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SG-FCN: A Motion and Memory-Based Deep
Learning Model for Video Saliency Detection

Meijun Sun, Ziqi Zhou, Qinghua Hu

Abstract—Data-driven saliency detection has attracted strong
interest as a result of applying convolutional neural networks
to the detection of eye fixations. Although a number of image-
based salient object and fixation detection models have been
proposed, video fixation detection still requires more exploration.
Different from image analysis, motion and temporal information
is a crucial factor affecting human attention when viewing video
sequences. Although existing models based on local contrast and
low-level features have been extensively researched, they failed to
simultaneously consider interframe motion and temporal infor-
mation across neighboring video frames, leading to unsatisfactory
performance when handling complex scenes. To this end, we pro-
pose a novel and efficient video eye fixation detection model to
improve the saliency detection performance. By simulating the
memory mechanism and visual attention mechanism of human
beings when watching a video, we propose a step-gained fully
convolutional network by combining the memory information
on the time axis with the motion information on the space axis
while storing the saliency information of the current frame. The
model is obtained through hierarchical training, which ensures
the accuracy of the detection. Extensive experiments in com-
parison with 11 state-of-the-art methods are carried out, and the
results show that our proposed model outperforms all 11 methods
across a number of publicly available datasets.

Index Terms—Eye fixation detection, fully convolutional neural
networks, video saliency.

I. INTRODUCTION

HEN VIEWING visual images or videos, the human
insual attention mechanism helps humans selectively
choose salient areas or points upon which to fixate their gaze.
When observing a static image, features such as color, con-
tour, and luminance may be dominant factors influencing the
point of focus. When watching a video, however, the motion
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information mainly affects the human gaze. If the viewing is
task driven, the human brain memory mechanism will be acti-
vated, and people will focus on a target object with high-level
semantic information. In computer science, saliency detec-
tion has been widely researched in recent years to further
understand and simulate the human attention mechanism. The
overall efforts in this field can be divided into two main cat-
egories. The first category is salient object detection, which
aims at accurately extracting objects that grab a person’s atten-
tion. The second category is called eye fixation detection,
which focuses on selecting a number of locations and points
that may attract attention.

Images have always been the focus of computer vision
research, including hyperspectral images [1], [2], and ordinary
images of three channels. Saliency detection, as a prepro-
cessing step, is an important branch in the study of images,
which has received more attention over recent years and is
widely used in many visual applications, including image
retrieval [3], object segmentation [4], scene classification [5],
object detection [6], and target tracking [7]-[11]. As for video
saliency detection, to detect the significance of each frame
more accurately, intraframe saliency detection needs to be car-
ried out along with a simultaneous consideration of interframe
motion and temporal information.

This paper essentially focuses on eye fixation predictions
inside a video sequence. Differing from image analysis, the
analysis of video sequences presents more challenges due to
the fact that the motion and temporal information affects the
attention of the viewer. In addition, movie videos with com-
plex scenes and moving objects make the eye fixation detection
even more difficult. Although some models based on local
contrast and low-level feature information have been reported
in the literature, such models often lack consideration of the
interframe motion and temporal information, leading to an
unsatisfactory performance when handling complex scenes,
such as those with fast moving objects or a moving lens. In
contrast with existing methods, we consider the motion and
memory information simultaneously with the spatial infor-
mation. As shown in Fig. 1, our proposed model primarily
uses the designed step gained fully convolutional network
with expanded information [model SGF(E)] for video fixation
detection. Our model takes the saliency predictions in previous
frame, the moving object boundary map between two adja-
cent frames, and the current frame as the input, and computes
the spatiotemporal saliency probability to produce a saliency
detection output, without requiring any preprocessing. Some
sample predictions are given in Fig. 2.
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Fig. 1. Flow chart of our proposed model, in which we use the proposed model SGF for capturing the spatial and temporal information simultaneously.

SGF(3) is used to handle the first frame because neither motion nor temporal information is available. From the next frame onward, the SGF(E) model
takes EF(1) from SGF(3), a fast moving object edge map B(2) from the OPB algorithm, and the current frame (2) as the input, and directly outputs the
spatiotemporal prediction EF(2). Section IV provides further details regarding the proposed model.

Fig. 2.
frame. (b) Eye fixation prediction map of SGF(E). (c) Heatmap obtained
from (b).

Detection results from our proposed model SGF(E). (a) Raw

Our contributions are highlighted as follows.

1) We propose a novel and efficient model SGF, which

takes the current frame, the saliency maps in previous

frame, and the moving object boundary map as the input,

and outputs a spatiotemporal prediction that ensures the

time and space consistency.

We design an object palpably boundary-map (method

OPB) algorithm, the details of which are shown in

Section IV-C to calculate the contours of the most dis-

tinctive moving object as auxiliary motion information.

The specific process is shown in Fig. 1.

3) We directly detect the eye fixation locations through the
deep model without any preprocessing, which illustrates
the robustness and efficiency of our model.

2)

The rest of this paper is organized as follows. Section II
introduces related works, Section III describes our method for
computing the ground truth, and Section IV demonstrates the
proposed model structure. The training details of our model
are given in Section V, and Section VI reports the quantitative
and qualitative experimental results. Finally, we provide some
concluding remarks in Section VIIL.

II. RELATED WORKS

Over the past few years, a number of methods have
been designed for saliency detection, including tradi-
tional methods [12]-[30] and deep-learning-based meth-
ods [31]-[44]. We only introduce those works that are related
to this paper.

A. Eye Fixation Detection

Most existing fixation prediction methods are motivated by
the idea that locations distinctive from the surrounding areas
will attract greater attention. Thus, they have mainly aimed
at determining the uniqueness and distinctiveness at a given
location. To obtain the final prediction, two techniques are
primarily carried out: 1) feature extraction and 2) contrast
comparison.

For early feature extraction, Itti et al. [12] first proposed
a highly influential model that considers three low-level fea-
tures: 1) color; 2) orientation; and 3) intensity. Judd ez al. [13]
utilized other patterns such as steerable pyramid filters and
histograms to extract low-level features including a 3-D color
histogram and local energy. Lin et al. [14] proposed a compu-
tational visual-attention model for static and dynamic saliency
maps. The Earth mover’s distance (EMD) is used to mea-
sure the center-surround difference in the receptive field and
to combine different features using biologically inspired non-
linear operations. Harel et al. [15] applied a graph-based
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visual saliency model, which first form activation maps on
certain feature channels, and then normalize them by high-
lighting the conspicuity. Seo and Milanfar [16] employed
a matrix cosine similarity to compute the local regression
kernels and measure the likeness of a pixel to its surround-
ings. Guo et al. [17] believed that the phase spectrum of
the Fourier transform obtains the location of salient areas,
and Wang et al. [18] consider both the motion and appear-
ance information through a quaternion feature representation.
Other methods such as sparse coding [19], [20] have also
been applied in certain models. However, all of the above
methods use handcrafted features, which require domain-
specific knowledge. Some deep-learning-based methods have
recently been proposed for more accurate and simpler feature
extraction, including autoencoders [43], convolutional neural
network [35]-[41], and long short-term memory [44]. For
example, Han et al. [43] developed a stacked denoising autoen-
coder to represent features from raw images. Wang et al. [35]
used predetection results to enhance the estimation through
a recurrent fully convolutional network.

After feature extraction, a significant step is to integrate
the contrast for obtaining the final prediction. Lin ef al. [14]
computed the final saliency by using the Lm-norm and
combine the super features using the Winner-Take-All mecha-
nism. Wang et al. [18] used an inverse quarternion Fourier
transform to reconstruct the final abnormal saliency map,
Tavakoli et al. [31] proposed a framework based on interimage
similarities and an ensemble of extreme learning machines. In
a study by Li et al. [41], set up a multitask learning scheme for
exploring the intrinsic correlations between saliency detection
and semantic image segmentation and use a graph Laplacian
regularized nonlinear regression model for saliency refinement.
Tavakoli and Laaksonen [42] employed independent subspace
analysis to obtain a hierarchical representation and exploit
local and global saliency concept to achieve salient detec-
tion. Methods such as [25]-[28] utilize the fact that multiple
images with common foreground can be detected simultane-
ously. Feature extraction and integration are performed within
the range of multiple images, which leads to the problem of
co-saliency detection. In addition to the above methods, using
end-to-end models [35]-[44] directly to produce the prediction
has remained an interesting research direction in recent years.

B. Video Saliency Detection

According to the input, saliency models can be further cat-
egorized into static and dynamic saliency models. A dynamic
saliency model takes video sequences or continual frames
as an input to obtain a patch of saliency detection results.
This task is also known as video saliency detection, which
has recently attracted a significant interest. The reason behind
this growth in popularity is the importance of video saliency
detection as a preprocessing for many different tasks including
video compression and summarization.

The existing video saliency models can be further divided
into salient object detection models [48]-[50] and eye fixation
prediction models [15], [32]-[34], [51]. The model proposed
in [48] uses intraframe boundary information and interframe

motion information, also combines gradient flow field with
energy optimization, to achieve the spatiotemporal consistency
of the output saliency maps. Wang et al. [49] introduced
an unsupervised and geodesic distance-based salient video
object segmentation method. They consider the spatial edges
and temporal motion boundaries as indicators of foreground
object locations in order to attain both spatially and tempo-
rally coherent object segmentation. Zhou et al. [50] showed
a temporal filter to enhance the rendering of salient motion.
Zhang and Sclaroff [51] proposed a Boolean map-based
saliency model, computing the frame feature as a set of binary
images and obtaining saliency maps by analyzing the topolog-
ical structure of the Boolean maps. Zhong et al. [32] believed
that the flow information is quite important in video detection
tasks, and thus propose a fast flow model, constructing spa-
tial and temporal saliency maps and fusing them together to
create the final attention. Li and Li [33] mainly focused on
compressed domain video eye fixation detection, and present
an algorithm based on residual DCT coefficients norm and
operational block description length. The fixation prediction
is obtained through a Gaussian model whose center is deter-
mined based on the feature values. Harel et al. [15] took the
motion and flicker information into account and compute the
final eye fixation by adding extra channels, and Han ez al. [34]
built two models, a spatial attention model for predicting loca-
tions in a frame, and a temporal attention model that measures
the most important frame in a video sequence.

Unlike the models mentioned above, our proposed model
does not separate the spatial information detection from the
temporal information detection and then fuses them. Instead,
we calculate the spatial-temporal information simultaneously
through a step-gained FCN (SGF) model, which is inspired
from the correlation of neighboring frames inside the video
sequence. In addition, we take the detection result of the
previous frame as the auxiliary information, and then com-
pute the boundaries of the moving object by exploiting the
flow gradient of the adjacent frames. In this way, significant
advantages can be achieved in which the information on the
current frame, the saliency maps in previous frame, and the
moving object boundary map are considered simultaneously
to ensure the consistency in both time and space.

III. GROUND TRUTH COMPUTATION

In this section, we introduce how the corresponding ground
truth is obtained for a video frame being observed, which is
crucial for our proposed model.

A. Dataset Introduction

For model training and performance evaluations, the ground
truth fixation maps for raw videos are required. Owing to
the fact that a high level of correlation exists between the
human visual attention area and eye movements, we can record
the eye movement data for multiple subjects using an eye
tracker, and hence calculate the ground truth according to cer-
tain existing algorithms. Some representative algorithms have
been reported in [34]. To implement a better training pro-
cess, we compute the ground truth using two datasets: 1) the
Hollywood2 dataset [45] and 2) the UCF-sports dataset [52].
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For effective training, we divide these two dataset into the
training set and the test set. As to the Hollywood2 dataset, the
training set contains 62000 samples and the test set contains
4500 samples. The UCF dataset consists of 21600 training
samples and 2300 testing samples.

B. Ground Truth Computation

Similar to the work reported in [34], we proposed to calcu-
lating the ground truth using the following method. For a given
video, assume there are S subjects, each of which has a total
of I eye fixation tracking records per frame, where the total
number of videos is V. Specifically, the ground truth value
of the Hollywood2 and UCF-sports datasets can be calculated
through the following three steps:

) ) SR. — YR/()SR,
(xT yT k) _ [ YRG) VR [ P T TIRG)
S0 S0 SR, "SR, |’ 2
currT .
106 1PsG) |- (1

Through (1), we obtain the true fixations from S subjects
per frame, where S; represents the ith subject. In addition, x/S;

and y’S’_ represent the eye location coordinates for the ith sub-
ject of the jth video, respectively, and k represents the frame
number of the jth video addressed by the current coordinates.
Moreover, VR,(j) and VR,(j), respectively, represent the true
resolution of the jth video, and SR, and SR, demonstrate the
horizontal and vertical resolution of the display. currT indi-
cates the time stamp of the gaze sample (microseconds), and
fps(j) is the frame rate of the current video sequence
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Here, (2) indicates the proposed Gaussian model, where the
value of W is empirically set to 35, indicating that a gaze
point is mapped to the surrounding 35 pixels on the graph.
The values of « and B are empirically set, » and ¢ denote
the horizontal and vertical resolution of the jth video, respec-
tively, and R, C are the matrices generated from R and C, the
dimensions of which are (2r + 1,2c¢ + 1). The final fixation
map G‘f{ for the kth frame inside the jth video sequence can
be calculated through (3).

IV. MODEL STRUCTURE

To extract both temporal and spatial information from
a video sequence simultaneously, and take the human memory
mechanism into account to reflect the fact that the past frame
in the video sequence will form a relatively significant object
in human brain, we propose an SGF for spatial-temporal eye
fixation detection.

IEEE TRANSACTIONS ON CYBERNETICS

A. Spatial Branch: SGF(i)

The spatial branch takes a single frame as the input and
produces a fixation map of the same size. We employ a fully
convolutional neural network to model this process. First, we
employ the first five convolutional blocks of VGGNet [53], by
adding deconvolutional layers, the model ensures end-to-end
detection. Second, we design three different network struc-
tures, and train them individually to design the next model
based on the previous one. To reflect such a feature, we call
the model SGF. As the model contains three different network
structures, we can obtain features of different types and scale
during the previous layers, which are useful for further train-
ing. In addition, as the deconvolutional layers have different
kernel sizes, the model considers not only the global informa-
tion but also the local information, producing a more accurate
eye fixation map.

As shown in Fig. 4, the bottom of the network is a stack
of convolutional layers. To learn more global information, we
build several deconvolutional layers on the top at the 16th
convolutional layer. Three models have different upsampling
factors. For SGF(1), the first five convolution blocks are initial-
ized with the weights of VGGNet, which is originally trained
over 1.3 million images of the ImageNet dataset [54], and the
kernel size of the deconvolutional layers is set to x19, and
x10 with a stride of 4, respectively. The SGF(2) model is
designed based on the SGF(1) model, where the parameters
are initialized from SGF(1). To achieve a smoother detection,
we add a deconvolutional layer and modify the kernel size to
x 15 with a stride of 5, x 13 with a stride of 3, and x22 with
a stride of 2. Similarly, the SGF(3) model is based on SGF(2),
where the first deconvolutional layer has x5 upsampling fac-
tors, second, third, and the last deconvolutional layer has x9,
x 10, and x22 upsampling factors, respectively.

In convolutional blocks, each convolutional layer needs an
hl x wl x cl input and an output feature map with a size of
h2xw2xc2, where h;, w;, ci(i = 1, 2) denote the height, width,
and channel number, respectively. The first convolutional layer
takes 7 x w x 3 raw frames as input, and produces a feature
map after a linear transformation with a bias term. Assuming
that each convolutional layer has a kernel with its weights set
to W and the offset term set to b, the feature map is calculated
as follows:

xj =f Zxﬁ_l * wf:/ + bjl- 4)
ieM;

where M; is the number of feature maps at the previous layer
[, xﬁ_l represents the jth feature map from the (I — 1)th layer,
and f is a nonlinear activation function. We choose ReLU
as the activation function and embed max pooling in the
convolutional layers. After a convolution operation, the fea-
ture maps are sparse and down-sampled. For up-sampling, the
deconvolutional layers are applied to the top of the model

y = Us(fs(¢, Oconv) » Odeconv) (5)

where ¢ indicates the input frame data, fi(-) is the convo-
lutional operation with parameter Ocony, Us(-) denotes the
deconvolutional operation with parameter Ggecony, the kernel
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Fig. 3.
with function MAX [big map(i), boundary map(i)] before Sigmoid function.

parameter S is set for up-sampling. More details on their
specific implementations are described in Section V.

B. Temporal Branch: SGF(E)

The temporal branch has a similar structure as the SGF(2)
model as shown in Fig. 4, which takes the current frame (i),
saliency map (i — 1) of previous frame, and moving object
boundary map (i) as input, and outputs the final fixation map
of frame (7). This design is motivated by the fact that, when
viewing a video sequence, not only the moving object but also
fixations from the previous frame will influence the eye loca-
tion in the current frame. The saliency information in previous
frame added to the input and the boundary information of
the moving object combined before the final detection enable
and support the model to achieve a more comprehensive and
accurate eye fixation identification, and such improvement is
achieved only by considering the memory information regard-
ing the previous salient object, but also by the most significant
movement information of the object.

Specifically, as the first convolutional layer has an input
with four dimensions, we need to concatenate the saliency
map (i — 1) and the current frame (i) to form the input data.
Hence, the first convolutional operation is modified as

f(Fi, pre;_y; Wr,, WPH) =WgxF;+W,_, xpre;,_; +b
(6)

where W, denotes the weight matrix corresponding to the
input frame data F;, and W),_, denotes the weight matrix
corresponding to the saliency map pre;_; of previous frame.
The remaining layers are set exactly like the SGF(2) model
except for the last layer. Further, we use an Eltwise layer to
combine the motion boundary map B(i) with the deep map
before the Sigmoid function is applied. The structure of our
proposed spatiotemporal network, called SGF(E), is illustrated
in Fig. 3.

Eltwise layer

pra

grnoid

FinalFix(i)

I,D":S

BoundaryMap(i)

GroundTruth(i-1) GroundTruth(i)

Structure of model SGF(E). As shown in the flowchart, the input data is a tensor of 7 x w x 4. At the top of the model, we add an Eltwise layer

Algorithm 1 OPB for Moving Object Contour Detection
Input: frame F;, frame F;_|

Output: Boundary map B;

1: Obtain the color gradient map CG;;

1.1: generate super-pixels S;,:i} inside the frame F; through
SLIC [55];

1.2: compute super-pixel segmentation map S; and the color
gradient magnitude CG; using Eq. (8).
2: Obtain the optical flow gradient map M;;

2.1: generate the optical flow gradient magnitude Mp, from the
optical flow map OGp,; through LDME [56];

2.2: set a threshold 6 to obtain a motion area with a higher
magnitude than 6.
3: Combine CG; and M; to obtain the boundary map B; using
Eq. (10).

C. OPB: Motion Information From Interframes

Our observation reveals that moving objects are more
eye-catching, even though the object does not present any
significant difference in comparison with the surrounding
background. In other words, motion is the most crucial cue for
video eye fixation detection, which makes it important for min-
ing deeper interframe information. Following the spirit of the
work reported in [48], we proposed an OPB algorithm for deep
interframe information mining. As shown in Figs. 1 and 3,
OPB is used to extract the contour information for the most
significant moving objects through three steps, the details of
which are given below.

Step 1: Extract the super-pixel information of the current
frame to preserve the original structural elements of the video
content, while effectively simplifying and ignoring some use-
less details. The superpixels S = {Sf" , Sg", e Slf" } are
distinguished by strong edges that characterize the most impor-
tant content of the frame. Letting P represent the number of
super-pixels, where Fig. 5(b) illustrates the super-pixel seg-
mentation map S;, the color gradient magnitude at position
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Three different structures. In the SGF(1) model, convolutional blocks are initialized from VGGNet. For SGF(2) and SGF(3), convolutional blocks

for the next model are initialized from the previous model. The deconvolution layers of the three models use different sizes of upsampling factors, taking into

account the local and global information.

(@)
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Fig. 5.

6

(d)

Some detection results obtained through the OPB model. (a) Three different frames from different video sequences. (b) Super-pixel segmentation

map S using SLIC. (c) Color gradient magnitude CG from (b). (d) Visualized optical flow map O of the frames in (a). (e) Optical flow gradient magnitude
M from (d). (f) Significant moving object boundary map B achieved by fusing (c) and (e).

z = (x,y) can be calculated as follows:

CGi(x,y) = IVSi(x, Y. (7

Step 2: Obtain an optical gradient by extracting the optical
flow between the current and previous frames, and then choose
those areas with a larger gradient by setting a threshold. While
Fig. 5(d) illustrates some examples of such a derived optical
flow, the optical gradient at position z can be obtained through
(8), and the magnitude M;(z) through (9)

(065,063, = (|vo5, ). |voi, 0] )

X 2 y 2 .
M;(z) = J@@ﬁ0+0mu® it Mi)>6 (g
0 it Mi() <0

®)

where OG’,&[_ and OG'IVVI, represent the results of the optical flow
gradient along the x- and y-axes, respectively.

Step 3: Combine CG;(z) with M;(z) to compute the final
boundary map B;(z) at position z through

CGi(z) * (1 — e ®Mi@) if j =1
uBi—1(z) + APr; iti>1&Bi—1(z) >0

Pri = CGi(@) # (1= ™M) smin(IVB1 @) (10)

Bi(z) = {

where « is a weighting factor used to decide how much bound-
ary information of the optical gradient magnitude M;(z) need
to be reserved. In our implementation, we empirically set it to
0.75. Here, u and X are two scaling factors used to coordinate
the calculation results. The larger u is, the greater the influ-
ence of the previous frame. In contrast, the larger the A, the
smaller the effect of the previous frame. Here, o is a threshold
parameter, which is also empirically set to 0.3. For the con-
venience of our presentation and description, a pseudo-code
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summary of our proposed algorithm is given in Algorithm 1,
and some detection results are illustrated in Fig. 5.

V. TRAINING METHOD

In this section, we elaborate on the proposed two-stage
learning to predict the human eye fixation on a video sequence.
We first pretrain our model proposed in Section IV-A using the
image saliency detection datasets, which enables the model to
learn the features of the salient objects and grab the salient
regions inside a single image. We then fine-tune the model
on two video eye fixation datasets mentioned in Section III
and another image eye fixation dataset reported in [57]. In
this way, we ensure that the model can precisely predict the
eye fixation locations. The logic behind this is that most
of the benchmarks used for image saliency detection are
open-sourced for public access, and the resolution of the
image is relatively high with a richer variety, pretraining on
these benchmarks helps to improve the model‘s generalization
capability.

A. Implementation Details

The SGF model is implemented based on the Caffe [58]
toolbox. We initialize the first 13 convolutional layers of SGF
with those of the pretrained VGG 16-layer net, and transfer
the learned representations by fine-tuning to both the saliency
detection and eye fixation detection. We then construct the
deconvolutional layers for upsampling, the parameters of
which are initialized as Gaussian distribution parameters and
iteratively updated during the training. For training pur-
poses, all images and the ground-truth maps are resized to
500 x 500 pixels, and the SGD learning procedure is acceler-
ated using a NVIDIA GeForce GTX 1080ti GPU. In stage one,
the momentum parameter is set to 0.99, the learning rate is
set to 10710, and the weight decay is 0.0005. In stage two, the
momentum parameter is set to 0.999, the learning rate is set
to 107!, and the weight decay is 0.00005. The loss functions
for two stages are designed as

1 h
LiP.G) = 5 3 3]Gy = Pugl;

i=1 j=1

1 w h
La(P.G) = 5 3 Y [1Giy = Pul5

i=1 j=I

(1)

wxh
+ 1) [GijlogPij+ (1= Gij) log(1 = Piy)]
i=1

12)

where 7 is a weighting factor to show the importance of the
corresponding loss item, which are set empirically along with
others mentioned in earlier sections.

B. Stage One

In this stage, we use six benchmarks related to image
saliency detection. Table I shows the basic information of all
six datasets intuitively. To use a cross-validation method for
training, we divide all images into ten groups, and nine groups

Algorithm 2 Training Method for Stage One
Input: image pair (I, G) for saliency detection
Output: pixel-wise binary map P
1. for i=1: 3
2. If i=1:

Initialize the parameters a)ch(l.) of the shared fully convolu-
tional part using the pre-trained VGGNet;
3. Else,

Initialize the parameters a)g‘GF(i) from ngF(ifl);

4. Initialize the parameters ngF(i) of the deconvolutional part
randomly from the Gaussian distribution;

5. Bgsed on. C.UEGF.(I') and “):SIGF(i)’ utiliz.e SGD and BP to train
SGF(i) by minimizing the training loss using Eq. (11)

6. end for

Algorithm 3 Training Method for Stage Two

Input: frame pair (F, G) for eye fixation detection
Qutput: pixel-wise probability map P

1. for i=1: 2

2. If i=1:

Initialize the parameters wEGF(i) from ngF(i);
3. Else:

itiali C c .
Initialize the parameters DSGF() from DSGR(i—1)>

4. Initialize the parameters wglGF(i) of the deconvolutional part
randomly from the Gaussian distribution;

5. Bgsed on Z.H.;GE(i) and w..g.GF(i)’ utili.ze SGD and BP to train
SGF(i) by minimizing the training loss using Eq. (12).
6. end for

are randomly selected each time as the training set, with the
remaining group applied as the test set. This design is applied
to the training of methods SGF(1), SGF(2), and SGF(3), the
details of which are summarized in Algorithm 2.

Where ngF( ) and ngF( ; Tepresent the convolutional
parameters and the deconvolutional parameters of the
SGF(i) model, respectively.

C. Stage Two

In this phase, we use the Hollywood2 and UCF datasets to
train the SGF model based on the operational process com-
pleted in the first stage. The two datasets have more than
80000 frames altogether from different video sequences and
the corresponding ground truth map. Similar to stage one, we
train three models individually and use the loss function in (12)
to fine-tune the parameters. The detailed training procedure is
summarized in Algorithm 3.

Here, ngF(l.) and ngF(i) represent the convolutional and
deconvolutional parameters for the SGF(i) model, respectively.

VI. EXPERIMENTAL RESULTS

In this section, we report the experimental results of the
proposed approach for video eye fixation detection. First,
we describe the five datasets and evaluation metrics used in
this paper. Second, we provide the experimental results to
demonstrate the advantages of our approach. We compared
our method with 11 existing state-of-the-art methods, and both
qualitative and quantitative analyses of the experimental results
are presented.
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TABLE I

INFORMATION ON THE SI1X IMAGE SALIENCY DATASETS

IEEE TRANSACTIONS ON CYBERNETICS

Dataset MSRA THUS THUR DUT-OMRON DUTS ECSSD Total
Size 1000 10000 6232 5168 15572 1000 38976
TABLE II
INFORMATION OF THE FIVE VIDEO DATASETS
Dataset Video Subject Resolution Total Duration Camera Scenes
Numbers Numbers
VAGBA [60] 50 14 1920*1280 500s Static Outdoor
CRCNS [61] 50 8 640*480 2-118 s per video Dynamic & Static Outdoor & Indoor
DIEM [62] 84 50 720*576-1280%720 120-180 s per video Dynamic & Static Outdoor & Indoor
HOLLYWOOD?2 [45] 824 16 528*224-720*528 20.1h Dynamic & Static Movie
UCF [52] 150 16 480*360-720*576 958 s Dynamic & Static Sports

True Positive Rate

04 08
False Positive Rate

(a)

Fig. 6.

4 06
False Positive Rate

(b)

our proposed model achieves an advanced performance compared with the others.

TABLE III

. [
Recall

MODEL PERFORMANCE COMPARISON USING FIVE DIFFERENT METRICS ON HOLLYWOOD?2

Precision-recall and ROC curves gained from 12 models. (a) and (c) Hollywood2 dataset. (b) and (d) UCF-sports dataset. We can clearly see that

SGF(E) | MTDS | RFCN | GAFL SUN MSS PQFT SP FES UHF HSSR | GBVS

sAUCT | 0.8857 | 0.8334 | 0.7567 0.8304 | 0.6620 | 0.6506 | 0.6718 | 0.6500 | 0.8291 | 0.7907 | 0.7618 | 0.7168
NSS1T 1.4189 | 1.2464 | 0.9845 1.0557 | 0.5071 | 0.3606 | 0.4582 | 0.3083 | 1.1936 | 0.9890 | 0.7275 | 0.9515
CcCt 0.5855 | 0.3561 0.2792 0.2988 | 0.1366 | 0.0945 | 0.1066 | 0.0864 | 0.3807 | 0.2510 [ 0.1829 | 0.2557

SIM? 0.4695 | 0.2639 | 0.2297 0.2344 | 0.1362 | 0.1414 | 0.1420 | 0.1363 | 0.2819 | 0.1700 | 0.1490 [ 0.1975
EMD| 2.2314 | 3.0745 | 3.5861 3.4407 | 4.4743 | 41072 | 4.4180 | 4.5863 | 2.6970 | 3.8098 | 4.2837 | 3.5416

The best three results are shown in red, blue, and brown, respectively.

A. Datasets

To verify the effectiveness of the proposed model, inten-
sive experiments were conducted on five publicly available

a sequence of fixed integers from O to 255. The precision P,

datasets in line with the majority of previous efforts, including

VAGBA [60], CRCNS [61], DIEM [62],

Hollywood2 [45],

and UCF [52]. Descriptions of these datasets are summarized
and compared in Table II.

B. Metrics of Evaluations

To evaluate the performance effectively, we adopted seven

true positive rate TPR, and false positive rate FPR are defined,
respectively, as follows:

|P N FG;| |Pi N FG;|
P= ,TPR=Y 1
; |P;] ; IFG;|
|PiNBGi|
FPR = ) 13
; BGJ (13)

C. Performance Comparison

To validate the advantages of our proposed model,

widely used indicators for eye fixation detection, including the
receiver operating characteristic (ROC) curve, the precision
recall (PR) curve, area under the ROC curve (shuffled-
AUC) [63], the linear correlation coefficient (CC) [64], the
similarity (SIM), the EMD [47], and the normalized scan-
path saliency (NSS) [59]. ROC and AUC are generated by
thresholding pixels in a fixation map into binary masks with

we compared it with 11 methods, including MTDS [41],
RFCN [35], GAFL [48], SUN [22], MSS [21], PQFT [17],
SP [12], FES [24], UHM [42], HSSR [23], and GBVS [15].
The specific experimental results are presented below.

1) Experimental Comparison: To verify the performance
of the proposed model (SGF), we plotted the ROC and PR
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TABLE IV
MODEL PERFORMANCE COMPARISON USING FIVE DIFFERENT METRICS ON UCF

IEEE TRANSACTIONS ON CYBERNETICS

SGF(E) | MTDS RFCN GAFL SUN MSS PQFT SP FES UHF HSSR | GBVS
sAUC? 0.8624 0.7791 0.6923 0.8350 0.7183 | 0.6518 | 0.6599 | 0.6669 | 0.8246 | 0.8339 | 0.6983 | 0.6839
NSS1T 1.4493 1.0525 - 1.1908 0.7614 | 0.4959 | 0.3067 | 0.5378 | 1.2875 1.2867 | 0.6625 | 1.2035
CCt 0.5532 0.3598 0.3049 0.3881 0.2290 | 0.1749 | 0.1089 | 0.1979 | 0.4431 0.3497 | 0.1962 | 0.3604
SIM1 0.4555 0.2733 0.2067 0.3110 0.1585 | 0.1735 | 0.1514 | 0.1779 | 0.3577 | 0.1962 | 0.1501 | 0.2295
EMD| 2.4096 3.5393 3.2845 2.6805 4.4155 | 4.0080 | 4.7652 | 4.3314 | 2.2495 3.6832 | 4.4801 | 3.1090
The best three results are shown in red, blue, and brown, respectively.
TABLE V
DIFFERENCES BETWEEN THE FOUR MENTIONED MODELS
TRAINING DATASET MODEL STRUTRE
ALIENT EYE T THREE FOUR
S N WO ou PRESAL BOUNDARY MAP
OBJECT FIX DECONV | DECONV DECONV
DETECT DETECT LAYER LAYER LAYER
SGF (1) N x N x x
SGF (2) N x N X x
SGF (3) N N N x x
OPB X X % N
SGF,, N N N N x
SGF(E) N N N N N
TABLE VI
ABLATION ANALYSIS OF THE PROPOSED METHOD ON TWO DATASETS
Hollywood2 UCF-Sports
SGF(1) | SGF(2) | SGF(3) OPB SGF,» SGF(E) SGF(1) SGF(2) SGF(3) OPB SGF.p SGF(E)
sAUC?T | 0.8498 0.8262 0.8776 0.4989 0.4996 0.8857 0.8141 0.7751 0.8507 0.5021 0.5017 0.8624
SIM? 0.3569 0.3731 0.4568 0.1192 0.2338 0.4695 0.3524 0.3588 0.4473 0.1075 0.1916 0.4555
CCt 0.4321 0.4508 0.5579 0.2010 0.2387 0.5855 0.4205 0.4418 0.5355 0.1140 0.1718 0.5532
NSS1T 1.2592 1.2674 1.4688 0.5392 0.5392 1.4189 1.1599 1.1388 1.4304 0.2497 0.4237 1.4493
EMD| 2.8682 2.9315 2.2396 3.1926 3.1926 2.2314 3.2626 3.3780 2.4788 3.8843 3.4966 2.4096

our model shows a better generalization capability in dealing
with complicated scenes, and can accurately find eye fixation
points to make predictions that are closest to the ground truth.

2) Ablation Study: To evaluate the performance of SGF in
comparison with the four models proposed in this paper, we
summarize the main differences among the four models in
Table V, and the results of their performance comparisons are
given in Table VL.

As shown, the SGF(E) model, which combines the motion
information from OPB and the memory information from the
SGF(3) model, achieves the best performance on both datasets.
Correspondingly, two important conclusions can be drawn:
1) the memory information from the previous frames is useful
for detections in the current frame and 2) the motion infor-
mation across neighboring frames plays a constructive role in
improving the overall performance through a fusion of this
information with current detections.

VII. CONCLUSION

In this paper, we proposed a robust deep model for the
detection of video eye fixations. By studying the mecha-
nisms of human visual attention and memory, we simulate
the process of viewing video sequences by human beings,

and added both memory and motion information to enable
the model to capture the salient points across neighbor-
ing frames. With this process, both the previous detection
and the motion information were taken into account to
achieve the maximum probability of eye fixations, which
improve the accuracy of the detection results. Intensive exper-
iments validated the superiority of our proposed model in
comparison with 11 representative existing state-of-the art
methods.

Finally, we highlight our main contributions as follows.

1) We proposed a deep model for video saliency detection
without the need of any preprocessing operations.
The memory information was exploited to enhance
the model generalization by considering the fact that
changes between two adjacent frames inside a video are
limited within a certain range, and hence the correspond-
ing eye fixations should remain correlated.
Extensive experiments were carried out and compara-
tive results were reported, which not only supported that
our proposed model is superior in comparison with the
previous methods but also validated the robustness of
our proposed approaches.

Further research can be identified to focus more on human
brain activities and explore in detail the mechanism of human

2)

3)
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memory, thereby achieving more accurate and robust detec-
tions of eye fixation points as well as their saliencies.
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