0.3054 0.1406 0.3128 0.3044 0.2582 0.0529 0.2602 0.4470
time(s) 3892.07 3892.07 3892.07 1787.16 0.45 0.59 2.89 1.98 22.18 373.87 0.37 6.86

30% mAP-9 0.1665 0.1651 0.1644 0.1607 0.0427 0.1287 0.0882 0.0427 0.0429 0.0654 0.0419 0.0658
mAP-10 0.4102 0.4102 0.4102 0.3978 0.0855 0.3077 0.1402 0.3116 0.3116 0.2553 0.0529 0.2359 0.4513
time(s) 8789.79 8164.26 8164.26 5443.61 0.41 0.59 2.94 1.74 22.21 377.62 0.41 10.24

average rank mAP-9 1.8 2.2 1.4 3.6 9.4 4.6 5.6 7.8 10 9 10.8 7.2
mAP-10 1.2 1.4 1 2.4 8.6 4.6 7.6 3.6 5 5.4 9.8 7.8 –

time 10.4 9.8 9.8 8.4 1.4 2.8 5 4.6 6.8 8.8 1.4 4.8

TABLE IV
PERFORMANCE COMPARISON IN TERMS OF MAP (9 TYPES OF FEATURES) AND TIME COST (9 TYPES OF FEATURES) ON IMAGECLEF

DATASET WITH LABELING RATE EQUALS TO 10%, 15%, 20%, 25%, AND 30%. HDS USES DCNN FEATURE EXTRATED

BY ITSELF. THE BEST AND THE SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS
-max -max+margin -margin

10% mAP 0.5067 0.5076 0.5058 0.4391 0.0636 0.3754 0.2711 0.0876 0.0307 0.0666 0.0560 0.0507 0.3959
time(s) 126.04 120.09 123.77 51.61 5.96 0.64 3.00 2.69 20.10 352.67 0.38 1.48

15% mAP 0.5022 0.5053 0.5004 0.4455 0.0636 0.3951 0.2327 0.0636 0.0674 0.0710 0.0561 0.0837 0.4118
time(s) 446.33 446.92 446.47 134.52 3.46 0.53 2.95 3.24 27.25 311.18 0.37 2.85

20% mAP 0.4977 0.5027 0.5120 0.4709 0.0636 0.3978 0.2797 0.0636 0.0332 0.0622 0.0561 0.0985 0.4362
time(s) 1746.00 1973.75 1805.92 587.50 0.36 0.49 3.11 1.43 21.06 242.25 0.38 4.24

25% mAP 0.4735 0.4680 0.4647 0.4728 0.0636 0.4025 0.2682 0.0636 0.0453 0.0573 0.0561 0.1058 0.4535
time(s) 5993.47 5991.07 5982.98 2088.27 0.42 0.60 3.50 1.43 35.65 300.29 0.39 7.11

30% mAP 0.5001 0.5051 0.4865 0.4887 0.0636 0.4105 0.2688 0.0636 0.0907 0.0630 0.0561 0.0948 0.4702
time(s) 13298.61 13328.16 13288.83 5735.21 0.41 0.57 3.07 2.09 42.22 306.59 0.39 10.66

average rank mAP 2 1.6 3 3.4 8.8 5 6 8.4 10.2 8.8 10.4 7.8 –
time 10.6 11 10.2 8.4 3.4 2.6 4.8 4.2 6.8 8.8 1.2 4.8

TABLE V
PERFORMANCE COMPARISON IN TERMS OF MAP (9 AND 10 TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON INDOOR

DATASET WITH LABELING RATE EQUALS TO 20%, 30%, 40%, 50%, AND 60%. HDS USES DCNN FEATURE EXTRATED

BY ITSELF. THE BEST AND THE SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS
-max -max+margin -margin

20% mAP-9 0.1641 0.1671 0.1652 0.1440 0.0525 0.0937 0.0893 0.0525 0.0276 0.0504 0.0430 0.0261
mAP-10 0.4461 0.4461 0.4460 0.4424 0.1162 0.3107 0.1460 0.3877 0.3559 0.3337 0.0580 0.0300 0.3754
time(s) 68.89 69.57 67.95 48.52 0.38 0.47 2.67 0.82 14.34 249.81 0.39 1.11

30% mAP-9 0.1738 0.1740 0.1760 0.1601 0.0525 0.1183 0.0876 0.0525 0.0197 0.0504 0.0430 0.0299
mAP-10 0.4561 0.4561 0.4561 0.4514 0.1162 0.3604 0.1410 0.3925 0.3245 0.3009 0.0580 0.0488 0.3919
time(s) 220.76 222.51 222.33 154.36 0.52 0.50 2.92 0.84 171.21 284.96 0.41 2.76

40% mAP-9 0.1727 0.1741 0.1737 0.1673 0.0525 0.1253 0.0887 0.0525 0.0214 0.0401 0.0430 0.0289
mAP-10 0.4517 0.4517 0.4517 0.4467 0.1162 0.3372 0.1463 0.3878 0.3265 0.2729 0.0580 0.0687 0.4121
time(s) 809.55 862.23 933.52 655.34 0.50 0.66 2.71 1.09 13.99 275.14 0.42 3.59

50% mAP-9 0.1701 0.1721 0.1740 0.1683 0.0525 0.1235 0.1023 0.0525 0.0533 0.0504 0.0430 0.0310
mAP-10 0.4513 0.4513 0.4513 0.4491 0.1162 0.3698 0.1623 0.4063 0.2873 0.3139 0.0580 0.0668 0.4397
time(s) 2410.37 2410.37 2410.37 2174.43(16) 0.36 0.57 2.74 0.96 13.27 279.14 0.41 6.29

60% mAP-9 0.1630 0.1611 0.1644 0.1621 0.0525 0.1245 0.1026 0.0525 0.0367 0.0496 0.0430 0.0309
mAP-10 0.4551 0.4551 0.4551 0.4519 0.1162 0.3840 0.1623 0.3967 0.3854 0.2236 0.0580 0.0663 0.4512
time(s) 7817.64 7817.64 7817.64 6509.28 0.34 0.56 2.77 0.82 16.21 297.96 0.42 12.21

average rank mAP-9 2.8 2 1.4 3.8 7.2 5 6 7.2 9.8 8.4 9 10.6
mAP-10 1 1 1.2 2.2 8.2 4.8 7.2 3.2 5 5.8 9.8 9.6 –

time 9.8 10.6 10.2 8.4 1.6 2.8 5.4 4 7.2 9.6 1.6 5.6
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TABLE VI
PERFORMANCE COMPARISON IN TERMS OF MAP (10 TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON PUBLIC, CALTECH10,

CALTECH20, CALTECH50, FLICKR, AND OXFORD DATASETS, RESPECTIVELY. HDS USES DCNN FEATURE EXTRATED

BY ITSELF. THE BEST AND THE SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Datasets Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS
-max -max+margin -margin

Public mAP 0.2054 0.2054 0.2054 0.1943 0.0657 0.1460 0.0828 0.1626 0.1306 0.1155 0.0325 0.0995 0.2293
time(s) 599.98 572.79 572.79 376.71 0.54 0.75 7.57 4.61 15.69 385.58 0.96 1.24

Caltech10 mAP 0.6074 0.6086 0.6083 0.5990 0.1683 0.4492 0.2546 0.4509 0.4296 0.3628 0.0957 0.0389 0.4513
time(s) 119.48 119.76 124.14 61.91 0.38 0.63 2.95 1.69 19.56 236.13 0.39 2.87

Caltech20 mAP 0.4357 0.4357 0.4357 0.4140 0.1013 0.3595 0.2813 0.3706 0.3048 0.1914 0.0210 0.2388 0.3340
time(s) 1884.22 1884.22 1884.22 612.09 0.68 1.43 15.96 14.27 16.40 309.45 1.74 2.53

Caltech50 mAP 0.3750 0.3750 0.3750 0.3566 0.0618 0.3038 0.0696 0.2620 0.1376 0.1080 0.0075 0.1822 0.2532
time(s) 7642.19 7642.19 7642.19 2465.86 1.60 7.59 100.74 70.52 27.99 569.88 8.73 4.28

Flickr mAP 0.2356 0.2356 0.2356 0.2160 0.0821 0.1889 0.0931 0.1829 0.1161 0.0912 0.0494 0.1283 0.1000
time(s) 1423.16 1423.16 1423.16 860.09 0.36 0.56 4.22 2.32 17.18 274.52 0.56 2.18

Oxford mAP 0.1690 0.1689 0.1689 0.1554 0.1052 0.1572 0.1244 0.1381 0.1275 0.0817 0.0711 0.0333 0.1421
time(s) 922.33 979.09 925.55 579.08 0.36 0.54 3.01 3.72 16.76 306.90 0.41 1.21

average rank mAP 1.33 1.17 1.33 2.67 9.17 3.83 7.67 4 5.83 7.83 10.33 7.17 –
time 9.83 10.17 10.17 8.5 1 2.5 5.83 5 6.5 8.67 2.67 3.67

Fig. 10. Qualitative comparison of image similarity search results on the Corel data set by different algorithms. For each block, the first image is the query, and
the results from the first line to the fourth line represents OMKS, SSOMKS-max, SSOMKS-margin, and SSOMKS-max+margin, respectively. The ground truth
for the queries are as follows: 1 (sky, jet, plane), 2 (field, horses, mare, foals), 3 (tails, snow, coyote, light), 4 (water, tree, ships, sunset), 5 (mountain, sun, clouds,
tree), and 6 (sky, water, monument). The red dots represent the images of the same semantic theme with the queries, and the yellow squares represent the images
from different semantic themes.

images, while OMKS only obtains 1. For query 2, SSOMKS
obtains the entire relevant images, while OMKS only obtains 3.
Overall, SSOMKS outperforms OMKS in image retrieval due
to the utilization of unlabeled images.

V. CONCLUSION AND FUTURE WORK

We have presented a semi-supervised online multi-kernel sim-
ilarity (SSOMKS) learning framework to learn a local metric
in image retrieval when the supervision information is limited.
We have focused on the use of supervision information to es-
timate the labels of the unlabeled images. The main new as-
pect of our work lies in the use of classification confidence
to evaluate the labeling process and select the reliably la-
beled images to train the metric function. Experiments with

real-world tasks have shown the effectiveness of the proposed
method.

Our work is different from the current trend that encourages
learning a globally linear metric and focuses on fully super-
vised kernel similarity learning. Based on the characteristics in
visual tasks, we have analyzed why it is necessary to introduce
unlabeled images to metric learning. We have proposed a new
method for reliable triplet generation, and also designed a crite-
rion for triplet selection to improve the accuracy and efficiency
in similarity learning. The proposed method for triplet genera-
tion could also be used in other algorithms that take triplets as
their inputs.

Although online approaches are more scalable than the batch
processing techniques, they suffer from high computational cost
in projections. To further improve the efficiency, reducing the



1088 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 5, MAY 2017

number of projections and performing distributed learning could
be considered. In the future, we will explore the potentials of
the techniques such as mini-batch and adaptive sampling for
computationally efficient metric learning.
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