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Abstract—Rough sets, especially fuzzy rough sets, are suppos-
edly a powerful mathematical tool to deal with uncertainty in data
analysis. This theory has been applied to feature selection, dimen-
sionality reduction, and rule learning. However, it is pointed out
that the classical model of fuzzy rough sets is sensitive to noisy
information, which is considered as a main source of uncertainty
in applications. This disadvantage limits the applicability of fuzzy
rough sets. In this paper, we reveal why the classical fuzzy rough set
model is sensitive to noise and how noisy samples impose influence
on fuzzy rough computation. Based on this discussion, we study
the properties of some current fuzzy rough models in dealing with
noisy data and introduce several new robust models. The proper-
ties of the proposed models are also discussed. Finally, a robust
classification algorithm is designed based on fuzzy lower approx-
imations. Some numerical experiments are given to illustrate the
effectiveness of the models. The classifiers that are developed with
the proposed models achieve good generalization performance.

Index Terms—Fuzzy rough sets, model, robustness, rough sets.

I. INTRODUCTION

OUGH set theory [1], especially fuzzy rough set theory

[2], which encapsulates two kinds of uncertainty of fuzzi-
ness and roughness into a single model, has attracted much atten-
tion from the domains of granular computing, machine learning,
and uncertainty reasoning over the past decade [3]-[10]. Fuzzy
information granulation and approximate reasoning are two el-
emental modules of human cognition and reasoning [11], [59].
We form fuzzy concepts of the universe according to their at-
tributes and utilize these concepts to approximately describe
other objects. The fuzzy rough set theory imitates the idea hid-
den in human reasoning. This theory granulates the universe of
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discourse into a set of fuzzy concepts based on fuzzy relations
and then approximates arbitrary fuzzy sets with these fuzzy
concepts. Thus, this theory is considered to be an important
mathematical tool for granular computing [12], [48], [49], [55],
[58].

In the framework of Pawlak’s rough sets, the universe is di-
vided into a set of equivalence classes (which are also called
elemental concepts) according to the attribute values of the ob-
jects. Usually, the knowledge about the universe is limited, such
that we can just divide the universe into a set of granules of
limited granularity. In this case, if we utilize these elemental
concepts to describe new sets, we are usually not able to ob-
tain perfect description as there is a region of approximation
boundary. Rough sets are introduced to characterize the bound-
ary in approximation. In fuzzy rough sets, operators of fuzzy
lower and upper approximations were defined. The difference
between upper approximation and lower approximation is called
the boundary of the approximated subset. If the elemental con-
cepts that are used in approximation are of large granularity, the
boundary region would be large as well. However, if the elemen-
tal concepts become finer by introducing new knowledge, the
boundary region would correspondingly become smaller. The
size of boundary region reflects the approximation capability of
the elemental concepts. Assume that the elemental concepts are
generated with some attributes and the subsets to be approxi-
mated are the classification of the objects. Then, the size of the
boundary reflects the capability of the attributes to describe the
classification.

Fuzzy rough set theory has been successfully used in gene
clustering [13], feature selection [3], [5], [9], attribute reduction
[71, [14], [15], case generation, and rule extraction [16]-[18],
[56]. The dependence function, which is defined as the ratio of
the sizes of the lower approximation of classification over the
universe, plays a key role in these applications. This function
underlies a number of learning algorithms, including feature
selection, attribute reduction, rule extraction, and decision trees
[19], [52], [56]. In these algorithms, a function is required to
evaluate attribute quality. The learned model is expected to work
well on unseen samples that are generated with the same but
unknown probability distribution as the training set.

Since the real distribution is not available, dependence be-
tween features and decision is estimated with a finite set of
training samples. We assume that the test samples satisfy the
same distribution as the training set. However, usually, this as-
sumption is not exactly true due to uncertainty of randomness.
In this case, the robustness of learning algorithms is very im-
portant; otherwise, small deviation in training samples may lead
to completely different models. Robustness becomes more and
more important as data quality cannot be guaranteed in real-
world applications. Noisy information may be introduced in data
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acquisition, storage, and transmission [20], [21]. Especially in
the context of data mining, data are not well prepared for a sin-
gle task, and they may be gathered from multiple sources and
for multiple tasks [22]. It is inevitable to deal with corrupted
information in this case [23]-[26], [51], [57], [60].

Claimed as a powerful mathematical tool to deal with uncer-
tainty, it is shown that the rough set models are heavily sensitive
to noisy samples. Experimental analysis reveals that fuzzy rough
sets are sensitive to mislabeled samples [40]. One mislabeled
sample may result in significantly different fuzzy approxima-
tions of classification. The classical model of fuzzy rough sets
should be improved to deal with noisy tasks.

In fact, several works have been conducted to combat with
noise in the domain of rough sets. In 1990, Yao et al. gave the
model of decision-theoretic rough sets [27]. In 1993, Ziarko in-
troduced the model of variable precision rough sets (VPRS) [28],
and in 2005, Slezak and Ziarko proposed the Bayesian rough set
model. Among these models, VPRS was widely discussed and
used in dealing with noisy tasks [29]-[31]. Meanwhile, the clas-
sical fuzzy rough set model was also improved to analyze noisy
data. In 2003, Salido and Murakami presented a [3-precision
aggregation fuzzy rough set model based on (3-precision aggre-
gation triangular operators [32]. In 2004, the model of variable
precision fuzzy rough sets (VPFRS) was introduced in [33],
where the fuzzy memberships of a sample to the lower and
upper approximations are computed with fuzzy inclusion. In
2007, Hu et al. introduced another fuzzy rough set model based
on fuzzy granulation and fuzzy inclusion [14]. In addition, in
2007, Cornelis et al. presented a model called vaguely quanti-
fied rough sets (VQRS) [34], which was used in constructing a
robust feature selection algorithm in 2008 [35]. In 2009, Zhao
et al. constructed a new model, which is called fuzzy variable
precision rough sets (FVPRS), to handle noise of misclassifica-
tion and perturbation [47]. In 2010, Cornelis et al. constructed
a model of fuzzy rough sets based on ordered weighted average
operators [54].

To the best of our knowledge, no extensive work has been
devoted to discussing the influence of noise on rough approxi-
mation and on the statistics defined in rough sets so far. To this
end, we try to give answers to the following questions in this
paper: Why are the current models of rough sets sensitive to
noise? What effect does the noisy information have on rough
computation? How are robust models of rough sets developed
for handling noisy tasks? The answers will help us to under-
stand and utilize fuzzy rough models and construct effective
algorithms based on the models.

Roughly speaking, there are two types of noise: attribute
noise and class noise [36]. Attribute noise is usually introduced
by sensors in data acquisition [37], while class noise is generated
by sample mislabeling. Attribute noise leads to the variations of
samples’ locations in feature spaces, while class noise changes
the class labels of samples. These two kinds of noise have dif-
ferent impact on learning algorithms and have different effect
on dependence estimation when the rough set theory is consid-
ered. Unfortunately, no work has been devoted to studying and
comparing the performances of these models in dealing with
noise so far. In this paper, we focus on these problems and give
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systematic analysis on robust fuzzy rough set models. We ex-
pect to reveal why the classical model is not robust to noisy
samples and analyze the advantages and disadvantages of the
current models and indicate how to improve them.

The remainder of this paper is organized as follows. First,
we give preliminary knowledge of rough sets and fuzzy rough
sets in Section II; then, we discuss the existing models of robust
fuzzy rough sets in Section III. A collection of robust models
of fuzzy rough sets are introduced in Section IV. Experimental
analysis is given in Section V. Finally, conclusions are drawn in
Section VI.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

We review the definitions of rough sets and fuzzy rough sets
in this section and discuss their disadvantages.

A. Basic Definitions

Given a finite set of objects U = {z1, x9, ..., 2, } described
with a set of attributes A = {ay,as,...,an,}, each object
x; € U can be formulated as a vector &; = (1, Ti2, - - -, Tim )»
where z;; is the jth feature value of sample x;. We call
IS = (U, A) an information system. As to Pawlak’s rough set
model, the value domains of features are discrete. Under this
condition, i.e., VB C A, an equivalence relation can be gen-
erated over the universe: IND(B) = {(z,y) € U x Ula(x) =
a(y),¥a € B}. With IND(B), U is partitioned into a fam-
ily of equivalence classes. The equivalence class induced by
attribute B and sample z; is denoted by [x;] 5, which is a sub-
set of samples having the same feature values as ;. Given a
classification task, the class labels of the objects are known
in advance. Let X be a subset of objects belonging to the
same class. The lower and upper approximations of X with
respect to B are defined as BX = {z; € Ul[z;]p € X} and
BX = {x; € U|[z;]p N X # 0}, respectively. The lower ap-
proximation of X consists of the samples whose equivalence
classes consistently belong to X, while its upper approximation
is the subset of samples whose equivalence classes have ob-
jects in X. If BX # BX, the approximation boundary of X is
computed as BN Dp(X) = BX — BX, which is the subset of
objects whose equivalence classes are inconsistent. They have
the same feature values but belong to different classes. As per
classification modeling, we want to know the consistent patterns
hidden in datasets.

The aforementioned model is constructed under the assump-
tion that only discrete features exist in the information system.
In practice, most of classification tasks are described with nu-
merical features or fuzzy information. In this case, neighbor-
hood relations or fuzzy similarity relations are used and neigh-
borhood or fuzzy granules are generated. Then, we use these
granules to approximate decision classes. Let U be a finite set
of objects and R be a fuzzy similarity relation on U gener-
ated with features B (note that we here assume that R(z,y)
monotonously decreases with the distance between x and
y). We have R(x,z) =1, R(x,y) = R(y,z), and R(z,z) >
T(R(z,y), R(y, 2)). [xilp = rin /a1 +rigfxa + -+ -+ 7in J2n
is the fuzzy granule induced by z; and B. For any fuzzy subset
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X in U, two pairs of fuzzy approximation operators are defined
as
Rs X(x) = inf S(N(R(z,y)), X(y))

yelU

Ry X(x) =supT(R(z,y), X (y))

yelU
Ry X(z) = }g[f] I(R(z,y), X(y))

Ry X(x) = SEIU)U(N(R(w,y))»X(y)) (M
y
where T', S, ¢, and o stand for fuzzy triangular norm (7-norm),
fuzzy triangular conorm (7'-conorm), T'-residuated implication
and its dual, respectively, and [V is a negator. The standard nega-
tor is defined as N(x) = 1 — x. Some typical fuzzy operators
are listed as follows:

Ty (a,b) = min{a, b}, Sy (a,b) = max{a, b}

1, a<b 0, a>b
Uy (a,b) = { oum(a,b) = { )

b, a>b b, a<b.
See [4], [38], [39], and [46] for more information on fuzzy
operators and their properties.

The aforementioned models of fuzzy rough sets can be used in
classification and regression analysis. In this paper, we focus on
classification tasks. The derived results can be easily extended to
regression analysis. Given a classification learning task DT =
(U, A, D), where D is the decision attribute dividing the objects
into classes d1, ds, . . . ,dy, Ris a fuzzy relation computed with
B C Aand akernel function. Then, triangular norm 7, should
be introduced because the derived fuzzy relations are T¢,s-fuzzy
equivalence relations [40]. As x € U, we have

Rsdi(e) = ipf (1~ R(z,v))
Rrd;(z) = sup R(z,y)
yEd;
Rydi(z) = nf (VT~ F(z,3)
R, d;(x) = sup(1 - V1= R (z,y)). 3)

Given x € d;, it is easy to show that 1 > Rgd,(x) > 0 (1 >
Ryd;(z) > 0). Rsd;(x) (Red;(x)) is considered as the level
at which z certainly belongs to d;, and Ry d;(z) (R,d;(x)) is
the degree at which x possibly belongs to d;. Obviously, Rsd;
(Rod;(z)) and Ry d; (R, d;(z)) are two fuzzy subsets. We have
Rgd; Cd; C Ryd; (Red; C d; C Ryd;). Rsd; (Rpd;) is also
called fuzzy positive region of d;, and BN Dy (d;) = Rgd; —
Rrd; (BNDg(d;) = Ryd; — R,d;) is called fuzzy boundary
of di .

In classification learning, it is natural to desire that the mem-
bership of each sample belonging to its decision is as large as
possible. A function, which is called dependence of D on B, is
defined as

_ |U§NL1 Edi‘

“

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 4, AUGUST 2012

where R is the fuzzy similarity relation induced with B, and
| @ | is the fuzzy cardinality of fuzzy sets. Dependence reflects
the capability of B in approximating D for it is used to measure
quality of features in feature selection, attribute reduction, and
rule learning. Dependence plays the key role in rough-set-based
learning techniques [1], [3], [5], [9], [18], [19], [40]. The ro-
bustness of these learning algorithms significantly depends on
the properties of the dependence function.

B. Problem Description

Given DT = (U, A, D), d; is the subset of samples with
decision label 4, and R is a fuzzy similarity function, such as
Gaussian function: R(z,y) = exp(—||z — y||* /o), where ||z —
y|| is the distance between z and y.

If Gaussian kernel function is used to compute the simi-
larity and ¢(x) is the corresponding nonlinear mapping, we
have [|p(z) — d(y)|I* = d(x)d(x) + d(y)d(y) — d(2)b(y) —
o(y)p(x). According to the properties of kernel functions,
we have ||¢(z) — ¢(y)||* = 2 — 2R(z, y) [40]. Therefore, 1 —
R(z,y) is the squared distance between z and y in the kernel
feature space. Thus, Rgd;(x) is the minimal distance between
x and the samples out of d;. A similar result can also be derived
from Ryd; (z).

In Relief-based feature evaluation [41], the algorithm
searches two nearest neighbors of each sample x: one from
the same class, called nearest hit, which is denoted by N H (),
and the other from the different classes, called nearest miss,
which is denoted by N M (). Then, features are evaluated by

1
QZEZH,I‘—NM(Z‘)H — ||z — NH(z)| ®)

where 7 is the number of samples. In fuzzy rough sets,
the membership of x to fuzzy lower approximation can
be written as Rgd;i(z) =1— R(z, NM(x)) or Ryd;(z) =
V11— R2(z, NM(z)).

As to the Gaussian function

Rsdi(x) =1~ exp(~|lz = NM(2)|* /o) (6)

and

Ryd;(2) = /1 —exp?(~ ||z = NM(2)|* /o). (D)

As  p(D) = |UY R|/\UI = |UY Rdil/n =LY,y
Rd; (z), dependence is the mean of the fuzzy lower approx-
imation memberships, which are determined by the distance
between objects and their nearest miss.

Now, we discuss the influence of attribute noise. We con-
sider Gaussian noise as it widely exists in real-world ap-
plications. The noisy lower approximation is computed as
RYdj(x) = Redj(xz)+ 8- N(0,1), where N(0,1) is a stan-
dard normal distribution. Then, the noisy dependence is

75 (D) =) Ryd;(x)/n

=" [Rsd;(x) + 6~ N(0,1)] /n

= Rgd;(z)/n+ 8- N(0,1). ®)
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(b)

Fig. 1. Two toy classification tasks. (a) Clean dataset. (b) Dataset with two
noisy samples.

¥ (D) = ~v5 (D) + B+ N(0,1). The conclusion shows that the
attribution noise might not cause significant variation of depen-
dence if noise satisfies normal distribution.

Then, we consider the influence of class noise on dependence.
Fig. 1 shows a binary classification task, where “+” stands for
samples from Class 1, and “e” means samples from Class 2.
Fig. 1(a) presents a clean dataset, where two classes of samples
are well separated. The near miss of all the samples from Class
1 is zo, whereas the nearest miss of samples from Class 2 is x;.
In this case, dependence is computed as

r=—

S (1-R(zia2) + Y (1- Ry, a1)

z; €0y Tj eCy

9)

However, in Fig. 1(b), there are two noisy samples: x| and
a%. In the new dataset, the near miss of samples from Class 1 is
x| except o), while the nearest miss of samples from Class 2 is
%, except x} . Now, dependence is

, 1{

==
n :1:;6012,:;,763:;
+

x;€Cy,xj#x]

(1= R(zi, 1)) + [1 — R(xy, NM (a5))]

(1= R(xj, 25)) + [1 - R(I/INM(‘ZJI))]}'

(10)
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As the distances between the samples and their nearest miss
decrease greatly in the second case, dependence in the new
case will significantly reduce if the noisy samples exist. The
previous analysis shows that dependence defined in fuzzy rough
sets is not sensitive to attribute noise, but sensitive to class noise.
Several mislabeled samples would alter dependence greatly as
they compute lower approximation with a sensitive statistic. A
robust rough set model should overcome this problem.

III. ROBUST MODELS OF Fuzzy ROUGH SETS

In this section, we introduce some improved models of fuzzy
rough sets. These models are claimed to be robust in dealing
with noisy tasks.

A. [B-Precision Fuzzy Rough Sets

The [-precision fuzzy rough set (G-PFRS) model was in-
troduced to overcome the problem that VPRS cannot handle
numerical features [32]. We first present the definitions of (-
precision quasi-7-norm and 3-precision quasi-7-conorm [32].

Definition 1: Let T be a’T-norm operator,i.e.,T : I x I — I,
which can be extended to the N-dimensional case with the asso-
ciative property, i.e., T : IV — I.1ts corresponding 3-precision
quasi-T-norm, i.e., T (3 € [0,0.5]), should be a mapping,
ie, Ty : IV — I,suchthat VX = (z,29,...,2x5) € IV ex-
pressed in descending order, i.e., T3(X) = T(z1,x2,...,Zy)
with n = max; {k € [0,1,2,...,N] : k < 3V 2;(1 - 8)}.

Definition 2: Let S be a T-conorm operator, i.e., S:
I x I — I, which can be extended to the /V-dimensional
case with the associative property, ie., S:IV — I. Its
corresponding [3-precision quasi-7-conorm, i.e., Sz (8 €
[0,1]), should be a mapping, i.e., Sg : IV — I, such that
VX = {x1,79,...,25} € IV expressed in ascending or-
der, ie., Sp(X)=S(x1,22,...,2,) with n=max,{k €
0,1,2,...,N] : k<N (1 —2:)(1 = B)}.

Definition 3: With the aforementioned triangular operators,
we can obtain the (3-precision version of fuzzy rough set model:

RsX(x) = Ty, SOV(R(x.9)). X (1))
RrX(x) = S5, T(R(x.y). X (1))
RyX(2) = Ty, 9(R(z.y), X (1)
R X (@) = 85,000 (N(R(x,p)). X(5). (1)

In fact, this model will degrade to the one proposed in [32] if
we use operators min and max:

Rs X (x)
Rr X ()

= ming, ,max(l — R(z,y), X(y))

— maxs, pmin(R(z,9), X(1)).  (12)

The authors extended Ziarko’s VPRS to the Dubois and Prade
fuzzy rough set framework by replacing the maximum and min-
imum operators used to calculate the inclusion indexes with
their 3-precision counterparts. Here, we show that 5-PFRS can-
not degenerate to VPRS, although this model is robust to noise.
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Given a classification task DT =
of samples. Then, Vx € d;, we have

Rd;(x) = min max(1 — R(x,y),d;(y)).

[g/EU

(U, A, D), d; is one class

13)

If yed, di(y) =1 max(1—R(z,y),di(y)) =1. If y ¢
d;, max(l— R(x,y),d;(y)) =1—R(z,y). As a whole,
Rd;(x) = min,gy%d[ (1 — R(z,y)). Suppose there are v sam-
ples {z},22,... ,z"}outof d; and g/ = 1 — R(x, 27 ) is ranked
in descending order. That is to say, j; < jo = g{ P> gZ’ 2
Rd;(z) = ming(g},47,...,9)) = min(g},g?, ..., g"), where
u=max,{k €[0,1,2,...,v]: lﬂ<z:1gZ 08)}.
3-precision rough sets do not compute the lower approxima-
tion based on the minimal g/ because it may be computed by
the mislabeled sample. It computes low approximations based
on g which is the minimal one after some little g; are removed.
Essentially, gi' can be considered as the k-trimmed minimum,
where the value of k depends on parameter (.
If = is a normal sample, gl , gf“ .., g; are computed with
class noisy samples, and g}, gl ,...,g; are calculated with nor-
mal samples; then, Rd, () = 1 — R(x, ¢g!) can correctly reflect
the membership of z to the lower approximation of its decision.
This way, the mislabeled samples are omitted in computing the
approximation of a normal sample.

If x is a mislabeled sample, there might be a lot of sam-
ples belonging to different classes around z. In this case, even
some of them are omitted in computing lower approximation,
Rd;(z) =1— R(x,g!) is still small enough. Therefore, the
noisy sample still gets a small membership. If there are a lot of
mislabeled samples, the dependence function will return a small
value.

The previous analysis shows that J-precision rough sets are
robust to class noise.

B. Variable Precision Fuzzy Rough Sets

The first model considering class noise was developed in [27]
and extended in [42]. However, the model of VPRS gets popular
in real-world applications and is widely used in feature selection
and rule extraction [28].

Definition 4: Given a classification task DT = (U, A, D), let
X be a subset of samples. The lower and upper approximations
of X with respect to B are defined as

By X = {[zi]p|IN([z:]p, X) > 1 - B}

By X = {[zi]s|IN([zi]s, X) > B}

where IN(A, B) = |AN B|/|B|,and 0 < 8 < 0.5.

In this model, if majority of samples in [z;]5 belong to X,
we group [z;]p into the lower approximation of X, regardless
of the class label of x;. However, [z;]p is grouped into the
lower approximation of X if and only if all the samples in [z;] 5
are elements of X according to Pawlak rough sets. As per the
original model, [z;]p is computed as a boundary set if there is
a mislabeled sample in [z;]5; however, the mislabeled sample
will be ignored as to VPRS. The advantage of VPRS is the
ability of being robust to class noise, and the disadvantage is
that the mislabeled samples are not reflected in dependence.

(14)
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Two datasets, i.e., one with mislabeled samples and the other
without noise, would produce the same value of dependence.
Therefore, the dependence function in VPRS cannot reflect any
noise information if the noise level in each equivalence is lower
than /3. Obviously, it is not reasonable in practice if we select the
noisy dataset, instead of the clean one if we cannot distinguish
them using dependence. In addition, the model of VPRS is con-
structed with equivalence classes induced by nominal features;
therefore, it cannot directly be used in numerical and fuzzy
information.

Given X = {x1,x9,...,
VPFRS was defined as

2, }, the lower approximation of

infyes,, O(px, (), pr ()
pr, F(Xi) = if Ja, = sup{a € (0,1]: e (X;, F) <1 —u}
0, otherwise
(15)
where S;, = supp(X; N XIFI )and e, (X, F) =1— ‘X‘;Xl“‘ |

—1_ | X;N(XiNF), \
1X |

We see that VPFRS is robust to mislabeled samples as

pr, F(X;) is computed with the samples which satisfy

e (z) > .

C. Vaguely Quantified Rough Sets

In 2007, Cornelis et al. introduced vague quantifiers to soften
the definitions for upper and lower approximations in VPRS and
(G-PFRS [34]. VPRS uses the rough membership function

|[z:]r N X]|
[zilr|

Given 0 < u <[ <1, the lower and upper approximations in
VPRS were defined as

Rx (z;) = (16)

r; € RX, if Rx(w;)>1, =z € RX, if Rx(z;)>u.
A7)

Obviously, this definition leads to crisp boundary of approx-
imations. Based on such observation, vague quantifiers were
introduced. An example of a fuzzy quantifier is the following

parametrized formula. For 0 < o < 8 < 1,and z € [0, 1]

0, <«
Q(a,,f)(x) =
1_2(:10—@)2 a+5< <3
B-a)?’ 2 7
1, x> . (18)

This function can be used to reflect the vague quantifiers, such
as some or most from nature language, when different parameter
values are used, such as Q(g.1,0.6)(7) and Q(g.2,1) (). If = is
the fuzzy inclusion of two fuzzy sets, this function can be used
to extend the fuzzy rough sets to vague quantified fuzzy rough
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sets:
|RynX>
Ry, X(y) = Q <
o XW) =@ TR
_ R,NX
Ro, X(y) = Qu (l Y ) (19)
IRy

where I, is the fuzzy similarity class of y with respect to fuzzy
relation R, and ; and @), are value quantifiers for fuzzy lower
and upper approximations, respectively. The performance of
this model depends on the selection of value quantifiers and the
setting of parameters.

In VQRS, the lower and upper approximations are the func-
tions of inclusion degree of samples’ fuzzy class in the set to be
approximated. The functions are given by the vague quantifiers.
In this context, they do not agree with the basic requirements
of rough sets as the model does not have the basic properties
of rough sets [4]. VQRS computes the lower and upper ap-
proximations based on inclusions, which are robust statistics;
therefore, this model should be robust to noise because a few
noisy samples have little influence on the inclusion degrees of
samples.

D. Fuzzy Variable Precision Rough Sets

In 2009, Zhao et al. proposed a model of FVPRS [18]. Some
delicate mathematical properties of the model was proved in
[18]. We here discuss the robustness of this model.

Definition 5: Given DT = (U, A, D), B C A generates a
fuzzy similarity relation over U and X is a fuzzy setin U. The
fuzzy lower and upper approximation operators with a variable
precision parameter v € [0, 1] are defined as Vz € U

&QX(QT) = X(i;l)f<a S(N(R('T7 y)>7a)
A _inf  S(N(R(zx,y)), X (y))
X(y)>a
RroX(x)= sup T(R(z,y), N(a))
X (y)=N ()
vV sup T(R(z,y),X(y)
X (y)<N(a)
&QX(QT) = X(lgfl)f<a ﬁ(R(x,y), Oé)
A X(IZBE(Y I(R(z,y), X(y))
R,o X(x)= sup o(N(R(z,y)), N(a))
X(y)>N(«a)
V sup  o(N(R(z,y)), X(y)).
X (y)<N(a)

Definition 6: Let X be a class of samples. The aforementioned
operators can be rewritten as

R X(x)= inf S(N(R(r.9)).0)

Rr,X(z) = S T(R(x,y), N(a))
Ry X(z)= inf J(R(z,y),q)

X (y)=0
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RooX(2) = sup o(N(R(z,y)),N(a)).

X(y)=1

(20)

Now, we take s X(x) as an example to discuss the ro-
bustness of these operators. The same conclusion can be de-
rived for other operators. We consider the triangular conorm
“max” and N(a) = 1 — ahere. Rg X (x) = inf, 4 x max{1 —
R(z,y),a}.

Case 1: suppose there is a sample y ¢ X such that
1 — R(x,y) is the minimal one among the samples coming
from U — X. That is to say, y is the nearest miss of x :
NM(z). If 1 - R(z,y) > o, R X(v) =1~ R(x,y); oth-
erwise, &QX(QT) = «. If x is a mislabeled sample, the nearest
miss ¢ of x is a normal sample, and y is close to x, such that
1 — R(x,y) < a, then z should get a small membership as it is
a mislabeled sample. However, FVPRS assigns « to it.

Case 2: Suppose z is a normal sample. However, the nearest
miss of x is a mislabeled sample. That is to say there exists
a mislabeled sample y € U — X close to x, which leads to
1 — R(z,y) < a. Then, FVPRS sets Rs X (z) as a.

If users give a large value to «, the first case is not rational
because class-noisy samples should take small memberships.
However, the second case is not reasonable should « take a
small value for normal samples, producing large memberships.
With the previous analysis, we can see that there exists a con-
tradiction for the model of FVPRS in dealing with class-noisy
tasks. FVPRS may be effective if we just consider attribute
noise, which just perturbs the membership values in a small
arrangement.

E. Soft Fuzzy Rough Sets

In 2010, Hu et al. introduced a new robust model of fuzzy
rough sets, which are called soft fuzzy rough sets, where soft
threshold was used to compute fuzzy lower and upper approxi-
mations [53].

Assume X C U and z € X. The fuzzy lower approximation
of z to X can be considered as the distance from sample point
and the subset of samples U — X. The distance between x and
X is computed as the minimal distance between the point and
points in X. That is

— X| = min ||z —y||.
lz - X|| = min |l — y|

As we know, the statistic min is sensitive to noise. If there is a
noisy sample 2/ € X close to z, the distance between x and X is
determined by the noisy sample, which leads to the sensitivity
of fuzzy rough sets. Therefore, soft distance was introduced
in [53].

Definition 7: Given an object x and a set of objects X, the
soft distance between x and X is defined as

SD(x,X) = arg sup{A(z,y) — fmx} (21)

le—yllyeX

where (3 is a penalty factor, and myx = |{y;|||lx — vl < ||z —

yll3-

Then, with the soft distance, we can give the definition of soft
fuzzy rough sets.
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Definition 8: Let U be a nonempty universe, and let R be a
fuzzy similarity relation on U and X C U. The soft fuzzy lower
and upper approximations of X are defined as

{RS(X)(x) = SD(z,U — X) )
R3(X)(z) = SD(z,X)
where

vyerHx_yH :l—R(l‘,y). (23)

Soft fuzzy rough sets introduced the soft threshold technique
in computing lower and upper approximations. Here, (3 is a key
parameter. If 3 is large, fewer samples are omitted in computing
soft distance. If 3 approaches to a very large number, the model
of soft fuzzy rough sets degrades to classical fuzzy rough sets.
If we specify a small value for 3, then some samples in X
close to x would be disregarded to obtain a larger soft distance.
In essence, soft fuzzy rough sets compute the lower and upper
approximations based on the kth nearest neighbor from U — X,
where k is determined by parameter (3.

With the previous analysis, we know that soft fuzzy rough
sets share the common idea with 3-PFRS. When they compute
the fuzzy lower and upper approximations, they do not use the
nearest neighbors except for the kth nearest neighbor. This way,
the noisy samples may be disregarded when computing approx-
imations. However, different models use different strategies to
determine the value of k. This is the key difference of these
models. In real-world application, the parameters used in the
models have complex interaction ways with noise. Therefore,
it is usually difficult to obtain an optimal value. In this case, a
simple and understandable model is easy to be accepted. In the
next section, we introduce some models of robust fuzzy rough
sets based on a general definition of robust nearest neighbor.

IV. Fuzzy ROUGH SETS BASED ON ROBUST
NEAREST NEIGHBOR

The previous discussion shows that both Rgd; () or Ryd; ()
depends on the nearest miss of z, i.e., the nearest sample from
different classes of x. As we know, the statistics of minimum and
maximum are very sensitive to noisy samples. Just one noisy
sample would change the minimum or maximum of a random
variable. The sensitiveness of these statistics leads to the poor
performance of fuzzy rough sets in dealing with noisy datasets.
Some robust statistics should be introduced to substitute the
operators of minimum and maximum in the fuzzy rough set
model.

Definition 9: Given a random variable X and its n samples
Z1,%2,...,%, sorted in the ascending order, the k-trimmed
minimum of X is xj,1; the k-trimmed maximum of X
iS @, _;_1; k-mean minimum of X is Zle x; /k; k-mean
maximum of X is Y ', x;/k, and k-median minimum
of X is median(xy,...,x;); k-mean maximum of X
is median(z,_j,...,2,), denoted by ming trimmed(X),
maxg —trimmed (X), mink: —mean (X) > maxg —mean (X) >
ming _yedian (X ), and max —pyeqian (X ), respectively.

Definition 10: Given DT = (U, A, D), R is a fuzzy simi-
larity relation induced by B C C' and R(z,y) monotonously
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decreases with their distance ||z — y||. If d; is one class of sam-
ples labeled with ¢ and z € d;, then the robust fuzzy rough
operators are defined as

&k—trimmeddi (.13) = min 1- R(QZ‘, y)
y¢dl k—trimmed
Rkaftrimmcddi (.1?) = max R(l‘, y)
YEdi trimmed
@kftrimmeddi (z) = min 1—R? (z,y)
YEAik trimmed
Rfo’kftrimmeddi (ZC) = max 1- V 1—-R? (937 y)
YEAik trimmed
(24)
&k—meandi (x) = y¢d{ilijie“ 1- R(.’II, y)
Rikamoandi (.I') = max R(l‘, y)
YEdif _mean
Ry, .. di(x)= min 1— R*(z,y)
YEdit mean
Riakfmeandi (x) = max 1- 1 - R? (.73, y)
YEdip mean
(25)
&kfmediandi (LC) = min 1- R(QU, y)
YEdif median
RiTk—median di (LC) = max R(.’IJ, y)
YEdi ) median
&k—mcdiandi (.13) = min 1- R2 (x’ y)
y%d, k—median
Rfakfmcdiandi (x) = max 1- V 1- R2 (.’IJ, y)
YEi . median
(26)

The aforementioned models do not compute the lower and
upper approximations with respect to the nearest samples as
they might be outliers. These new models use k-trimmed or
the mean or the median of k nearest samples to compute the
membership of fuzzy approximations. This way, the variation
of approximations caused by outliers is expected to be reduced;
thus, the new models may be robust.

Given a binary classification task, x € d; is a normal sample,
and y; € dy is an outlier close to = such that R(x,y;) = 0.9.
While as a normal sample, y» € d is the second nearest sample
of x from dy, and R(x,y2) = 0.2. As per the classical fuzzy
rough set model, Rgd(z) =1—R(z,y1)=1-0.9=0.1.
However, if we use the I-trimmed model, Rg | . = d; (x) =
1 — R(x,y2) = 0.8. This way, the noisy sample is ignored in
the new model. At the same time, assume z; € d; is the sec-
ond nearest sample of y;, and R(x1,y;) = 0.88. According
to the classical model, Rgds(y1) =1 — R(z,41) =1—-0.9 =
0.1 and as per the 1-trimmed model, Rg, . = dy(z)=
1 — R(x1,y1) = 0.12. We see that although the nearest sam-
ple x is ignored, y; still obtains a small value of membership. In
fact, the membership should be small enough since y; is a noisy
sample. This example shows that the proposed model can not
only reduce the influence of noisy samples on computation of
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approximations of normal samples but can recognize the noisy
samples and give small memberships to them as well.

Now, we discuss the properties of these robust models. For
simplification, we here just discuss the models defined with
k-trimmed minimum and maximum operators. Some of the fol-
lowing properties are easily extended to other cases.

Proposition 1: Given DT = (U, A, D), R is a fuzzy simi-
larity relation induced by B C C, and R(x,y) monotonously
decreases with their distance A(x, ). If d; is a class of samples
labeled with ¢ and « € U and k is a positive integer, we have

&kftrimmed (Sﬂ
RTk trlmmedd (:L'

&kftrimmed

di(x). 27)

RO’ k—trimmed d (ZL'

If £ = 0, the equality holds.

Proof: Assume that y1,vy2,...,Yk,...,yn are the samples
from the different classes of x, and we have 1 — R(z,y;) <
1= R(z,p0) <+ < 1— R(z,yp1) < < 1 — R(z, yn).
Rsdi(z) =1~ R(z,y1) and Rg, . = di(r)=1~- R(x,
Yr+1). Therefore, it is easy to obtain Rg kftrimmeddi(m) >

Suppose y1,Y2,---,Yk,--.,yny are the samples from d;,
and 1— R(z,y1) <1—R(z,y0) <---<1—R(x,yp41) <

<1 = R(x,yx). Rrdi(z) = maxyeq, R(z,y:) = R(z, y1),
while RTk:—trimmeddi ((E) = MaXyed; ;. immed R(:I:v yk+1)-
As we know 1—R(z,y1) <1— R(z,yr+1), R(x,y1) >

R(x,ygs1); therefore, Rrj_irimmeadi(z) < Rpd;(z). Ana-
logically, we can also obtain R di(x) > Ryd;(x);
Rakftrimmoddi( ) < Radi( )

Proposition 2: Given DT = (U, A, D), R is a fuzzy simi-
larity relation induced by B C C, and R(x,y) monotonously
decreases with their distance A(z, y). d; is a class of samples la-
beled with ¢ and x € U. Provided that k; and k; are two positive
integers and k£ < ko, we have

W trimmed

T

| /\

Rskl —trimmed kz tummcdd7(x>

X

di(
i

| \/

RTklftrimmed kz trlmmedd( )

Ry

Hkl —trimmed ((E
(

| /\

9 ZV ks —trimmed d7 (x)

)
)
)
) >

R(fkl tnmmedd x O’k‘z trlmmedd( ) (28)

Proof: The proof is straightforward.

Proposition 3: Given DT = (U, A, D), R and Ry are two
fuzzy similarity relations over U induced by B; and B», respec-
tively, and Ry C R,. Since x € d; and k is a positive integer,
we have

Rlsk trimmed ¢ (l’ Sk trimmed di (LL')
i(

X

RlTk—trimmed Tk tnmmedd( )

19 2V k—trimmed d’ (I)

) >

) <
By inmea®i(2) 2
()

Rlo’k tumm@dd X SRQO'k tummedd( ) (29)
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Proof: Assume r! and r?

i 5 are the fuzzy similarity degrees
between x and sample z; out of d; in terms of R; and Rs,
respectively. Since Ry C Ry, for z; ¢ d;, we have 7']1. < TJQ-.
Suppose xj, is the sample su.ch that Ryg, . di(z)=
1—Ry(z,zg,), and x, is the sample such that
Rggk_mmmeddi(ac) =1— Ry(z,2p,). It is easy to obtain
that Ry (z, i, ) < Ra(x,xy,). Thus, di(z) >
@kftrimmcddi (:17)

On the other side, we assume that r]l and r? are the fuzzy sim-
ilarity degrees between x and sample x; in d; in terms of R; and

@k—trimmcd

Ry.Since Ry C Ry, forx; € d;, wehave Tl < r . Suppose xj;,
is the sample such that Ri7 ¢ immea @i (% ) R1 (x,zy, ), and
Xy, is the sample such that Rory, (rimmeadi () = Ra(x, T, ).

We can also obtain that R;(z,zy, ) < Ro(x,xp,). Thus,
Rir k—trimmed d; ({IJ) < Ror k—trimmed d; ({IJ) .

Analogically, we can derive that Ry, . = d; (x) >
@kftrimmed d; (x) and Rigp—trimmeddi (x) < R2sk—trimmed

The fuzzy lower and upper operators are widely used in evalu-
ating features or extracting rules from data. In this case, relations
between objects are generated with features. Features are added
one by one in forward algorithms, and correspondingly, the sim-
ilarity degrees between objects get increasingly weaker. Then,
the lower approximation of decision classes becomes larger,
while the upper approximation becomes smaller. Therefore, the
classification boundary, which is the inconsistent region of clas-
sification, is reduced. The average memberships of samples to
fuzzy lower approximations of their decision classes is defined
as fuzzy dependence of decision on the corresponding attributes:

(D) = ~|UY,| Rdi, (30)
where Rd; is the fuzzy lower approximation of class d; under
fuzzy similarity relation R, and | - | is the fuzzy cardinality of a
fuzzy set, which is computed with > _, Rd;(z).

Besides the statistics used previously, some other robust
statistics can also be introduced, such as quartile. In the afore-
mentioned models, we should specify the value of k. The the-
ory of exploratory data analysis provides some theoretical re-
sults [43].

Given DT = (U, A, D), x € d;, r(x, x;) is the similarity be-
tween x and x; out of d;. Then, we rank the similarity degrees
in the ascending order, denoted by r1,79,...,7;. The lower
and upper fourths are r; and ry. We compute dp = ry — 7.
Then, the similarity degrees less than 7, — 1.5dy or greater than
ry + 1.5dp are viewed as outliers. If r(z, ;) satisfies Gaussian
distribution, the probability of samples less than 7, — 1.5dp or
greater than 7, 4+ 1.5dp is 0.00698. Correspondingly, the num-
ber of outliers can be computed as k = 0.4 + 0.007 x J. This
way, we can automatically compute the value of k from datasets.

In order to show the effectiveness of the proposed models,
we design a fuzzy lower approximation-based classifier. Given
aset of training samples DT = (U, A, D), x is a test sample. We
compute the fuzzy lower approximation of each candidate class
with different fuzzy rough set models. The decision function is

d= argg, max{i*dl ('r)wRi*d? (l’), v 7Edk (.’L‘)} (31)
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where R” is a certain fuzzy lower approximation operator.

This algorithm assigns x the class label which achieves the
largest fuzzy lower approximation. Suppose x € d;. We com-
pute R*d;(x). If z really belongs to d;, it will be far from the
samples in the other classes. Thus, R*d; () should be large;
otherwise, R*d; (z) is small. Therefore, the earlier algorithm is
rational to classify x into the class label producing the largest
fuzzy lower approximation if no class noise exists.

However, if there are class-noisy samples, the previous algo-
rithm may not work when the classical fuzzy rough set model is
employed, while the robust model is still effective in this case.
Some numerical experiments are described to test the proposed
models in the next section.

The aforementioned classification algorithm has the same
time complexity as the nearest neighbor rule, and no training
processing is required.

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to
illustrate the performance of different models. First, we generate
a toy classification task to reveal the performance of different
fuzzy rough set models in dealing with a noisy task. Then, we
present the experimental results on real-world tasks.

A. Toy Example

We first discuss how to measure robustness in statistics theory.
Some techniques were developed to measure the robustness of
a statistic, such as the sensitivity curve, the influence function,
and the breakdown point [44]. We introduce some of them that
are used in the following discussion.

Definition 11: Let {T,,} be some sequence of statistics;
T, (x) denote the statistic from {7, } on the sample X =
{x1,29,...,2, } and {T,, ;1 }(X, x) denote the same statistic
on the sample X = {x,z,...,2,,x}. Then, the function

SCy(z;T,,X) = (n+ 1)[Tn+1(x,X) =T, (X)] (32)

characterizes the sensitivity of 7, to the addition of one obser-
vation at = and is called the sensitivity curve.

Definition 12: Let d be such a distance; then, the breakdown
point ¢ of the estimator T,, = T'(F,,) for the functional T'(F') at
F'is defined as

E(T,F):sup{zsgl: |T(F)—F(F0)<oe\}.

(33)

The influence curve computes the influence of different noise
on the statistic 7', while the breakdown point gives us how much
noise the statistic 7" can tolerate. The first one shows us how the
noise impacts on the statistic.

We generate a binary classification task with 100 samples, as
shown in Fig. 2, where “eo” stands for the samples from Class
1 and “ + ” for Class 2. We can see that these two classes of
samples are well separable.

Now, we show the memberships of these samples to their
decision classes in Fig. 3, where FRS, [-PFRS, FVPRS,
k-trimmed, k-mean, and k-median stand for fuzzy lower approx-
imations computed with the classical model, 3-precision fuzzy

sup
F:d(F,Fy)<e
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Fig.2. Artificial dataset, where samples are divided into two classes, and each
sample is described with two features.

rough model, fuzzy variable precision rough sets, k-trimmed,
k-mean, and k-median fuzzy rough models, respectively. In the
experiment, we set k = 3, « = 0.1, and 3 = 0.02.

From Fig. 3, we see that most of the samples produce large
memberships. The smallest membership is still larger than 0.3.
If we set « = 0.1 for FVPRS, since all the memberships are
larger than 0.1, FVPRS is equal to FRS.

Now, we consider the dependence functions that are defined
in the different models. Dependences of decision on features
computed with different models are shown in Fig. 4. FRS and
FVPRS obtain the same output because the membership of each
sample is larger than a. In this case, FVPRS is equivalent to FRS.
(-precision, k-trimmed, k-mean, and k-median do not compute
the memberships with the nearest sample from different classes;
thus, these models return larger dependence values than FRS
and FVPRS as FRS and FVPRS use the nearest sample from
different classes. In addition, dependence computed with the k-
trimmed model is larger than those with k-mean and k-median
models.

We analyze the sensitivity curve of dependences computed
with different models. We add one new sample into the dataset
and change the location of this sample. We try the location of
(2,0.5), where = 0,0.01,...,0.99, 1. Assume this sample
comes from Class 2. As we know, the region where x < 0.5
belongs to Class 1. If the new sample is located at this region,
it can be considered as a class-noisy sample. Namely, the class
of this sample is mislabeled in data gathering. It should belong
to Class 1 but mislabeled as Class 2. However, if x > 0.5, the
sample becomes normal. As a whole, if x < 0.5, the new sample
is viewed to be class noisy, while if > 0.5, the sample should
be considered as a normal one.

We compute the dependence between decision and features
with different models when the location of the sample changes.

Fig. 5 presents the curves of dependence. These curves reflect
the performance of different models in dealing with noisy tasks.
First, observing FRS and FVPRS, we see that dependences com-
puted with them vary drastically when the location of the new
sample changes. The dependence decreases from 0.85 to 0.67
and then rises to 0.85. In most of the cases, FVPRS returns the
same results as FRS. When z € [0.15,0.30], FVPRS is a little
larger than FRS, which shows that some memberships of sam-
ples to the lower approximations of their decision classes are less
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Fig. 4. Dependence of decision on the features.

than 0.1 and that FVPRS assigns 0.1. In most cases, the mem-
berships are greater than 0.1. As per (3-precision, k-trimmed,
k-mean, and k-median models, the noisy sample does not have
a large influence on dependence. Relatively speaking, the k-
mean model is more sensitive as the statistic mean is sensitive
to noise, and the £-median model is more robust than the £-mean
model as statistic median is more robust than mean. In addition,

Labels of samples

Labels of samples

—&— FRS5-FD
—&— B-PFRS-FD
—— VPFRS-FD
— FVPRS-FD
—+— VQRS-FD
SFRS-FD
—&— k—trimmed FRS-FD |
—%— k-mean FRS-FD
—&— k-median FRS-FD

Dependency

0 1
0 0.2

0.4 0.6 0.8 1
Location of the class—noisy sample

Fig. 5. Sensitivity curve of dependence with the location of noise.

k-trimmed and (-precision models are also robust. In fact, we
set k = 3; the noisy sample has no influence on computing mem-
berships of samples as this noisy sample would be disregarded.
The 3-PFRS model has the same mechanism as the k-trimmed
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Fig. 6. Dependence variation with the noise level.
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Fig. 7. Dependence variation with level of class noise.

model in dealing with class noise. Both of them disregard some
outliers in computing fuzzy lower approximation. Their differ-
ence lies in how to set the number of outliers to be disregarded.
In the k-trimmed model, users give the value of % in advance,
while k is computed from datasets in the J-precision model.
From Fig. 5, we can see that both fuzzy rough sets and FVPRS
are sensitive to class noise. A single noisy sample might pro-
duce great influence on dependence. The sensitiveness would
make the algorithms developed with these models not effective
in analyzing real-world tasks.

Furthermore, we add some random numbers on each attribute
value as attribute noise. The random numbers satisfy the normal
distribution with mean zero and standard deviation 0.01 X 4,
where ¢ = 1,2, ...,30. Then, we observe the variation of de-
pendence calculated with different models. Fig. 6 presents the
dependence curves. We see that all the dependence values de-
crease when the deviation of noise increases. However, no abrupt
change is observed. If the scale of noise is less than 0.06, no vari-
ation can be seen from these curves. The curves show that these
fuzzy rough models are not much sensitive to attribute noise
as dependence is computed as the average of memberships of
samples.

Now, we consider the breakpoint of dependence. We add
some class-noisy samples into the original dataset by randomly
drawing some samples from the dataset and revising their class
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labels. The revised samples are considered as class-noisy points.
The rate of mislabeled samples takes values from 0.01 to 0.30.
Then, we observe the variation of dependences calculated with
different models. The dependence curves are given in Fig. 7.
Dependences decrease from 0.85 to 0.2 after about ten misla-
beled samples are added when FRS and FVPRS are used. At
the same time, we also see that other four models are not only
robust to class noise, but also able to reflect the level of noise.
Dependences nearly linearly decrease with increase of the noise
level.

The aforementioned analysis shows that FRS and FVPRS
are sensitive to attribute noise and class noise. G-PFRS and the
proposed models are much more robust.

B. Experimental Results on Real-World Tasks

Now, we introduce a real-world classification task, named
wine [45]. These data are the results of chemical analysis of
wines grown in the same region in Italy but derived from three
different cultivars. The analysis determined the quantities of 13
constituents found in each of the three types of wines. There
are 169 samples described with 13 numerical features and one
decision variable.

Fig. 8 gives the dependence curve when the level of attribute
noise increases. We see that although attribute noise is added,
dependence is still higher than 0.99. We know that the distances
between samples in high-dimensional spaces are usually very
large; the similarity between samples might be small in this
case. Then, each sample produces a large membership to the
lower approximation of its decision class. Therefore, the average
membership is close to 1.

Then, we add some class noise into the dataset. Here, the class
noise is added in the same way as described earlier. We compute
dependences with noisy datasets based on different fuzzy rough
models. The curves in Fig. 9 describe that dependence varies
with the level of class noise. First, we see that dependences that
are obtained with FRS and FVPRS are smaller than the other
models, and FRS and FVPRS return the same values of depen-
dence. This shows that even though some mislabeled samples
are added, FVPRS still does not have effect on the computation
of dependence. In order to explain it, we show the memberships
of samples to their fuzzy lower approximations in Fig. 10, where
30% mislabeled samples are added. We see that the smallest
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membership is still larger than 0.9. If & = 0.1 in FVPRS, which
is far smaller than 0.9, FVPRS does not work in this case. There-
fore, FRS and FVPRS produce the same dependence. In the
meanwhile, k-trimmed, k-mean, k-median, and [-precision
models are more robust than FRS and FVPRS. k-mean and
k-median models nearly get the same dependence values. This
experiment shows that J-precision, k-trimmed, k-mean, and
k-median are robust in dealing with real-world applications.

Stability is another metric to characterize the robustness of
different models [50]. In this technique, we compute depen-
dences between single features and decision at different noise
level. As per a robust model, the difference between the depen-
dences computed under different noise level should be small
enough; otherwise, we think the model is not robust. Thus, the
average correlation of dependences can be calculated as a metric
of robustness.

In order to quantitatively characterize the robustness of differ-
ent models, we compute the average correlation between depen-
dence vectors calculated with the raw dataset and those calcu-
lated with the noisy datasets. Both attribute noise and class noise
are considered here. The results are shown in Tables I and II,
respectively. In the following experiments, we use Gaussian ker-
nel to compute the fuzzy similarity relations between samples
and the kernel parameter o = 0.15; 3-precision FRS: 5 = 0.9;
VPERS: 5 =0.9, and FVPRS: « = [0.6,0.9], In VQRS, pa-
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rameter u takes values in [0.1,0.2]. As for the robust nearest
neighbor models, we try k in {3,5,7,9,11}, and finally, the
best results are reported.

From the aforementioned results, we see that attribute noise
has less influence on dependence than class noise. 3-precision
and VQFRS are not sensitive to attribute noise and class noise,
while FRS and FVPRS are very sensitive to class noise. Com-
pared with S-precision and VQRS, k-trimmed, k-mean, and
k-median fuzzy rough sets are competent. In real-world appli-
cations, the used techniques should be robust enough. At the
same time, they should be able to reflect the noise level as well.

Now, we compute the performance of the fuzzy lower
approximation-based classifiers on these classification tasks
with tenfold cross validation. The classification accuracies are
given in Table III.

Comparing FRS with other algorithms, we see that VQRS,
k-trimmed, k-mean, and k-median are better than FRS in most
tasks, while beta-precision, VPFRS, and FVPRS are equal to or
worse than FRS. As for WPBC, the model of 3-PFRS obtains
the lowest accuracy among all the models. In addition, VQRS
produces the worst performance on thyroid gland task, which
leads to the relatively worse average performance than the pro-
posed techniques. The models of k-mean and k-median fuzzy
rough sets are more stable than VQRS and k-trimmed models.

Now, we analyze the performance of different models in deal-
ing with noisy data tasks. 5%, 10%, and 15% class noise and at-
tribute noise are added into the raw datasets. Then, we apply the
classification algorithms on the noisy datasets and compute the
classification accuracies with tenfold cross validation. Tables IV
and V present the classification performances of different fuzzy
rough set models.

First, we observe the variation of classification performance
when class-noise level increases. It is easy to see that the perfor-
mances of FRS, VPFRS, and FVPRS sharply drop as class-noise
level increases. However, the classifiers based on (-precision,
VQRS, k-trimmed, k-mean, and k-median models are more ro-
bust. The classification accuracies do not change much. More-
over, we can also see that k-trimmed, k-mean, and k-median
models usually produce the best performance among the eight
models. In addition, the §-precision model also produces good
performance on most of the tasks except WPBC. Now, we
perform #-test on the classification results to compare the pro-
posed models and others. Comparing k-trimmed, k-mean, and
k-median models with the classical fuzzy rough sets, the values
of ty.99 are 2.75, 4.54, and 4.25, respectively. However, 3-PFRS
and VPFRS just get ty.75 = 0.82 and ¢y.5 = 0.07, respectively.
At the same time, there is no significant difference between
FVPRS and FRS. Therefore, the proposed models outperform
FRS and FVPRS. Among k-trimmed, k-mean, and k-median
models, k-mean and k-median models are slightly better than
k-trimmed one.

Now, we discuss the attribute noise in Table V. Although
the proposed models are designed for class noise, we can see
that k-trimmed, k-mean, and k-median models outperform FRS
when attribute noise exists. As per k-mean and k-median mod-
els, the values of £( 95 are 2.02 and 2.06, respectively. On the
contrary, the 3-precision model is worse than FRS in this case,
and VPFRS and FVPRS achieve the almost same results as FRS.
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TABLE I
CORRELATION BETWEEN RAW DEPENDENCE AND NOISY DEPENDENCE (CLASS NOISE)
Data FRS B-PFRS VPFRS FVPRS VQRS SFRS  k-trimmed k-mean k-median
-FD -FD -FD -FD -FD -FD FRS-FD FRS-FD FRS-FD
wine 0.78 0.98 0.94 0.42 0.99 0.93 0.97 0.97 0.95
WDBC 0.70 0.99 0.97 0.39 0.99 0.97 0.98 0.97 0.96
WPBC 0.61 0.96 0.92 0.37 0.95 0.94 0.96 0.96 0.95
ionosphere 0.50 0.92 0.84 0.49 0.98 0.96 091 0.92 0.88
diabetes 0.39 0.97 0.97 0.96 0.99 0.96 0.93 0.97 0.95
iris 0.60 0.99 0.98 0.90 0.99 1.00 0.99 0.99 0.98
thyroid-gland ~ 0.31 0.99 0.99 0.44 0.99 0.98 0.99 0.99 0.99
TABLE II
CORRELATION BETWEEN RAW DEPENDENCE AND NOISY DEPENDENCE (ATTRIBUTE NOISE)
Data FRS pB-PFRS VPFRS FVPRS VQRS SFRS k-trimmed  k-mean  k-median
-FD -FD -FD -FD -FD -FD FRS-FD FRS-FD FRS-FD
wine 0.93 0.95 0.98 0.98 0.98 0.94 0.94 0.97 0.97
WDBC 0.96 0.98 0.98 0.93 0.99 0.97 0.98 0.98 0.97
WPBC 0.90 0.90 0.91 0.83 0.97 0.96 0.92 0.95 0.93
ionosphere 0.76 0.74 0.74 0.97 0.97 0.95 0.94 0.88 0.85
diabetes 0.78 0.94 0.95 0.59 0.99 0.96 0.91 0.96 0.96
iris 0.95 0.99 0.98 0.82 0.99 0.99 0.99 0.99 0.98
thyroid-gland ~ 0.78 0.97 0.99 0.73 0.98 0.99 0.98 0.98 0.98
TABLE III
CLASSIFICATION ACCURACY (%) COMPARISON ON REAL-WORLD DATASETS
Data FRS B-PFRS VPFRS FVPRS VQRS SFRS i-trimmed  k-mean  k-median
-LA -LA -LA -LA -LA -LA FRS-LA FRS-LA  FRS-LA
wine 94.9 95.9 93.8 94.9 95.4 95.5 97.1 97.7 96.0
WDBC 95.4 95.8 94.0 95.4 96.7 96.9 96.3 97.5 96.8
WPBC 69.2 52.4 69.2 69.2 70.7 76.8 71.8 74.3 73.2
ionosphere 71.5 68.4 71.2 71.5 71.9 86.4 70.4 71.5 71.5
diabetes 70.8 71.6 74.1 70.4 74.9 75.4 75.0 75.8 74.2
iris 95.3 96.7 95.3 94.0 96.0 96.7 95.3 95.3 96.0
thyroid-gland ~ 95.3 94.9 90.2 93.0 88.4 95.3 94.4 95.3 95.3
TABLE IV
CLASSIFICATION ACCURACY (%) COMPARISON ON CLASS-NOISY DATASETS
Data Noise levels FRS  B-PFRS  VPFRS FVPRS VQRS  SFRS  k-trimmed  k-mean  k-median
-LA -LA -LA -LA -LA -LA FRS-LA FRS-LA  FRS-LA
5% 90.0 96.7 85.6 90.0 94.3 94.8 97.6 97.3 96.2
wine 10% 85.2 95.4 79.3 85.2 91.9 94.3 97.2 96.7 95.8
15% 81.1 95.3 72.7 81.1 90.3 93.1 97.0 96.4 95.2
5% 91.0 95.9 87.1 91.4 96.3 96.0 95.9 97.0 96.6
WDBC 10% 86.7 95.4 84.2 86.7 95.3 96.1 95.9 96.7 96.6
15% 82.5 95.3 81.7 82.5 93.8 95.3 95.3 96.2 95.7
5% 67.8 50.0 67.6 67.6 69.6 72.6 70.2 73.9 72.5
WPBC 10% 66.5 479 66.5 66.5 69.0 71.1 71.0 73.4 71.3
15% 63.2 48.5 63.2 63.2 64.0 68.8 70.3 70.9 68.8
5% 68.5 67.7 67.0 68.5 70.5 72.5 65.6 70.3 70.4
ionosphere 10% 65.5 67.7 63.8 65.6 69.8 73.5 66.4 70.3 70.3
15% 62.5 66.7 61.2 62.7 68.2 72.0 65.9 70.1 69.7
5% 68.5 72.0 72.8 67.9 74.8 73.6 74.3 74.9 74.0
diabetes 10% 66.8 71.9 72.8 66.3 73.9 72.5 73.5 73.9 73.0
15% 64.7 723 71.2 64.4 733 72.4 73.9 73.0 72.5
5% 92.5 96.4 92.1 89.5 96.1 96.0 95.6 95.3 95.5
iris 10% 86.2 96.4 90.9 83.2 95.9 96.0 95.9 95.7 96.0
15% 82.5 96.0 90.3 78.1 95.6 96.0 95.6 96.4 96.1
5% 91.2 94.4 80.2 84.8 88.2 93.1 89.3 92.5 92.5
thyroid-gland 10% 87.1 94.4 92.6 81.6 88.1 93.1 89.2 93.5 92.8
15% 82.0 92.0 93.1 91.2 80.0 91.0 87.4 92.1 92.5

Aver. 71.7 81.3 77.9 77.5 82.8 84.9 84.0 85.5 85.0
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TABLE V
CLASSIFICATION ACCURACY (%) COMPARISON ON ATTRIBUTE-NOISY DATASETS
Data Noise levels FRS  gB-PFRS  VPFRS FVPRS VQRS SFRS  A-trimmed k-mean  k-median
-LA -LA -LA -LA -LA -LA FRS-LA  FRS-LA  FRS-LA
5% 95.8 95.1 94.4 95.8 96.6 95.8 96.0 96.4 96.7
wine 10% 94.2 95.5 91.9 94.2 95.4 95.7 95.9 95.7 95.6
15% 92.5 93.4 90.4 92.5 94.6 94.0 93.4 94.9 93.7
5% 92.1 922 89.8 92.1 91.7 92.1 91.9 92.3 92.9
WDBC 10% 84.2 83.6 84.2 84.2 83.6 83.6 84.5 84.5 84.0
15% 77.2 70.1 77.2 713 78.6 79.9 79.5 79.6 79.9
5% 66.0 54.4 66.0 66.0 68.3 73.2 74.2 72.3 71.2
WPBC 10% 65.2 58.5 65.2 68.1 72.4 72.8 72.6 72.6 72.7
15% 65.9 52.4 65.9 65.9 66.8 71.5 70.7 71.7 71.0
5% 69.6 69.1 69.1 69.6 70.0 70.0 70.0 70.0 70.0
ionosphere 10% 69.3 68.5 69.3 69.3 69.6 69.4 68.3 69.4 69.4
15% 68.6 67.7 68.6 68.6 68.6 66.5 67.4 68.3 68.3
5% 69.5 73.7 71.8 69.5 72.6 73.2 73.0 71.8 71.8
diabetes 10% 67.9 72.0 67.8 78.0 70.2 72.3 71.0 70.2 70.2
15% 66.1 71.5 63.5 66.1 68.9 71.1 70.1 67.7 67.7
5% 95.5 95.5 95.9 92.8 95.7 95.3 95.6 95.5 95.6
iris 10% 91.3 94.8 92.1 89.1 94.7 95.3 94.8 95.1 94.2
15% 88.0 92.7 88.8 86.7 93.3 94.7 93.3 92.5 91.2
5% 93.1 94.5 92.8 93.0 86.3 93.2 90.9 93.0 93.0
thyroid-gland 10% 87.4 90.2 88.2 83.3 83.3 87.5 86.3 88.1 88.6
15% 81.1 82.4 80.2 81.1 80.9 82.0 81.2 83.1 83.1
Aver. 80.0 75.6 79.7 80.1 81.1 82.3 82.0 82.1 81.9

VI. CONCLUSION

Fuzzy rough set theory has attracted much attention in recent
years. Noise is one of the main sources of uncertainty in appli-
cations. It has been shown that most of the current fuzzy rough
operators are not robust to noise. In this paper, we systematically
discuss why the models of rough sets are sensitive to noise and
develop some robust models of fuzzy rough sets. Some numer-
ical experiments are described. The following conclusions can
be drawn from the analysis.

1) The classical fuzzy rough operators are sensitive to mis-
label samples instead of small perturbation in attribute values.
Mislabeled samples have great impact on fuzzy dependence
functions, while the influence of attribute noise is restrained.

2) The classical fuzzy rough set model computes the mem-
bership of a sample to the lower approximation of its decision
based on the nearest sample from different classes. Here, the
statistic of minimum is used. It is sensitive to outliers. This is
the essential reason why the classical model is not robust to
class-noisy samples.

3) We discuss the disadvantage of VPRS and FVPRS. VPRS
cannot reflect the noise level in dealing with noisy tasks as they
group the mislabeled samples into classification positive region,
while FVPRS does not work in dealing with noise unless the
membership of a sample is less than the parameter « in it. We
find that there is contradiction in setting the parameter value.

4) B-PFRS, soft fuzzy rough sets, k-trimmed, k-mean, and
k-median fuzzy rough set models are not only able to reduce the
influence of class noise but can also reflect the level of noise.
Therefore, these models are effective in dealing with noisy tasks.
The corresponding classifiers are better than those developed
with FRS, VPFRS, FVPRS, and VQRS. Comparing with (-
precision FRS and soft FRS, we find that k-mean and k-median
fuzzy rough set models are usually more effective. Furthermore,

the semantics of the parameters used in k-mean and k-median
models are clear, which is important for applicability.
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