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Abstract—In many decision making tasks, values of features and decision are ordinal. Moreover, there is a monotonic constraint that

the objects with better feature values should not be assigned to a worse decision class. Such problems are called ordinal classification

with monotonicity constraint. Some learning algorithms have been developed to handle this kind of tasks in recent years. However,

experiments show that these algorithms are sensitive to noisy samples and do not work well in real-world applications. In this work, we

introduce a new measure of feature quality, called rank mutual information (RMI), which combines the advantage of robustness of

Shannon’s entropy with the ability of dominance rough sets in extracting ordinal structures from monotonic data sets. Then, we design

a decision tree algorithm (REMT) based on rank mutual information. The theoretic and experimental analysis shows that the proposed

algorithm can get monotonically consistent decision trees, if training samples are monotonically consistent. Its performance is still good

when data are contaminated with noise.

Index Terms—Monotonic classification, rank entropy, rank mutual information, decision tree

Ç

1 INTRODUCTION

ORDINAL classification is a kind of important tasks in
management decision, evaluation, and assessment,

where the classes of objects are discretely ordinal, instead
of numerical or nominal. In these tasks, if there exists a
constraint that the dependent variable should be a mono-
tone function of the independent variables [5], [19], namely,
given two objects x and x0, if x � x0, then we have
fðxÞ � fðx0Þ, we call this kind of tasks monotonic classifica-
tion, also call it ordinal classification with monotonicity
constraints [2], [3], [5], multicriteria decision making [1], [4].

Monotonic classification tasks widely exist in real-world
life and work. We select commodities in a market according
to the price and quality; employers select their employees
based on their education and experience; investors select
stocks or bonds in terms of their probability of appreciation
or risk; Universities select scholarship offers according to
students’ performances. Editors make a decision on a
manuscript according to its quality. If we collect a set of
samples of a monotonic classification task, we can extract
decision rules from the data for understanding the decisions
and building an automatic decision model.

Compared with general classification problems, much
less attention has been paid to monotonic classification
these years [6], [7]. In some literature, a monotonic
classification task was transformed from a k-class ordinal

problem to k� 1 binary class problems [9]. Then a learning
algorithm for general classification tasks was employed on
the derived data. In fact, this technique did not consider the
monotonicity constraints in modeling.

Rule extraction from monotonic data attracts some
attention from the domains of machine learning and
decision analysis. Decision tree induction is an efficient,
effective, and understandable technique for rule learning
and classification modeling [10], [11], [12], where a function
is required for evaluating and selecting features to partition
samples into finer subsets in each node. Several measures,
such as Gini, chi-square, and Gain ratio, were introduced
into decision tree construction algorithms [10], [12]. It was
concluded that Shannon’s entropy outperforms other
evaluation functions in most tasks [13]. Information en-
tropy-based decision tree algorithms have been widely
discussed and used in machine learning and data mining.
Unfortunately, Shannon’s information entropy cannot
reflect the ordinal structure in monotonic classification.
Even given a monotone data set, the learned rules might not
be monotonic. This does not agree with the underlying
assumption of these tasks and limits the application of these
algorithms to monotonic classification.

In order to deal with monotonic classification, entropy-
based algorithms were extended in [14], where both the
error and monotonicity were taken into account while
building decision trees; a nonmonotonicity index was
introduced and used in selecting attributes. In [15], an
order-preserving tree-generation algorithm was developed
and a technique for repairing nonmonotonic decision trees
was provided for multiattribute classification problems
with several linearly ordered classes. In 2003, a collection
of pruning techniques were proposed to make a nonmono-
tone tree monotone by pruning [33]. Also in 2003, Cao-Van
and Baets constructed a tree-based algorithm to avoid
violating the monotonicity of data [16], [41]. In [32], Kamp
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et al. proposed a new algorithm for learning isotonic
classification trees (ICT). In 2008, Xia et al. extended the
Gini impurity used in CART to ordinal classification, and
called it ranking impurity [17]. Although the algorithms
mentioned above enhance the capability of extracting
ordinal information, they cannot ensure a monotone tree
is built if the training data are monotone.

In 2009, Kotlowski and Slowinski proposed an algorithm
for rule learning with monotonicity constraints [18]. They
first monotonized data sets using a nonparametric classifi-
cation procedure and then generated rule ensemble con-
sistent with the monotonized data sets. In 2010, Feelders also
discussed the effectiveness of relabeling in the monotonic
classification [40]. If there is a small quantity of inconsistent
samples, this technique may be effective. However, if a lot of
inconsistent samples exist, these techniques have to revise
the labels of the inconsistent samples, as shown in [18]. This
maybe lead to information loss. In 2010, Jimnez et al.
introduced a new algorithm, POTMiner, to identify frequent
patterns in partially ordered trees [19]. This algorithm did
not consider the monotonicity constraints.

In addition, by replacing equivalence relations with
dominance relations, Greco et al. generalized the classical
rough sets to dominance rough sets for analyzing multi-
criteria decision making problems in [20]. The model of
dominance rough sets can be used to extract rules for
monotonic classification [36], [39]. Since then a collection of
research works have been reported to generalize or employ
this model in monotonic classification [20], [21], [22], [23],
[24], [35]. It was reported that dominance rough sets
produced large classification boundary on some real-world
tasks [28], which made the algorithm ineffective as no or
few consistent rules could be extracted from data.

Noise has great influence on modeling monotonic
classification tasks [25]. Intuitively, algorithms considering
monotonicity constraints should offer significant benefit
over nonmonotonic ones because the monotonic algorithms
extract the natural properties of the classification tasks.
Correspondingly, the learned models should be simpler
and more effective. However, numerical experiments
showed that the ordinal classifiers were statistically indis-
tinguishable from nonordinal counterparts [25]. Sometimes
ordinal classifiers performed even worse than nonordinal
ones. What are the problems with these ordinal algorithms?
The authors attributed this unexpected phenomenon to the
high levels of nonmonotonic noise in data sets. In fact, both
the experimental setup and noisy samples lead to the
incapability of these ordinal algorithms. In order to
determine whether applying monotonicity constraints im-
proves performance of algorithms, one should make a
monotone version of this algorithm that resembles the
original algorithm as much as possible and then to see
whether performance improves.

More than 15 years ago, robustness was considered as an
important topic in decision analysis [26]. In monotonic
classification, decisions are usually given by different
decision makers. The attitudes of these decision makers
may vary from time to time. Therefore, a lot of inconsistent
samples exist in gathered data sets. If the measures used to
evaluate quality of attributes in monotonic classification are
sensitive to noisy samples, the performance of the trained

models would degrade. An effective and robust measure of
feature quality is required in this domain [38].

The objective of this work is to design a robust and
understandable algorithm for monotonic classification tasks.
There usually are a lot of inconsistent samples in the noisy
context. We introduce a robust measure of feature quality,
called rank entropy, to compute the uncertainty in mono-
tonic classification. As we know, Shannon’s information
entropy is robust in evaluating features for decision tree
induction [10], [13], [34]. Rank entropy inherits the advan-
tage of robustness of Shannon’s entropy [27]. Moreover, this
measure is able to reflect the ordinal structures in monotonic
classification. Then, we design a decision tree algorithm
based on the measure. Some numerical tests are conducted
on artificial and real-world data sets. The results show the
effectiveness of the algorithm. The contributions of this work
is threefolds. First, we discuss the properties of rank entropy
and rank mutual information (RMI). Second, we propose a
decision tree algorithm based on rank mutual information.
Finally, systemical experimental analysis is presented to
show the performance of the related algorithms.

The rest of the paper is organized as follows: Section 2
introduces the preliminaries on monotonic classification.
Section 3 gives the measure of ordinal entropy and
discusses its properties. The new decision tree algorithm
is introduced in Section 4. Numerical experiments are
shown in Section 5. Finally, conclusions and future work are
given in Section 6.

2 PRELIMINARIES ON MONOTONIC CLASSIFICATION

AND DOMINANCE ROUGH SETS

Let U ¼ fx1; . . . ; xng be a set of objects and A be a set of
attributes to describe the objects; D is a finite ordinal set of
decisions. The value of xi in attributes a 2 A or D is denoted
by vðxi; aÞ or vðxi;DÞ, respectively. The ordinal relations
between objects in terms of attribute a or D is denoted by �.
We say xj is no worse than xi in terms of a or D if vðxi; aÞ �
vðxj; aÞ or vðxi;DÞ � vðxj;DÞ, denoted by xi �a xj and
xi �D xj, respectively. Correspondingly, we can also define
xi �a xj and xi �D xj . Given B � A, we say xi �B xj if for
8a 2 B, we have vðxi; aÞ � vðxj; aÞ. Given B � A, we
associate an ordinal relation on the universe defined as

R�B ¼ fðxi; xjÞ 2 U � Ujxi �B xjg:

A predicting rule is a function

f : U ! D;

which assigns a decision in D to each object in U . A
monotonically ordinal classification function should satisfy
the following constraint:

xi � xj ) fðxiÞ � fðxjÞ; 8xi; xj 2 U:

As to classical-classification tasks, we know that the
constraint is

xi ¼ xj ) fðxiÞ ¼ fðxjÞ; 8xi; xj 2 U:

Definition 1. Let DT ¼ <U;A;D> be a decision table, B � A.
We say DT is B-consistent if 8a 2 B and xi; xj 2 U ,
vðxi; aÞ ¼ vðxj; aÞ ) vðxi;DÞ ¼ vðxj;DÞ.
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Definition 2. Let DT ¼ <U;A;D> be a decision table, B � A.
We say DT is B-monotonically consistent if 8xi; xj 2 U ,
xi �B xj, we have xi �D xj.

It is easy to show that a decision table is B-consistent if it
is B-monotonically consistent [5].

In real-world applications, data sets are usually neither
consistent nor monotonically consistent due to noise and
uncertainty. We have to extract useful decision rules from
these contaminated data sets. Dominance rough sets were
introduced to extract decision rules from data sets. We
present some notations to be used throughout this paper.

Definition 3. Given DT ¼ <U;A;D>;B � A, we define the
following sets

1. ½xi��B ¼ fxj 2 U jxi �B xjg;
2. ½xi��D ¼ fxj 2 Ujxi �D xjg.
We can easily obtain the following properties:

1. If C � B � A, we have ½xi��C � ½xi�
�
B;

2. If xi �B xj, we have xj 2 ½xi��B and ½xj��B � ½xi�
�
B;

3. ½xi��B ¼ [f½xj�
�
Bjxj 2 ½xi�

�
Bg;

4. [f½xi��Bjxi 2 Ug ¼ U .

The minimal and maximal elements of decision D are
denoted by dmin and dmax, respectively, and d�i ¼ fxj 2
U jdi � vðxj;DÞg. Then d�min ¼ U and d�max ¼ dmax.

Definition 4. Given DT ¼ <U;A;D>, B � A, di is a decision
value of D. As to monotonic classification, the upward lower
and upper approximations of d�i are defined as

R�Bd
�
i ¼

�
xj 2 Uj½xj��B � d

�
i

�
;

R�Bd
�
i ¼

�
xj 2 U j½xj�>B \ d

�
i 6¼ ;

�
;

The model defined above is called dominance rough sets,
introduced by Greco et al. [20]. This model was widely
discussed and applied in recent years [21], [23], [24].

We know that d�i is a subset of objects whose decisions

are equal to or better than di, and R�Bd
�
i is a subset of objects

whose decisions are no worse than di if their attribute

values are better than xi, whereas R�Bd
�
i is a subset of objects

whose decisions might be better than di. Thus R�Bd
�
i is the

pattern consistently equal to or better than di.

It is easy to show that R�Bd
�
i � d�i � R�Bd

�
i and the subset

of objects

BNDBðd�i Þ ¼ R�Bd
�
i �R�Bd

�
i

is called the upward boundary region of di in terms of
attribute set B.

Analogically, we can also give the definitions of down-

ward lower and upper approximations, and boundary

region R�Bd
�
i , R�Bd

�
i , BNDBðd�i Þ. We can obtain that

BNDB

�
d�i
�
¼ BNDB

�
d�i�1

�

for 8i > 1. Finally, the monotonic dependency of D on B is
computed as

�BðDÞ ¼
jU � [Ni¼1 BNDBðdiÞj

jU j :

If decision table DT is monotonically consistent in terms
of B, we have BNDBðdiÞ ¼ ;. In addition, as d�max ¼ U and
d�min ¼ U thus R�Bd

�
max ¼ U and R�Bd

�
min ¼ U .

Dominance rough sets give us a formal framework for
analyzing consistency in monotonic classification tasks.
However, it was pointed out that decision boundary
regions in real-world tasks are so large that we cannot
build an effective decision model based on dominance
rough sets because too many inconsistent samples exist in
data sets according to the above definition [28]. Dominance
rough sets are heavily sensitive to noisy samples. Several
mislabeled samples might completely change the trained
decision models. Here, we give a toy example to show the
influence of noisy data.

Example 1. Table 1 gives a toy example of monotonic
classification. There are 10 samples described with an
attribute A. These samples are divided into three grades
according to decision D. We can see that the decisions of
these samples are consistent for the samples with larger
attribute values are assigned with the same or better
decisions. In this case dependency �AðDÞ ¼ 1.

Now we assume that samples x1 and x10 are
mislabeled; and x1 belongs to d3, while x10 belongs to
d1. As

d�1 ¼ fx1; . . . ; x10g; d�2 ¼ fx1; x5; x6; x7; x8; x9g;
d�3 ¼ fx1; x8; x9g;

then

R�d�1 ¼ fx1; . . . ; x10g; R�d�1 ¼ fx1; . . . ; x10g;
R�d�2 ¼ ;; R�d�2 ¼ fx1; . . . ; x10g;
R�d�3 ¼ ;; R�d�3 ¼ fx1; . . . ; x10g:

So R�Bd
�
2 ¼ R

�
Bd
�
3 . We derive �AðDÞ ¼ 0 in this context.

From this example, we can see that dominance rough
sets are sensitive to noisy data.

The above analysis shows that although the model of
dominance rough sets provides a formally theoretic frame-
work for studying monotonic classification, it may not be
effective in practice due to noise. We should introduce a
robust measure.

3 RANK ENTROPY AND RANK MUTUAL

INFORMATION

Information entropy performs well in constructing decision
trees. However, it cannot reflect the ordinal structure in
monotonic classification. The model of dominance rough
sets provides a formal framework for studying monotonic
classification; however, it is not robust enough in dealing
with real-world tasks. In this section, we introduce a
measure, called rank mutual information [27], to evaluate
the ordinal consistency between random variables.
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Definition 5. Given DT ¼ <U;A;D>;B � A. The ascending

and descending rank entropies of the system with respect to B

are defined as

RH�B ðUÞ ¼ �
1

n

Xn
i¼1

log
j½xi��Bj
n

; ð1Þ

RH�B ðUÞ ¼ �
1

n

Xn
i¼1

log
j½xi��Bj
n

: ð2Þ

Example 2 (Continue Example 1).

RH�A ðUÞ ¼ �
1

10

X10

i¼1

log
j½xi��Aj

10

¼ � 1

10
log

10

10
� 1

10
log

9

10
� 1

10
log

7

10
� 1

10
log

8

10

� 1

10
log

5

10
� 1

10
log

6

10
� 1

10
log

4

10
� 1

10
log

3

10

� 1

10
log

2

10
� 1

10
log

1

10
¼ 0:7921;

RH�DðUÞ ¼ �
1

10

X10

i¼1

log
j½xi��Dj

10

¼ � 4

10
log

10

10
� 3

10
log

6

10
� 3

10
log

3

10
¼ 0:5144:

Since 1 � j½xi�
�
B j

n � 0, we have RH�B ðUÞ � 0 and RH�B ðUÞ �
0. RH�B ðUÞ ¼ 0 (RH�B ðUÞ ¼ 0) if and only if 8xi 2 U , ½xi��B ¼
U (½xi��B ¼ U). Assume C � B � A. Then 8xi 2 U , we have

½xi��B � ½xi�
�
C (½xi��B � ½xi�

�
C). Accordingly, RH�B ðUÞ �

RH�C ðUÞ (RH�B ðUÞ � RH
�
C ðUÞ).

Definition 6. Given <U;A;D>;B � A;C � A, The ascending

rank joint entropy of the set U with respect to B and C is

defined as

RH�B[CðUÞ ¼ �
1

n

Xn
i¼1

log

��½xi��B \ ½xi��C
��

n
; ð3Þ

and descending rank joint entropy of the set U with respect to

B and C is defined as

RH�B[CðUÞ ¼ �
1

n

Xn
i¼1

log

��½xi��B \ ½xi��C
��

n
: ð4Þ

Given DT ¼ <U;A;D> and B � A, C � A, we have

RH�B[CðUÞ � RH
�
B ðUÞ;RH

�
B[CðUÞ � RH

�
C ðUÞ;

RH�B[CðUÞ � RH
�
B ðUÞ;RH

�
B[CðUÞ � RH

�
C ðUÞ:

Given DT ¼ <U;A;D>;C � B � A. Then we have

RH�B[CðUÞ ¼ RH
�
B ðUÞ and RH�B[CðUÞ � RH

�
B ðUÞ.

Definition 7. Given DT ¼ <U;A;D>, B � A, C � A, If C is

known, the ascending rank conditional entropy of the set U

with respect to B is defined as

RH�BjCðUÞ ¼ �
1

n

Xn
i¼1

log

��½xi��B \ ½xi��C
����½xi��C

�� ; ð5Þ

and descending rank conditional entropy of the set U with
respect to B is defined as

RH�BjCðUÞ ¼ �
1

n

Xn
i¼1

log

��½xi��B \ ½xi��C
����½xi��C

�� : ð6Þ

Given DT ¼ <U;A;D>;B � A;C � A, we have that

RH�BjCðUÞ ¼ RH
�
B[CðUÞ �RH

�
C ðUÞ

and RH�BjCðUÞ ¼ RH
�
B[CðUÞ �RH

�
C ðUÞ.

Given DT ¼ <U;A;D>;B � C � A, we have that
RH�BjCðUÞ ¼ 0 and RH�BjCðUÞ ¼ 0.

Given DT ¼ <U;A;D>;B � A;C � A. It is easy to
obtain the following conclusions:

1.

RH�B[CðUÞ � RH
�
B ðUÞ þRH

�
C ðUÞ;

RH�B[CðUÞ � RH
�
B ðUÞ þRH

�
C ðUÞ;

2.

RH�BjCðUÞ � RH
�
B ðUÞ; RH

�
BjCðUÞ � RH

�
C ðUÞ;

RH�BjCðUÞ � RH
�
B ðUÞ; RH

�
BjCðUÞ � RH

�
C ðUÞ:

Definition 8. Given DT ¼ <U;A;D>;B � A;C � A. The
ascending rank mutual information (ARMI) of the set U
between B and C is defined as

RMI�ðB;CÞ ¼ � 1

n

Xn
i¼1

log

��½xi��B
��� ��½xi��C

��
n�

��½xi��B \ ½xi��C
��; ð7Þ

and descending rank mutual information (DRMI) of the set U
regarding B and C is defined as

RMI�ðB;CÞ ¼ � 1

n

Xn
i¼1

log

��½xi��B
��� ��½xi��C

��
n�

��½xi��B \ ½xi��C
��: ð8Þ

In essence, rank mutual information can be considered as
the degree of monotonicity between features B and C. The
monotonicity should be kept in monotonic classification.
Rank mutual information RMI�ðB;DÞ or RMI�ðB;DÞ can
be used to reflect the monotonicity relevance between
features B and decision D. So it is useful for ordinal feature
evaluation in monotonic decision tree construction.

Given DT ¼ <U;A;D>;B � A;C � A, we have that

1.

RMI�ðB;CÞ ¼ RH�B ðUÞ �RH
�
BjCðUÞ

¼ RH�C ðUÞ �RH
�
CjBðUÞ;

2.

RMI�ðB;CÞ ¼ RH�B ðUÞ �RH
�
BjCðUÞ

¼ RH�C ðUÞ �RH
�
CjBðUÞ:
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Given DT ¼ <U;A;D>;B � C � A, we have that

1. RMI�ðB;CÞ ¼ RH�B ðUÞ;
2. RMI�ðB;CÞ ¼ RH�B ðUÞ.
G i v e n DT ¼ < U;A;D > , B � A. RMI�ðB;DÞ �

RH�DðUÞ. If 8xi 2 U , we have ½xi��B � ½xi�
�
D, then we say that

the decision D is B-ascending consistent and RMI�ðB;DÞ ¼
RH�DðUÞ. If 8xi 2 U , we have that ½xi��B � ½xi�

�
D, then we say

the decision D is B-descending consistent and RMI�ðB;
DÞ ¼ RH�DðUÞ. In addition, if D is B-ascending consistent,
then D is also B-descending consistent.

The above analysis tells us that the maximum of rank
mutual information between features and decision equals
the rank entropy of decision, and rank mutual information
arrives at its maximum if the classification task is mono-
tonically consistent with respect to these features. In this
case, addition of any new feature will not increase the rank
mutual information. In constructing decision trees, we add
features one by one for partition the samples in a node until
the mutual information does not increase by adding any
new feature [10], [11]. Thus, the algorithm stops there.

Shannon’s entropy is widely employed and performs well
in learning decision trees. The rank entropy and rank mutual
information not only inherits the advantage of Shannon’s
entropy, but also measure the degree of monotonicity
between features. We have the following conclusions.

Given DT ¼ <U;A;D>;B � A and C � A. If we replace
ordinal subsets ½xi��B with equivalence classes ½xi�B, where
½xi�B is the subset of samples taking the same feature values
as xi in terms of feature set B, then we have

1. RH�ðBÞ ¼ HBðUÞ, RH�ðBÞ ¼ HBðUÞ;
2. RH�BjCðUÞ ¼ RHBjCðUÞ, RH

�
BjCðUÞ ¼ RHBjCðUÞ;

3. RMI�ðB;CÞ ¼MIðB;CÞ; RMI�ðB;CÞ ¼MIðB;CÞ.
The above properties show that rank entropy, rank

conditional entropy, and rank mutual information will

degenerate to Shannon’s one if we replace ½xi��B with ½xi�B.
Thus, we can consider that rank entropy is a natural
generalization from Shannon’s entropy. As we know
Shannon’s entropy is robust in measuring relevance between
features and decision for classification problems, we desire
that rank entropy and rank mutual information are also
robust enough in dealing with noisy monotonic tasks.

Fig. 1 shows six scatter plots of 500 samples in different
2D feature spaces, where the relation between the first three
feature pairs are linear; and some features are contaminated
by noise; the fourth feature pair is completely irrelevant to
each other; the final two are nonlinear monotonous. We
compute the rank mutual information of these feature pairs.
We can see that the first and last pairs return the maximal
values of rank mutual information among these feature
pairs as these pairs are nearly linear or nonlinear mono-
tonous, while the feature pair in Subplot four gets a very
small value as these two features are irrelevant. The
example shows that rank mutual information is effective
in measuring ordinal consistency.

4 CONSTRUCTING DECISION TREES BASED ON

RANK ENTROPY

Decision tree is an effective and efficient tool for extracting
rules and building classification models from a set of
samples [10], [11], [12], [29], [30], [31]. There are two basic
issues in developing a greedy algorithm for learning
decision trees [37]: feature evaluation and pruning strate-
gies, where feature evaluation plays the central role in
constructing decision trees; it determines which attribute
should be selected for partition the samples if the samples
in a node do not belong to the same class. As to classical
classification tasks, Shannon’s entropy is very effective. In
this section, we substitute Shannon’s entropy with rank
entropy for monotonic decision trees.
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We only consider univariate binary trees in this work.
Namely, in each node we just use one attribute to split the
samples and the samples are divided into two subsets.
Assume Ui the subset of samples in the current node and ai
is selected for splitting Ui in this node. Then the samples are
divided into Ui1 and Ui2, where Ui1 ¼ fx 2 Uijvðai; xÞ � cg
and Ui2 ¼ fx 2 Uijvðai; xÞ > cg.

Before introducing the algorithm, the following rules
should be considered in advance [15].

1. Splitting rule S: give S to generate partition in each
node;

2. Stopping criterion H: determine when to stop
growing the tree and generate leaf nodes;

3. Labeling rule L: assign class labels to leaf nodes.

As to splitting rule S, we here use rank mutual
information to evaluate the quality of features. Given
attributes A ¼ fa1; a2; . . . ; aNg and a subset of samples Ui,
we select attribute a and parameter c satisfying the
following condition:

a ¼ arg max
aj

RMI�ðaj; c;DÞ

¼ arg max
aj
� 1

jUij
X
x2Uj

log

��½x��aj
��� ��½x��D

��
jUij �

��½x��aj \ ½x��D
��;

ð9Þ

where c is a number to split the value domain of aj such that
the split yields the largest rank mutual information between
aj and D computed with the samples in the current node.
As binary trees are used, we just require one number to split
the samples in each node.

Now we consider the stopping criterion. Obviously, if all
the samples in a node belong to the same class, the algorithm
should stop growing the tree in this node. Moreover, in order
to avoid overfitting data, we also stop growing the tree if the
rank mutual information produced by the best attribute is
smaller than a threshold ". Moreover, some other prepruning
techniques can also be considered here [33].

Regarding labeling rule L, if all the samples in a leaf
node come from the same class, this class label is assigned
to the leaf node. However, if the samples belong to different
classes, we assign the median class of samples to this leaf.
Furthermore, if there are two classes having the same
number of samples and the current node is a left branch of
its parent node, we then assign the worse class to this node;
otherwise, we assign the better class to it.

The monotonic decision tree algorithm based on rank
mutual information is formulated in Table 2.

Now, we study the properties of monotonic decision
trees generated with the above procedure.

Definition 9. Given ordinal decision tree T , the rule from the
root node to a leaf l is denoted by Rl. If two rules Rl and Rm

are generated from the same attributes, we say Rl and Rm are
comparable; otherwise they are not comparable. In addition, we
denote Rl < Rm if the feature value of Rl is less than Rm. Rl

and Rm are also called left node and right node, respectively.
As to a set of rules R, we call it is monotonically consistent if
for any comparable pair of rules Rl and Rm, if Rl < Rm, then
DðRlÞ < DðRmÞ, where DðRlÞ and DðRmÞ are the decisions
of these rules; otherwise, we say R is not monotonically
consistent.

Property 1. Given <U;A;D>, if U is monotonically consistent,

then the rules derived from the ordinal decision trees are also

monotonically consistent.

Proof. Let Rl and Rm be a pair of comparable rules, and

Rl < Rm. We prove that DðRlÞ < DðRmÞ. If U is mono-

tonically consistent, then for any x; y 2 U , vðD; xÞ 6¼
vðD; yÞ, we can get an attribute ai 2 A, such that

vðai; xÞ 6¼ vðai; yÞ. That is, 9ai 2 A, it can separate x and

y. So the samples in the node of x belong to the same

decision, while the samples in the node of y belong to

another decision. Thus, if we want to derive DðRlÞ <
DðRmÞ, we just need to show if 8x; y 2 Ui [ Uj, vðD;xÞ <
vðD; yÞ, we have x 2 Ui, y 2 Uj. As U is monotonically

consistent, for 8x; y 2 Ui [ Uj and vðD; xÞ < vðD; yÞ, 9ai 2
A, such that vðai; xÞ < vðai; yÞ. Then the parent node of Rl

and Rm can get the maximal RMIða;DÞ. We have

vða; xÞ < vða; yÞ, namely, x 2 Ui and y 2 Uj. tu

The above analysis shows us that with algorithm REMT

we can derive a monotonic decision tree from a mono-

tonically consistent data set.
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We give a toy example to show this property. We generate
a data set of 30 samples described with two features, as
shown in Fig. 2. These samples are divided into five classes.
Now we employ CART and REMT to train decision trees,
respectively. Figs. 3 and 4 give the trained models.

CART returns a tree with eleven leaf nodes, while REMT
generates a tree with nine leaf nodes. Most of all, the tree
trained with CART is not monotonically consistent for there
are two pairs of conflicted rules. From left to right, we can
see the fourth rule is not monotonically consistent with the
fifth rule; besides, the sixth rule is not monotonically
consistent with the seventh rule, where the objects with the
better features get the worse decision. However, REMT
obtains a consistent decision tree.

5 EXPERIMENT ANALYSIS

There are several techniques to learn decision models for
monotonic classification. In order to show the effectiveness
of the proposed algorithm, we conduct some numerical
experiments with artificial or real-world data sets. We
compare the proposed algorithm with others on real-world
classification tasks.

First, we introduce the following function to generate
monotone data sets:

f x1; x2ð Þ ¼ 1þ x1 þ
1

2

�
x2

2 � x2
1

�
; ð10Þ

where x1 and x2 are two random variables independently
drawn from the uniform distribution over the unit interval.

In order to generate ordered class labels, the resulting
numeric values were discretized into k intervals ½0; 1=k�;
ð1=k; 2=k�; . . . ; ðk� 1=k; 1�. Thus each interval contains ap-
proximately the same number of samples. The samples
belonging to one of the intervals share the same rank label.
Then we form a k-class monotonic classification task. In this
experiment, we try k ¼ 2; 4; 6, and 8, respectively. The data
sets are given in Fig. 5.

We here use the mean absolute error for evaluating the
performance of decision algorithms, computed as

MAE ¼ 1

N

XN
i¼1

ŷi � yij j; ð11Þ

where N is the number of samples in the test set and byi is
the output of the algorithm and yi is the real output of the
i0th sample.

We first study the performance of algorithms on different
numbers of classes. We generate a set of artificial data sets
with 1,000 samples and the class number varies from 2 to 30.
Then we employ CART, Rank Tree [17], OLM [6], OSDL [41],
and REMT to learn and predict the decisions. OLM is an
ordinal learning model introduced by Ben-David et al.,
while OSDL is ordinal stochastic dominance learner based
on associated cumulative distribution [41].

Based on fivefold cross-validation technique, the average
performance is computed and given in Table 3. REMT

2058 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012

Fig. 2. Artificial data, where 30 samples are divided into 5 classes.

Fig. 3. Nonmonotonic decision tree trained with CART, where two pairs
of rules are not monotonically consistent.

Fig. 4. Monotonic decision tree trained with REMT, where all rules are
monotonically consistent.

Fig. 5. Synthetic monotone data sets, where the samples are divided
into 2, 4, 6, and 8 classes, respectively.



yields the least errors in all the cases except the case two
classes are considered.

In addition, we also consider the influence of sample
numbers on the performance of trained models. We first
generate artificial data of 1,000 samples and 4 classes. And
then we randomly draw training samples from this set. The
size of training samples ranges from 4 to 36. In this process,
we guarantee there is at least one representative sample
from each class. The rest samples are used in testing for
estimating the performance of the trained models. The
curves of loss varying with number of training samples are
shown in Fig. 6. We can see that REMT is more precise than
CART and rank trees, no matter how many training
samples are used. In addition, we can also see that the
difference between rank tree and REMT gets smaller and
smaller as the number of training samples increases.

In order to test how our approach behaves in real-world
applications, we collected 12 data sets. Four data sets come
from UCI repository: Car, CPU performance, Ljubljana
breast cancer, and Boston housing pricing. Bankruptcy
comes from the experience of a Greek industrial develop-
ment bank financing industrial and commercial firms and
the other data sets were obtained from weka homepage
(http://www.cs.waikato.ac.nz/ml/weka/).

Before training decision trees, we have to preprocess the
data sets. Because we use ascending rank mutual informa-
tion as the splitting rule, we assume that larger rank value
should come from larger feature values; we call this positive
monotonicity. In practice, we may confront the case that the
worse feature value should get the better ranks. This is
called negative monotonicity. If we use REMT, we should
transform the problem of negative monotonicity to a
positive monotonicity task. There are several solution to
this objective. We compute reciprocal of feature values if
negative monotonicity happens.

For each data set, we randomly drew n 	Ni samples as a
training set each time, where Ni is the number of classes,
n ¼ 1; 2; 3, and so on. At least one sample from each class
was drawn in each round when we generate the training
set. The remained samples are used as the test set. We
compute the mean absolute loss as the performance of the
trained model. The experiment was repeated 100 times. The
average over all 100 results is output as the performance of
the models. The results are given in Fig. 7, where " ¼ 0:01.

Regarding the curves in Fig. 7, we see REMT is much
better than CART and Rank Tree in most cases, except data
set Breast and CHNUnvRank. Moreover, we can also see
that if the size of training sets is very small, REMT is much
better than Rank Tree and CART. As the number of training

samples increases, the superiority becomes less and less.
This trend shows REMT is more effective than CART and
Rank Tree if the size of training samples is small.

In order to compare the performance when data sets are
monotonic, we now relabel the samples so as to generate
monotonic training sets. Before training decision trees,
we first introduced a monotonization algorithm to revise
the labels of some samples and generated monotone
training data sets [18]. And then we learned decision trees
and predicted labels of test samples. The variation of loss
varying with the numbers of training samples is given in
Fig. 8. The same conclusion can be derived.

Finally, we test these algorithms on the data sets based
on fivefold cross-validation technique. Table 4 presents the
mean absolute loss yielded with different learning algo-
rithms, including REMT, CART, Rank Tree, OLM, and
OSDL. Among 12 tasks, REMT obtains the best performance
on six, while CART, Rank tree, OLM, and OSDL produce 2,
0, 2, and 3 best results, respectively. REMT outperform
CART over ten tasks, and it produce better performances
than Rank tree, OLM, and OSDL on 9, 10, and 9 tasks,
respectively. As a whole, REMT produces the best average
performance over 12 tasks, The experimental results show
that REMT is better than CART, Rank tree, OLM, and OSDL
in most cases.

We also calculate the mean absolute loss of these
algorithms on monotonized data sets. The generalization
performance based on cross validation is given in Table 5.
Comparing the results in Tables 4 and 5, we can see all the
mean absolute errors derived from different algorithms
decrease if data are monotonized. Furthermore, REMT
outperforms CART, Rank tree, OLM, and OSDL on 11, 9, 9,
and 10 tasks, respectively. The results show REMT is also
more effective than other techniques if training sets are
monotonized.

6 CONCLUSIONS AND FUTURE WORK

Monotonic classification is a kind of important tasks in
decision making. There is a constraint in these tasks that
the features and decision are monotonically consistent.
That is, the objects with better feature values should not
get worse decisions. Classical learning algorithms cannot
extract this monotonous structure from data sets, thus they
are not applicable to these tasks. Some monotonic decision
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TABLE 3
MAE on Artificial Data

Fig. 6. Loss curves of CART, Rank Tree, and REMT, where the size of
training samples gradually increases.



algorithms have also been developed in these years by
integrating monotonicity with indexes of separability, such
as Gini, mutual information, dependency, and so on.
However, the comparative experiments showed that noisy
samples have great impact on these algorithms. In this
work, we combine the advantage of robustness of
Shannon’s entropy with the ability of dominance rough

sets in extracting ordinal structures from monotonic data

sets by introducing rank entropy. We improve the classical

decision tree algorithm with rank mutual information and

design a new decision tree technique for monotonic

classification. With the theoretic and numerical experi-

ments, the following conclusions are derived.
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Fig. 7. Average performance of real-world tasks before monotonization, where the x-coordinate is the number of training samples and y-coordinate is
mean absolute error.



1. Monotonic classification is very sensitive to noise;
several noisy samples may completely change the
evaluation of feature quality. A robust measure of
feature quality is desirable.

2. Mutual information is a robust index of feature
quality in classification learning; however it
cannot reflect the ordinal structure in monotonic

classification. Rank mutual information combines
the advantage of information entropy and dom-
inance rough sets. This new measure cannot only
measure the monotonous consistency in monotonic
classification, but also is robust to noisy samples.

3. Rank entropy-based decision trees can produce
monotonically consistent decision trees if the given
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Fig. 8. Average performance curves of real-world tasks after monotonization, where the x-coordinate is the number of training samples and y-

coordinate is mean absolute error.



training sets are monotonically consistent. When the
training data is nonmonotonic, our approach pro-
duces a nonmonotonic classifier, but its performance
is still good.

It is remarkable that sometimes just a fraction of features
satisfies the monotonicity constraint with decision in real-
world tasks. Some of features do not satisfy this constraint.
In this case, decision rules should be in the form that if
Feature 1 is equal to a1 and Feature 2 is better than a2, then
decision D should be no worse than dk. This problem is
called partial monotonicity. We require some measures to
evaluate the quality of two types of features at the same
time when we build decision trees from this kind of data
sets. We will work on this problem in the future.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the
anonymous reviewers for their constructive comments,
which is helpful for improving the manuscript. This work
is supported by National Natural Science Foundation of
China under Grants 60703013 and 10978011, Key Program
of National Natural Science Foundation of China under
Grant 60932008, National Science Fund for Distinguished

Young Scholars under Grant 50925625 and China Post-

doctoral Science Foundation. Dr. Hu is supported by The

Hong Kong Polytechnic University (G-YX3B).

REFERENCES

[1] J. Wallenius, J.S. Dyer, P.C. Sishburn, R.E. Steuer, S. Zionts, and K.
Deb, “Multiple Criteria Decision Making, Multiattribute Utility
Theory: Recent Accomplishments and What Lies Ahead,” Manage-
ment Science, vol. 54, no. 7, pp. 1336-1349, 2008.

[2] B. Zhao, F. Wang, and C.S. Zhang, “Block-Quantized Support
Vector Ordinal Regression,” IEEE Trans. Neural Networks, vol. 20,
no. 5, pp. 882-890, May 2009.

[3] B.Y. Sun et al., “Kernel Discriminant Learning for Ordinal
Regression,” IEEE Trans. Knowledge and Data Engineering, vol. 22,
no. 6, pp. 906-910, June 2010.

[4] C. Zopounidis and M. Doumpos, “Multicriteria Classification and
Sorting Methods: A Literature Review,” European J. Operational
Research, vol. 138, pp. 229-246, 2002.

[5] R. Potharst and A.J. Feelders, “Classification Trees for Problems
with Monotonicity Constraints,” ACM SIGKDD Explorations
Newsletter, vol. 4, no. 1, pp. 1-10, 2002.

[6] A. Ben-David, L. Sterling, and Y.H. Pao, “Learning and
Classification of Monotonic Ordinal Concepts,” Computational
Intelligence, vol. 5, pp. 45-49, 1989.

[7] A. Ben-David, “Automatic Generation of Symbolic Multiattribute
Ordinal Knowledge-Based DSSs: Methodology and Applications,”
Decision Sciences, vol. 23, pp. 1357-1372, 1992.

[8] E. Frank and M. Hall, “A Simple Approach to Ordinal Classifica-
tion,” Proc. 12th European Conf. Machine Learning, pp. 145-156,
2001.

[9] J.P. Costa and J.S. Cardoso, “Classification of Ordinal Data Using
Neural Networks,” Proc. 16th European Conf. Machine Learning,
pp. 690-697, 2005.

[10] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, no. 1, pp. 81-106, 1986.

[11] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[12] L. Breiman et al., Classification and Regression Trees. Chapman and
Hall, 1993.

[13] J. Mingers, “An Empirical Comparison of Selection Measures for
Decision-Tree Induction,” Machine Learning, vol. 3, no. 4, pp. 319-
342, 1989.

[14] A. Ben-David, “Monotonicity Maintenance in Information-Theo-
retic Machine Learning Algorithms,” Machine Learning, vol. 19,
pp. 29-43, 1995.

[15] R. Potharst and J.C. Bioch, “Decision Trees for Ordinal
Classification,” Intelligent Data Analysis, vol. 4, pp. 97-111,
2000.

[16] K. Cao-Van and B.D. Baets, “Growing Decision Trees in an
Ordinal Setting,” Int’l J. Intelligent Systems, vol. 18, pp. 733-750,
2003.

[17] F. Xia, W.S. Zhang, F.X. Li, and Y.W. Yang, “Ranking with
Decision Tree,” Knowledge and Information Systems, vol. 17, pp. 381-
395, 2008.

[18] W. Kotlowski and R. Slowinski, “Rule Learning with Mono-
tonicity Constraints,” Proc. 26th Ann. Int’l Conf. Machine Learning,
pp. 537-544, 2009.

[19] A. Jimnez, F. Berzal, and J.-C. Cubero, “POTMiner: Mining
Ordered, Unordered, and Partially-Ordered Trees,” Knowledge and
Information Systems, vol. 23, no. 5, pp. 199-224, 2010.

[20] S. Greco, B. Matarazzo, and R. Slowinski, “Rough Approximation
of a Preference Relation by Dominance Relations,” European J.
Operational Research, ICS Research Report 16/96, vol. 117, pp. 63-
83, 1999.

[21] S. Greco, B. Matarazzo, and R. Slowinski, “Rough Sets Methodol-
ogy for Sorting Problems in Presence of Multiple Attributes and
Criteria,” European J. Operational Research, vol. 138, pp. 247-259,
2002.

[22] S. Greco, B. Matarazzo, and R. Slowinski, “Rough Approxima-
tion by Dominance Relations,” Int’l J. Intelligent Systems, vol. 17,
pp. 153-171, 2002.

[23] J.W.T. Lee and E.C.C. Tsang, “Rough Sets and Ordinal Reducts,”
Soft Computing, vol. 10, pp. 27-33, 2006.

[24] Q.H. Hu, D.R. Yu, and M.Z. Guo, “Fuzzy Preference-Based Rough
Sets,” Information Sciences, vol. 180, no. 10, pp. 2003-2022, 2010.

2062 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012

TABLE 4
Mean Absolute Loss (Before Monotonization)

TABLE 5
Mean Absolute Loss (After Monotonization)



[25] A. Ben-David, L. Sterling, and T. Tran, “Adding Monotonicity to
Learning Algorithms May Impair Their Accuracy,” Expert Systems
with Applications, vol. 36, pp. 6627-6634, 2009.

[26] J.S. Dyer, P.C. Fishburn, R.E. Steuer, J. Wallenius, and S. Zionts,
“Multiple Criteria Decision Making, Multiattribute Utility Theory:
The Next Ten Years,” Management Science, vol. 38, pp. 645-654,
1992.

[27] Q.H. Hu, M.Z. Guo, D.R. Yu, and J.F. Liu, “Information Entropy
for Ordinal Classification,” Science in China Series F: Information
Sciences, vol. 53, no. 6, pp. 1188-1200, 2010.

[28] S. Greco, B. Matarazzo, R. Slowinski, and J. Stefanowski, “Variable
Consistency Model of Dominance-Based Rough Sets Approach,”
Proc. Second Int’l Conf. Rough Sets and Current Trends in Computing
(RSCTC ’00), pp. 170-181, 2001.

[29] B. Chandra and P.P. Varghese, “Fuzzy SLIQ Decision Tree
Algorithm,” IEEE Trans. Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 38, no. 5, pp. 1294-1301, Oct. 2008.

[30] H.W. Hu, Y.L. Chen, and K. Tang, “Dynamic Discretization
Approach for Constructing Decision Trees with a Continuous
Label,” IEEE Trans. Knowledge and Data Eng., vol. 21, no. 11,
pp. 1505-1514, Nov. 2009.

[31] D. Hush and R. Porter, “Algorithms for Optimal Dyadic Decision
Trees,” Machine Learning, vol. 80, no. 1, pp. 85-107, 2010.

[32] R.V. Kamp, A.J. Feelders, and N. Barile, “Isotonic Classification
Trees,” Proc. Eight Int’l Symp. Intelligent Data Analysis, pp. 405-416,
2009.

[33] A.J. Feelders and M. Pardoel, “Pruning for Monotone Classifica-
tion Trees,” Proc. Fifth Int’l Symp. Intelligent Data Analysis, pp. 1-12,
2003.

[34] D. Cai, “An Information-Theoretic Foundation for the Measure-
ment of Discrimination Information,” IEEE Trans. Knowledge and
Data Eng., vol. 22, no. 9, pp. 1262-1273, Sept. 2010.

[35] Y.H. Qian, C.Y. Dang, J.Y. Liang, and D.W. Tang, “Set-Valued
Ordered Information Systems,” Information Sciences, vol. 179,
no. 16, pp. 2809-2832, 2009.

[36] J.C. Bioch and V. Popova, “Rough Sets and Ordinal Classifica-
tion,” Proc. 12th Belgian-Dutch Artificial Intelligence Conf. (BNAIC
’00), pp. 85-92, 2000.

[37] J.C. Bioch and V. Popova, “Labelling and Splitting Criteria for
Monotone Decision Trees,” Proc. 12th Belgian-Dutch Conf. Machine
Learning (BENELEARN ’02), pp. 3-10, 2002.

[38] J.C. Bioch and V. Popova, “Monotone Decision Trees and
Noisy Data,” Proc. 14th Belgian-Dutch Conf. Artificial Intelligence
(BNAIC ’02), pp. 19-26, 2002.

[39] V. Popova, “Knowledge Discovery and Monotonicity,” PhD
thesis, Erasmus Univ., 2004.

[40] A. Feelders, “Monotone Relabeling in Ordinal Classification,”
Proc. IEEE Int’l Conf. Data Mining (ICDM ’10), pp. 803-808, 2010.

[41] C.-V. Kim, “Supervised Ranking from Semantics to Algorithms,”
PhD thesis, Ghent Univ., 2003.

Qinghua Hu received the BE, ME, and PhD
degrees from Harbin Institute of Technology,
China, in 1999, 2002, and 2008, respectively.
Currently, he is working as an associate
professor with Harbin Institute of Technology
and a postdoctoral fellow with the Hong Kong
Polytechnic University. His research interests
include intelligent modeling, data mining, knowl-
edge discovery for classification, and regres-
sion. He is a PC cochair of RSCTC 2010 and

severs as referee for a great number of journals and conferences. He
has published more than 70 journal and conference papers in the areas
of pattern recognition and fault diagnosis. He is a member of the IEEE.

Xunjian Che received the BE degree from
Harbin Institute of Technology in 2009. Cur-
rently, he is working toward the master’s degree
from the Harbin Institute of Technology. His
research interests include large-margin learning
theory, preference learning, and monotonic
classification.

Lei Zhang received the BS degree from the
Shenyang Institute of Aeronautical Engineering,
China, in 1995 and the MS and PhD degrees in
electrical and engineering from Northwestern
Polytechnical University, Xi’an, China, in 1998
and 2001, respectively. From 2001 to 2002, he
was a research associate in the Department of
Computing, The Hong Kong Polytechnic Uni-
versity. From January 2003 to 2006, he was a
postdoctoral fellow in the Department of Elec-

trical and Computer Engineering, McMaster University, Canada. Since
January 2006, he has been an assistant professor in the Department of
Computing, The Hong Kong Polytechnic University. His research
interests include image and video processing, biometrics, pattern
recognition, multisensor data fusion, machine learning and optimal
estimation theory, etc. He is a member of the IEEE.

David Zhang received the BSc degree in
computer science from Peking University, the
MSc degree in computer science in 1982, and
the PhD degree in 1985 from the Harbin Institute
of Technology (HIT). From 1986 to 1988, he was
a postdoctoral fellow at Tsinghua University and
then an associate professor at the Academia
Sinica, Beijing. In 1994, he received the second
PhD degree in electrical and computer engineer-
ing from the University of Waterloo, Ontario,

Canada. Currently, he is working as a head in Department of
Computing, and a chair professor at the Hong Kong Polytechnic
University where he is the founding director of the Biometrics
Technology Centre (UGC/CRC) supported by the Hong Kong SAR
Government in 1998. He also serves as visiting chair professor in
Tsinghua University, and an adjunct professor in Shanghai Jiao Tong
University, Peking University, Harbin Institute of Technology, and the
University of Waterloo. He is the founder and editor-in-chief in
International Journal of Image and Graphics (IJIG), book editor of the
Springer International Series on Biometrics (KISB), organizer in the first
International Conference on Biometrics Authentication (ICBA), associ-
ate editor of more than 10 international journals including IEEE
Transactions and Pattern Recognition, technical committee chair of
IEEE CIS, and the author of more than 10 books and 200 journal papers.
He is a croucher senior research fellow, distinguished speaker of the
IEEE Computer Society, and a fellow of the IEEE and IAPR.

HU ET AL.: RANK ENTROPY-BASED DECISION TREES FOR MONOTONIC CLASSIFICATION 2063



Maozu Guo received the bachelor and master’s
degrees from the Department of Computer
Sciences, Harbin Engineering University, in
1988 and 1991, respectively, and the PhD
degree from the Department of Computer
Sciences, Harbin Institute of Technology in
1997. Currently, he is working as a director of
the Natural Computation Division, Harbin Insti-
tute of Technology, program examining expert of
Information Science Division of NSFC, senior

member of China Computer Federation (CCF), and member of CCF
Artificial Intelligence and Pattern Recognition Society, member of
Chinese Association for Artificial Intelligence (CAAI), and standing
committee member of Machine Learning Society of CAAI. His research
interests include machine learning and data mining, computational
biology and bioinformatics, advanced computational models, image
process, and computer vision. He has implemented several projects
from the Natural Science Foundation in China (NSFC), National 863Hi-
tech Projects, the Science Fund for Distinguished Young Scholars of
Heilongjiang Province, International Cooperative Project. He has won
one second prize of the Province Science and Technology Progress,
and one third prize of the Province Natural Science. He has published
more than 100 papers in journals and conferences.

Daren Yu received the ME and PhD degrees
from Harbin Institute of Technology, China, in
1988 and 1996, respectively. Since 1988, he has
been working at the School of Energy Science
and Engineering, Harbin Institute of Technology.
His main research interests include modeling,
simulation, and control of power systems. He
has published more than 100 conference and
journal papers on power control and fault
diagnosis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2064 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


