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Neighbor Inconsistent Pair Selection for Attribute
Reduction by Rough Set Approach
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Abstract—Rough set theory, as one of the most useful soft com-
puting methods dealing with vague and uncertain information, has
been successfully applied to many fields, and one of its main appli-
cations is to perform attribute reduction. Although many heuris-
tic attribute reduction algorithms have been proposed within the
framework of the rough set theory, these methods are still com-
putationally time consuming. In order to overcome this deficit, we
propose, in this paper, two quick feature selection algorithms based
on the neighbor inconsistent pair, which can reduce the time con-
sumed in finding a reduct. At first, we propose several concepts
regarding simplified decision table(U

′
) and neighbor inconsistent

pairs. Based on neighbor inconsistent pairs, we constructed two
new attribute significance measures. Furthermore, we put forward
two new attribute reduction algorithms based on quick neighbor
inconsistent pairs. The key characteristic of the presented algo-
rithms is that they only need to calculate U

′
/R once under the

process of selecting the best attribute from attribute sets: C − R,
while most existing algorithms need to calculate partition of U

′
for

|C − R| times. In addition, the proposed algorithms need only to
deal with the equivalent classes in U

′
/R that contain at least one

neighbor inconsistent pair, while most existing algorithms need to
consider all objects in U

′
. The experimental results show that the

proposed algorithms are feasible and efficient.

Index Terms—Attribute reduction, neighbor consistent pair,
neighbor inconsistent pair, rough set theory.

I. INTRODUCTION

ROUGH set theory [1], [2], introduced by Pawlak, is a use-
ful mathematical approach to deal with vague and uncer-

tain information. In the framework of rough set theory, an object
is represented as a collection of values of the given attributes in
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a given database, which is represented as a table whose rows and
columns stand for the objects and attributes, respectively. Usu-
ally attributes are divided into two parts: conditional attributes
and decision attributes. Rough set theory has been successfully
applied to solve a variety of problems [1]–[10], and it has good
expansibility. For example, it can be combined with soft set the-
ory and fuzzy set theory [11], [12] and it can also be extended to
neighborhood based decision-theoretic rough set models [13].

In the applications of data mining, pattern recognition, and
machine learning, many of the attributes in database are irrel-
evant to the decision making, which means the existence of
these attributes will weaken the ability of learning algorithms.
To deal with this issue, attribute reduction, also called feature
selection, has been suggested as a necessary preprocessing step
to find a suitable subset of attributes [14]–[30]. So far, many
attribute reduction algorithms based on rough sets have been
proposed in order to find one reduct or all reducts [4], [21],
[31]–[37]. The existing methods basically fall into two cate-
gories: one concentrates on indiscernibility relation [38]–[40];
the other on discernibility relation [2], [41]–[43]. It should be
noted that this paper does not focus on attribute reduction by
introducing entropies.

For discernibility relation, there exist attribute reduction algo-
rithms based on discernibility matrix and information entropy.
Skowron and Rauszer introduced the concept of discernibility
matrix with respect to decision system in [41]. Boolean dis-
cernibility function was proposed for the discernibility matrix
as well. Ye and Chen proposed an improved concept of discerni-
bility matrix in order to make it fit with inconsistent decision
system in [44]. Yang and Sun improved the concept of dis-
cernibility matrix again in order to reduce the time cost [45].
Recently, Chen et al. proposed the concept of sample pair selec-
tion based on discernibility matrix in order to find an efficient
way to get a reduct [46]. However, its time consumption is still
at least O(|U |2 |C|).

For indiscernibility relation, we can construct a positive re-
gion which is a collection of objects that can be certainly classi-
fied into a certain class corresponding to the selected attributes
by means of the partition of the universe. Attribute reduction
based on the positive region has been proposed in [39] and
[40], in which the simplified decision table is proposed, and
some efficient sort algorithms are proposed in order to accel-
erate the process to find a reduct. So far the best time com-
plexity still reaches the maximum (O(|C||U |), O(|C|2 |U/C|))
in [38] and [40]. Compared with attribute reduction algorithms
based on discernibility matrix, it is a huge success. However, the

1063-6706 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1459-0833


938 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 2, APRIL 2018

algorithms based on the positive region are very sensitive to the
number of attributes, because these algorithms have to calculate
sigPos value for the remaining attributes, respectively. In other
words, when algorithm based on the positive region needs to
select a best attribute, it has to calculate sigPos |C − R| times,
which means we have to compute positive region |C − R| times
as well. Apparently, it suffers an inherent drawback of high
time cost, especially when the data contain a large number of
attributes.

In order to reduce the time cost, a quick neighbor inconsis-
tent pair selection strategy is proposed as a more efficient way to
find a suitable reduct in this paper. First of all, we construct the
basic concepts of the neighbor inconsistent pair selection based
on rough set theory. Then, we put forward two new suitable
attribute significance measures based on the neighbor incon-
sistent pair selection. Finally, we propose two new kinds of
heuristic algorithms to find a proper reduct based on the quick
neighbor inconsistent pair selection. Compared with existing al-
gorithms based on the positive region, the key characteristic of
this approach is that we only need to calculate U

′
/R once in the

process of selecting the best attribute from attribute sets: C − R,
while most existing algorithms need to calculate partition of U

′

for |C − R| times. What’s more, the proposed algorithms need
only to deal with the equivalent classes in U

′
/R that contain at

least one neighbor inconsistent pair, i.e., part of objects in U
′
,

while most existing algorithms need to consider all objects in
U

′
.
The rest of this paper is organized as follows. Some re-

lated basic notions are reviewed in Section II. The definitions
and concepts of neighbor inconsistent pair are proposed in
Section III. The new attribute significance measures and at-
tribute reduction algorithms based on the quick neighbor incon-
sistent pair selection are presented in Section IV. The experi-
ments to validate the efficiency and effectiveness of the proposed
algorithm are conducted in Section V. Section VI concludes the
whole paper.

II. BASIC NOTIONS

In this section, we briefly review the basic notions about rough
sets and decision tables, which can be found in [1], [2], [38],
and [40].

A decision table (also referred to as an information system) is
defined as S =<U,A, V, f >, where U = {u1 , u2 , . . . , un} is a
finite nonempty set of objects; A = C ∪ D is a finite nonempty
set of attributes, where C = {c1 , c2 , . . . , cm} is a nonempty set
of conditional attributes, and D is a nonempty set of decision
attributes (generally, D = {d}), C ∩ D = ∅. V is a union of
the value domains, i.e., V = ∪a∈AVa , where Va is the value
set of attribute a, called the value domain of attribute a; and
f = U × A → V is an information function, which maps an
object in U to exactly one value from domains of attributes such
as ∀a ∈ A, x ∈ U , and f(x, a) ∈ Va . The value of attribute a
for object x denotes by f(x, a).

Given a decision table S =<U,A, V, f >, for any subset of
attributes B ⊆ A, the indiscernibility relation generated by B

TABLE I
INCONSISTENT DECISION TABLE

on U is defined by

IND(B) = {(x, y) ∈ U 2 |∀b ∈ B, b(x) = b(y)}. (1)

It is clear that IND(B) is an equivalence relation, which is re-
flexive, symmetric, and transitive. And it determines a partition
of U , denoted by U/IND(B) or simply U/B; an equivalence
class of IND(B) containing x will be denoted by [x]B .

For any X ⊆ U , the lower approximation of X with respect
to B can be further defined as

apr
B

X = {x|[x]B ⊆ X}. (2)

Let P and Q be equivalence relations over U , then the con-
cepts of positive regions can be defined as

POSP Q = ∪
X∈U/Q

apr
P

X. (3)

Let S be a decision table, for x, y ∈ U , if for any a ∈ C,
f(x, a) = f(y, a), and f(x, d) 
= f(y, d), then x and y are in-
consistent in U , otherwise they are consistent.

Definition 1 ([40]): Given a decision table S = {U,A, V,
f}, where A = C ∪ D. U/C = {[µ1

′]C , [µ2
′]C , . . . , [µm

′]C },
U

′
= {µ1

′, µ2
′, . . . , µm

′}, U
′
POS= {µ′

i1
, µ

′
i2

, . . . , µ
′
it
}, all the

objects in U
′
POS are consistent, all the objects in U

′ − U
′
pos, de-

noted as U
′
BND , are inconsistent in the original decision table S,

then S
′
= {U ′

, A, V, f} is called a simplified decision table.
Note that, all objects in U

′
BND are inconsistent, for comput-

ing efficiently, we denote the decision value of all objects of
U

′
BND by maxD + 1, where maxD means the maximal value of

decision attribute domain. In this way, we can change an incon-
sistent table into a consistent one without affecting the attribute
reduction result of an original decision table in Pawlak rough
set model. In what follows, we always discuss the S

′
as the

processed consistent simplified decision table. For any simpli-
fied decision table S

′
= {U ′

, A, V, f}, it has several important
properties:

1) Suppose S
′
is the simplified decision table from the orig-

inal S. If S is consistent, then S = S
′
.

2) ∀xi, xj ∈ U
′
, ∃a ∈ C, f(xi, a) 
= f(xj , a).

3) ∀xi, xj ∈ U
′
, object pair (xi, xj ) is consistent.

4) POSC D = |U ′ |.
Example 1: Table I shows a decision table, where U =

{u1 , u2 , u3 , . . . , u7}, C = {c1 , c2}, and D = {d}. Then, we get
U/C = {{u1}, {u2 , u6}, {u3 , u7}, {u4 , u5}}. Thus, we have
U ′ = {u1 , u2,6 , u3,7 , u4,5} = {x1 , x2 , x3 , x4} and U

′
POS =

{u1 , u4,5} = {x1 , x4}. At the same time, U
′
BND = U

′ − U
′
pos
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TABLE II
SIMPLE DECISION TABLE GENERATED FROM TABLE I

TABLE III
SIMPLE DECISION TABLE

= {u2,6 , u3,7} = {x2 , x3}. Therefore, we get the simplified
decision table shown in Table II.

III. NEIGHBOR INCONSISTENT PAIR SELECTION BASED ON

ROUGH SET THEORY

In this section, we propose some basic definitions of the neigh-
bor inconsistent pair selection. Note that, in this paper, we define
the concepts about neighbor pair selection based on the simpli-
fied decision table serving as the theoretical foundation of our
definitions.

Definition 2: Given a simplified decision table S
′
= {U ′

,
C ∪ D,V, f}, ∀R ⊆ C, then we use U

′′
R to represent the sorted

U
′

based on equivalence relation U
′
/R. Objects in the same

equivalent class are viewed as neighbors in U
′′
R , which is de-

fined as U
′′
R = U

′
//R.

For example, in Table III, let R = {c3}, U ′/R = {{x1, x3},
{x2, x6}, {x4, x5, x7}}, we get U

′′
R = {x1, x3, x2, x6, x4,

x5, x7}. Compared with U
′
, U

′′
R contains the same objects but

reorders the objects according to the equivalent classes.
Definition 3: Given a simplified decision table S

′
= {U ′

,
C ∪ D,V, f}, let U

′
= {x1 , x2 , . . . , xn}, then a neighbor pair

denotes the objects in the pair as adjacent, such as the object
pair (x1 , x2). ∀i ∈ [1, |U ′ |), and the object pair (xi, xi+1) is a
neighbor pair as well.

Definition 4: Given a simplified decision table S
′
=

{U ′
, C ∪ D,V, f}, for any subset of conditional attributes

R ⊆ C, there are two neighbor relations on U
′′
R , defined as

follows:
Neighbor inconsistent relation:

NIPRD = {(xi, xi+1) ∈ U
′′
R × U

′′
R |1 ≤ i < |U ′′

R | ∧ (f(R, xi)

= f(R, xi+1) ∧ (f(D,xi) 
= f(D,xi+1)}. (4)

Neighbor consistent relation:

NCPRD = {(xi, xi+1) ∈ U
′′
R × U

′′
R |1 ≤ i < |U ′′

R |∧
(xi, xi+1) /∈ NIPRD}. (5)

It is obvious that NIPRD is the collection of neighbor object
pairs, which are inconsistent in U

′′
R and NCPRD is the collec-

tion of consistent neighbor object pairs. Note that, NIPRD and
NCPRD only care about the object pairs in U

′′
R that are adjacent

and we denote the number of total object pairs in NIPRD by
|NIPRD|.

Definition 5: Given a simplified decision table S
′
=

{U ′
, C ∪ D,V, f}, ∀R ⊆ C, ∀a ∈ C − R, then a binary rela-

tion called neighbor inconsistent relation with respect to at-
tribute a on U

′′
R is defined by

NIPRD{a} = {(xi, xi+1) ∈ U
′′
R × U

′′
R |(xi, xi+1)

∈ NIPRD ∧ f(xi, a) 
= f(xi+1 , a)}. (6)

It’s clear that NIPRD{a} is the collection of pairs in NIPRD ,
in which objects have different values on attribute a.

Example 2: A decision table S
′
= (U

′
, C ∪ D,V, f) is

given by Table III, where U
′
= {x1 , x2 , . . . , x7}, C = {c1 , c2 ,

. . . , c5}, D = {d}. Let R = {c5}, then U
′
/R = {{x1 , x2 , x5 ,

x7}, {x3 , x4}, {x6}}, then we get U
′′
R = {x1 , x2 , x5 , x7 , x3 ,

x4 , x6}. Consequ ntly, we have
NIPRD = {(x1 , x2), (x2 , x5), (x3 , x4)}, |NIPRD|=3;
NCPRD = {(x5 , x7), (x7 , x3), (x4 , x6)}, |NCPRD|=3;
NIPRD{c1} = {(x1 , x2), (x2 , x5)}, |NIPRD{c1}|=2;
NIPRD{c2} = {(x2 , x5), (x3 , x4)}, |NIPRD{c2}|=2;
NIPRD{c3} = {(x1 , x2), (x2 , x5), (x3 , x4)}, |NIPRD{c3}

| = 3;
NIPRD{c4} = {(x2 , x5), (x3 , x4)}, |NIPRD{c4}|=2.
Theorem 1: Given a simplified decision table S

′
= {U ′

, C ∪
D,V, f}, ∀R ⊆ C and ∀(xi, xi+1) ∈ U

′′
R × U

′′
R , 1 ≤ i < |U ′′

R |,
then (xi, xi+1) ∈ NIPRD or (xi, xi+1) ∈ NCPRD.

Proof: Given a certain U
′

and R ⊆ C, ∀i ∈ [1, |U ′ |), the
neighbor object pairs can be divided into two cases:

1) if [xi ]R 
= [xi+1]R , object pair (xi, xi+1) ∈ NCPRD.
2) if [xi ]R = [xi+1]R , then we can divide it into two situa-

tions:
a) if f(xi,D) 
= f(xi+1 ,D), according to Defini-

tion 4, object pair (xi, xi+1) ∈ NIPRD;
b) if f(xi,D) = f(xi+1 ,D), according to Def-

inition 4, (xi, xi+1) /∈ NIPRD, (xi, xi+1) ∈
NCPRD.

In summary, the theorem holds. �
Theorem 2: Given a simplified decision table S

′
= {U ′

, C ∪
D,V, f},∀R ⊆ C, i ∈ [1, |U ′ |], let [xi ]R = {xi1 , xi2 , . . . , xir

},
then [xi ]R is consistent ⇔ (xij

, xij + 1 ) ∈ NCPRD,∀j ∈ [1, r).
Proof: (⇒) Suppose that [xi ]R is consistent ⇒ ∀m,n ∈

[1, r], m 
= n. Object pair (xim
, xin

) is consistent⇒∀j ∈ [1, r),
object pair (xij

, xij + 1 ) is consistent⇒ object pair (xij
, xij + 1 ) /∈

NIPRD ⇒ (xij
, xij + 1 ) ∈ NCPRD.

(⇐) Suppose that ∀j ∈ [1, r), object pair(xij
, xij + 1 ) ∈

NCPRD ⇒ ∀j ∈ [1, r), object pair(xij
, xij + 1 ) /∈ NIPRD,

since [xij
]R = [xij + 1 ]R ⇒ ∀j ∈ [1, r), f(xij

,D) =
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f(xij + 1 ,D) ⇒ ∀m,n ∈ [1, r], and m 
= n, f(xim
,D) =

f(xin
,D) ⇒ [xi ]R is consistent. �

Example 3: As for the decision table given by Table III,
where U

′
= {x1 , x2 , . . . , x7}, C = {c1 , c2 , . . . , c5}, D = {d}.

Let R = {c1 , c3}, then U
′
/R = {{x1}, {x2 , x6}, {x3},

{x4 , x5 , x7}}. Since {x4 , x5 , x7} is consistent, we know
(x4 , x5), (x5 , x7) ∈ NCPRD.

Based on Theorems 1 and 2, we can get the conclusion that
once [xi ]R is consistent, there will be no neighbor pairs of [xi ]R
belonging to NIPRD.

Theorem 3: Given a simplified decision table S
′
= {U ′

,
C ∪ D,V, f}, ∀R ⊆ C, i ∈ [1, |U ′ |], let [xi ]R = {xi1 , xi2 ,
. . . , xir

}, then [xi ]R is inconsistent ⇔ ∃j ∈ [1, r), object
pair (xij

, xij + 1 ) ∈ NIPRD.
Proof: ∀xi ∈ U

′
, let [xi ]R = {xi1 , xi2 , . . . , xir

}.
Suppose that [xi ]R is inconsistent, then ∃xim

, xi,n ∈ [xi ]R ,
∀a ∈ R, f(xim

, a) = f(xin
, a), f(xim

,D) 
= f(xim
,D). Sup-

pose that ∀j ∈ [1, r), object pair (xij
, xij + 1 ) /∈ NIPRD, then

∀j ∈ [1, r), object pair (xij
, xij + 1 ) ∈ NCPRD. According to

Theorem 2, [xi ]R is consistent. It results in a contradiction, i.e.,
∃j ∈ [1, r), object pair (xij

, xij + 1 ) ∈ NIPRD.
Suppose that ∃j ∈ [1, r), object pair (xij

, xij + 1 ) ∈ NIPRD.
Then ∃j ∈ [1, r), object pair (xij

, xij + 1 ) is inconsistent⇒ [xi ]R
is inconsistent. �

Suppose [xi ]R is inconsistent, by Theorem 3, we know there
exists a neighbor pair of [xi ]R belonging to NIPRD.

Theorem 4: Given a simplified decision table S
′
= {U ′

, C ∪
D,V, f}, then |NIPRD| = 0 ⇔ |POSRD| = |POSC D|.

Proof: |NIPRD| = 0 ⇔ |NCPRD| + 1 = |U ′ | ⇔ ∀R ⊆
C, i ∈ [1, |U ′ |], let [xi ]R = {xi1 , xi2 , . . . , xir

}, then ∀j ∈
[1, r), object pair(xij

, xij + 1 ) ∈ NCPRD ⇔ ∀R ⊆ C, i ∈
[1, |U ′ |], [xi ]R is consistent ⇔ ∀m,n ∈ [1, |U ′ |], object pair
(xm , xn ) ∈ U

′′
R × U

′′
R , then object pair (xm , xn ) is consistent

⇔ |POSRD| = |POSC D|. �
According to Theorem 4, it is clear that once ∀[xi ]R ∈ U

′
/R

is consistent, then |NIPRD| = 0. In other words, |NIPRD| =
0 can be a new mark denoting that the attribute subset R is a
reduct candidate.

Example 4: As for the decision table given by Table III,
where U

′
= {x1 , x2 , . . . , x7}, C = {c1 , c2 , . . . , c5}, D = {d}.

Let R = {c1 , c4}, then U
′
/R = {{x1}, {x2}, {x3}, {x4 ,X5},

{x6}, {X7}}. Consequently, we have U
′′
R = {x1 , x2 , x3 ,

x4 , x5 , x6 , x7}. Then, NIPRD = ∅. It means |NIPRD| = 0. At
the same time, it is easy to know that |POSRD| = 7.

Note that, for any simplified decision table S
′
= {U ′

, C ∪
D,V, f}, POSC D = |U ′ |.

Theorem 5: Given a simplified decision table
S

′
= {U ′

, C ∪ D,V, f}, ∀R ⊆ C, then |NIPRD| 
= 0 ⇔
|POSRD| < |POSC D|.

Proof: First, we know that |NIPRD| ≥ 0, so |NIPRD| 
=
0 ⇔ |NIPRD| > 0.

(⇒) Suppose that |NIPRD| > 0. Then ∃xi, xj ∈ U
′′
R , ob-

ject pair (xi, xj ) ∈ NIPRD ⇒ ∃xi, xj ∈ U
′
, [xi ]R = [xj ]R ,

and f(xi,D) 
= f(xj ,D) ⇒ ∃xi ∈ U
′
, [xi ]R /∈ POSRD ⇒

|POSRD| ≤ |POSC D| − |[xi ]R | < |POSC D|.

(⇐) Suppose that |POSRD| < |POSC D|. Then ∃xi ∈ U
′
,

[xi ]R /∈ POSRD ⇒ ∃xi ∈ U
′
, [xi ]R is inconsistent. Accord-

ing to Theorem 3, we have∃j ∈ [1, r), object pair(xij
, xij + 1 ) ∈

NIPRD ⇒ |NIPRD| > 0.
In summary, the theorem holds. �
Based on Theorem 5, we can be sure that |NIPRD| 
= 0

means that R is not a reduct candidate.
Theorem 6: Given a simplified decision table S

′
= {U ′

, C ∪
D,V, f} and a certain subset of conditional attributes R ⊂ C,
then ∀a ∈ (C − R), |NIPRD{a}| ≤ |NIPRD|.

Proof: According to Definition 5, ∀a ∈ R, NIPRD{a} ⊆
NIPRD ⇒ ∀a ∈ R, |NIPRD{a}| ≤ |NIPRD|. �

By means of Theorem 6, we can easily classify the relation-
ship between NIPRD{a} and NIPRD.

Theorem 7: Given a simplified decision table S
′
= {U ′

, C ∪
D,V, f} and a certain subset of conditional attributes R ⊂ C,
then ∀a ∈ (C − R), |NIPRD{a}| = 0 ⇔ |NIPRD| = 0.

Proof: Suppose that ∀a ∈ (C − R), |NIPRD{a}| = 0, then
it can be divided into two cases:

If |NIPRD| = 0, then the theorem holds.
If |NIPRD| > 0, then for ∀xi, xj ∈ U

′
, (xi, xj ) ∈ NIPRD,

and ∀a ∈ (C − R), it has f(xi, a) = f(xj , a) ⇒ for ∀xi, xj ∈
U

′
, (xi, xj ) ∈ NIPRD, and ∀a ∈ C, it has f(xi, a) = f(xj , a).

⇒ ∃xi, xj ∈ U
′
, and (xi, xj ) ∈ NIPRD, ∀a ∈ C, f(xi, a) =

f(xj , a). However, since ∀xi, xj ∈ U
′
, ∃a ∈ C, f(xi, a) 
=

f(xj , a). This causes a contradiction. Hence, |NIPRD| = 0.
Suppose that |NIPRD| = 0, then NIPRD = ∅⇒∀a ∈ (C −

R), NIPRD{a} = ∅ ⇒ ∀a ∈ (C − R), |NIPRD{a}| = 0.
In summary, the theorem holds. �
Theorem 8: Given a simplified decision table S

′
= {U ′

, C ∪
D,V, f} and two subsets of conditional attributes R1 ⊂ R2 ⊆
C, then |NIPR2 D| ≤ |NIPR1 D|.

Proof: Suppose (xi, xi+1) ∈ NIPR2 D, 1 ≤ i ≤ |U ′′|. Ac-
cording to Definition 4, we know (xi, xi+1) ∈ NIPR1 D. Thus,
NIPR2 D ⊆ NIPR1 D. It means |NIPR2 D| ≤ |NIPR1 D|. �

Theorem 9: Given a simplified decision table S
′
=

{U ′
, C ∪ D,V, f} and two subsets of conditional attributes

R1 ⊂ R2 ⊂ C, then ∀a ∈ (C − R2), |NIPR2 D{a}| ≤ |U ′ | −
|POSR1 D{a}|.

Proof: Suppose (xi, xi+1) ∈ NIPR2 D{a}, 1 ≤ i ≤ |U ′′|.
According to Definition 5, we know (xi, xi+1) ∈ NIPR1 D{a}.
Thus, NIPR2 D{a} ⊆ NIPR1 D{a}. It means |NIPR2 D{a}| ≤
|NIPR1 D{a}|. �

By Theorems 7 and 9, we find that |NIPRD{a}| has the
potential to be a good measure for attribute significance.

Theorem 10: Given a simplified decision table S
′
=

{U ′
, C ∪ D,V, f}, ∀R ⊆ C, ∀a ∈ C, if |NIPRD| = 0 and

|POSC−aD| < |POSC D|, then a ∈ R.
Proof: Suppose that ∃a ∈ C satisfying |POSC−aD| <

|POSC D|, and a /∈ R. Then |POSRD| < |POSC D|. By The-
orem 4, |NIPRD| = 0 ⇒ |POSRD| = |POSC D|. It causes a
contradiction. Thus, the theorem holds. �

By Theorem 10, it is clear that if ∃a ∈ C belongs to core
attributes of a simplified decision table, then a ∈ R when
|NIPRD| = 0.
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IV. QUICK NEIGHBOR INCONSISTENT PAIR SELECTION BASED

ON ROUGH SET THEORY

A. Attribute Significance Measurement by Neighbor
Inconsistent Pair

In this section, we use neighbor inconsistent pair to mea-
sure attribute significance, so we only consider the neighbor
inconsistent pairs in U

′′
R (R is an intermediate reduct). Here, two

methods of measuring the attribute significance are proposed
and analyzed in detail.

Definition 6: Given a simplified decision table S
′
, let R ⊆

C, and a ∈ (C − R). Then the first type of significance of at-
tribute a is defined by

sigNIP(R, a,D) = |NIPRD{a}|. (7)

sigNIP{R, a,D} can be viewed as a measure of attribute
importance based on the ability for an attribute a ∈ (C − R)
to make a neighbor inconsistent pair into a neighbor consis-
tent pair on the object array of U

′
/R. Hence, if ∃a

′ ∈ (C −
R), sigNIP(R, a

′
,D) ≥ sigNIP(R, a,D),∀a ∈ (C − R), then

we can say attribute a
′
is the most important attribute.

However, sigNIP(R, a,D) has one small defect. Let us take
object pair (x1 , x2) and (x4 , x5) in Table III as an example.
Object pair (x1 , x2) has two attributes, i.e., c1 and c3 with
different attribute values. In this situation, both sigNIP(R, a, c1)
and sigNIP(R, a, c3) will be added with 1. As for (x4 , x5), there
is only c5 , so sigNIP(R, a, c5) will be added with 1 as well.
However, we usually believe c5 is more important than c1 or
c3 from the viewpoint of Skowron’s discernibility matrix. To
overcome this shortcoming, we put forward another attribute
significance measure in the following.

Definition 7: Given a simplified decision table S
′
, let R ⊆

C, and a ∈ (C − R). Then the second type of significance of
attribute a is defined by

diff(xi, xj , a) =
{

0, if f(xi, a) == f(xj , a)
1

|{c|f (xi ,c) 
=f (xj ,c),∀c ∈C }| , else
(8)

sigNIP2(R, a,D) =
N −1∑
i=1

diff(xi, xi+1 , a). (9)

If ∃a
′ ∈ (R − C), sigNIP2(R, a

′
,D) ≥ sigNIP2(R, a,D),

∀a ∈ (C − R), then attribute a
′
is the most important attribute.

sigNIP2(R, a,D) is a weighted version of sigNIP(R, a,D),
the difference between them is that sigNIP(R, a,D) is al-
ways added with 1, but sigNIP2(R, a,D) is always added with
1/diff(xi, xj , a). In this way, we can measure the attribute sig-
nificance in a more accurate way.

Attribute significance measures based on neighbor inconsis-
tent pair are different from attribute significance measures based
on positive region in the following three aspects:

1) The neighbor inconsistent pair only cares about the neigh-
bor pair, in which the two objects belong to the same
equivalent class. In other words, it focuses on the neighbor
pair in an equivalent class. However, the positive region
pays attention to all the object pairs that are in the same

equivalent class. In other words, the positive region fo-
cuses on the equivalent class, rather than the object pairs.

2) For the attribute significance measure based on the
neighbor inconsistent pair, since sigNIP(R, a,D) and
sigNIP2(R, a,D), ∀a ∈ (C − R) are based on U

′
/R,

we can get all sigNIP(R, a,D) or sigNIP2(R, a,D) for
∀a ∈ (C − R) by calculating U

′
/R only once in the pro-

cess of selecting the best attribute from attribute sets:
C − R (see Algorithms 6 or 7). On the contrary, for
the attribute significance measure based on the posi-
tive region, one need to calculate U

′
/{R, a} when com-

puting sigPOS(R, a,D), for ∀a ∈ (C − R). Hence, one
need to compute by |C − R| times when getting all
sigPOS(R, a,D) for ∀a ∈ (C − R). In other words, the
algorithm based on sigNIP(R, a,D) or sigNIP2(R, a,D)
is likely to be much quicker than the algorithm based on
sigPOS(R, a,D).

3) From the discussions about the concepts of the neigh-
bor inconsistent pair, we can draw a conclusion that
as the subset of conditional attributes R ⊆ C contains
more conditional attributes, |NIPRD| becomes increas-
ingly smaller until |NIPRD| = 0. In other words, the
equivalence classes covered by selected attributes will
be neglected during the attribute selection procedure.
In contrast, |POSRD| becomes increasingly larger un-
til |POSRD| = |U ′ |. In each iteration, the positive region
needs to be searched in the whole universe U .

B. Algorithms Based on Quick Neighbor Inconsistent Pair
Selection

In this section, we expound on attribute reduction algorithms
based on the neighbor inconsistent pair selection. In the follow-
ing, we first introduce a quick method that can change a decision
table into a simplified one (see Algorithm 1). Then an improved
counting sort algorithm for a single attribute (see Algorithm 2)
is discussed. Consequently, we propose an improved algorithm
to calculate sigNIP(R, a,D) (see Algorithm 3) as well as an
algorithm to calculate sigNIP2(R, a,D) (see Algorithm 4). An
algorithm is put forward to test whether the initial reduct is
necessary or not (see Algorithm 5). Finally, we present our al-
gorithms for attribute reduction (see Algorithms 6 and 7).

We show the detailed process of the algorithms as follows:
In this paper, in order to make our algorithm adaptable to the

inconsistent decision table, we have to transform the original
decision table into a consistent one. The process of the transition
is shown in the Algorithm 1, which can be divided into two
stages as follows:

1) The first stage is from steps 1 to 15. Initialize parameters
MaxC and MinC, and sort U with counting sort algo-
rithm to make the objects in the same equivalent class be
neighbors.

2) The second stage is from steps 16–35. If the near neighbor
pair is inconsistent, then execute step 26 to transform it
into a consistent neighbor pair.
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Algorithm 1: Getting simplified decision table.

Input: A decision table S = (U,C ∪ D,V, f), where
U = {x1 , x2 , . . . , xn}, C = {c1 , c2 , . . . , cm},
D = {d}.

Output: A simplified decision table
S

′
= (U

′
, C ∪ D,V, f),

where U
′

= {x′
1 , x

′
2 , . . . , x

′
r}.

1: Let MaxCi = max(f(xj , ci)), MinCi =
min(f(xj , ci))

for ∀xj ∈ U , where i ∈ [1,m]. Seq = {1, 2, . . . , n}.
2: for i = 1 to m do
3: for j = MinCi to MaxCi do
4: {Count[j]=0;}
5: end for
6: for j = 1 to n do
7: {Count[f(xj , ci)]=Count[f(xj , ci)] + 1;

TempSeq[j]=Seq[j];}
8: end for
9: for k = MinCi to MaxCi do

10: {Count[k]=Count[k]\,+\, Count[k-1];}
11: end for
12: for j = n to 1 do
13: {Seq[Count[f(xTempSeq[j ], ci)]] = TempSeq[j];

Count[f(xTempSeq[j ], ci)]=Count[f(xTempSeq[j ],
ci)]-1;}

14: end for
15: end for
16: i = 2, inconsFlag = 0, r =0;
17: while i ≤ n do
18: startPos = i-1;
19: while f(xSeq(i) , cj ) = f(xSeq(i−1) , cj ) for all

cj ∈ C, do
20: if f(xSeq(i) ,D) 
= f(xSeq(i−1) ,D),

{inconsFlag = 1;}
i= i + 1;

21: if i > n then
22: break;
23: end if
24: end while
25: if inconsFlag = 1 then
26: {inconsFlag = 0;

r = r + 1;
x

′
r = xSeq(startPos) ;

f(x
′
r ,D) = maxD + 1;}

27: else
28: {r = r + 1;

x
′
r = xSeq(startPos) ;}

29: end if
30: if i == n then
31: r = r + 1;

x
′
r = xSeq(i) ;

32: end if
33: i = i + 1;
34: end while
35: return S

′
.

Algorithm 2: Counting sort for a single attribute.
Input: A Simplified Decision Table
S

′
= {U ′

, C ∪ D,V, f} where U
′

= {x′
1 , x

′
2 , . . . , x

′
n},

the index of selected conditional attribute: attInd,
object serialization:objTag[],
remained object number:objTagNum,
the partition of object serialization:dividTag[][2],
partition number:dividTagNum.

Output: new object serialization:newObjTag[].
1: Let maxC = max(f(x

′
j , CattInd)),

minC = min(f(x
′
j , CattInd)) for ∀xj ∈ U .

totalNum = 0;
newObjTagNum = 0;

2: for j = 1 : dividTabNum do
3: for i = minC : maxC do
4: Count[i] = 0;
5: end for
6: for i = dividTag(j, 1) to dividTag(j, 2) do
7: Count[f(x

′
ob jTag(i) , CattInd )]=Count[f(x

′
ob jTag(i) ,

CattInd )] +1;
8: end for
9: Count(minC) = Count(minC) + totalNum;

10: for i = minC + 1 to maxC do
11: Count[i] = Count[i] + Count[i-1];
12: end for
13: for i = dividTag(j, 2) to dividTag(j, 1) do
14: newObjTag(Count(f(x

′
ob jTag(i) , CattInd)))=

objTag(i); count(f(x
′
ob jTag(i) , CattInd))

=count(f(x
′
ob jTag(i) , CattInd))−1;

15: end for
16: totalNum = dividTag(j, 2) - dividTag(j, 1) + 1 +

totalNum
;

17: end for
18: return newObjTag.

Through Algorithm 1, we can get a simplified table S
′

=
{U ′

, C ∪ D,V, f}, which has no inconsistent objects.
In Algorithm 2, input variable attInd represents the index

of the attributes selected currently. objTag represents the ob-
jects index of inconsistent pairs in U

′′
R (R represents the se-

lected attributes). objTagNum is the object number of objTag.
dividTag[][2] is division of equivalence class, and dividTag[i][1]
means the starting position of ith equivalence class in objTag and
dividTag[i][2] is the end position. Using the parameters above,
we can have a detailed description of the inconsistent pairs of
U

′′
R .
Algorithms 3 and 4 are key steps to measure candidate at-

tributes of QNIPS and QNIPS2, respectively. The output pa-
rameter inConsAtt is the sigNIPS/sigNIPS2 value of candidate
attributes.

In our algorithm, we need to choose a random attribute as
the initial reduct. Since it is selected randomly, we design Al-
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Algorithm 3: Calculate sigNIPS.

Input: A Simplified Decision Table S
′

= (U ′, C ∪ D)
where U

′
= {x′

1 , x
′
2 , . . . , x

′
n},

the index of selected conditional attributes: attInd,
object serialization:objTag[], remained object
number:objTagNum,

the partition of object serialization:dividTag[][2],
partition number:dividTagNum.

Output: inConsAtt[], newObjTag[], newObjTagNum,
newDividTag[][2], newDividTagNum.

1: inConsAtti = 0(i = 1, . . . , |C|);
i = 2;
newObjTagNum = 0;
newDividTagNum = 0;
unEqualFlag = 0;
posNum = 0;

2: for j = 1 : dividTagNum do
3: i = dividTag(j, 1) + 1;
4: while i ≤ dividTag(j, 2) do
5: startPos = i - 1;
6: while f(x

′
ob jTag(i) , CattInd) = f(x

′
ob jTag(i−1) ,

CattInd) do
7: if f(x

′
rmobjT ag(i) ,D) 
= f(x

′
ob jTag(i−1) ,D) then

8: unEequalFalg = 1;
9: if f(x

′
ob jTag(i) , Ck ) 
= f(x

′
ob jTag(i−1) , Ck ),

∀Ck ∈ (C − R) then
10: inConsAttk = inConsAttk + 1;
11: end if
12: end if
13: i = i + 1;
14: if i > dividTag(j, 2) then
15: break;
16: end if
17: end while
18: endPos = i − 1;
19: if unEqualFlag = 1 then
20: unEqualFlag = 0;

newDividTagNum = newDividTagNum +1;
newDividTag(newDividTagNum, 1) =
startPos-posNum;

newDividTag(newDividTagNum, 2) =
endPos-posNum;

21: for k = startPos : endPos do
22: newObjTagNum = newObjTagNum + 1;

newObjTag(newObjTagNum) = objTag(k);
23: end for
24: else
25: posNum = endPos-startPos + 1 + posNum;
26: end if
27: if i == dividTag(j, 2) then
28: posNum = posNum + 1;
29: end if
30: i = i + 1;
31: end while
32: end for
33: return inConsAtt, newObjTag, newObjTagNum,

newDividTag, newDividTagNum.

Algorithm 4: Calculate sigNIPS2.

Input: A Simplified Decision Table S
′

= (U ′, C ∪ D)
where U

′
= {x′

1 , x
′
2 , . . . , x

′
n},

the index of selected conditional attributes: attInd,
object serialization:objTag[], remained object
number:objTagNum, the partition of object
serialization:dividTag[][2], partition
number:dividTagNum.

Output: inConsAtt[], newObjTag[], newObjTagNum,
newDividTag[][2], newDividTagNum.

1: inConsAtti = 0(i = 1, . . . , |C|); i = 2;
newObjTagNum = 0;
newDividTagNum = 0;
unEqualFlag = 0;
posNum = 0;

2: for j = 1 : dividTagNum do
3: i = dividTag(j, 1) + 1;
4: while i ≤ dividTag(j, 2) do
5: startPos = i − 1;
6: while f(x

′
ob jTag(i) , CattInd) = f(x

′
ob jTag(i−1) ,

CattInd) do
7: if f(x

′
ob jTag(i) ,D) 
= f(x

′
ob jTag(i−1) ,D) then

8: unEequalFalg = 1;
9: if f(x

′
ob jTag(i) , Ck ) 
= f(x

′
ob jTag(i−1) , Ck ),

∀Ck ∈ (C − R) then
10: inConsAttk = inConsAttk+

diff(x
′
ob jTag(i) , x

′
ob jTag(i−1) , Ck );

11: end if
12: end if
13: i = i + 1;
14: if i > dividTag(j, 2) then
15: break;
16: end if
17: end while
18: endPos = i - 1;
19: if unEqualFlag = 1 then
20: unEqualFlag = 0;

newDividTagNum = newDividTagNum + 1;
newDividTag(newDividTagNum, 1) =
startPos-posNum;
newDividTag(newDividTagNum, 2) =
endPos-posNum;

21: for k = startPos : endPos do
22: newObjTagNum = newObjTagNum + 1;

newObjTag(newObjTagNum) = objTag(k);
23: end for
24: else
25: posNum = endPos-startPos+1+posNum;
26: end if
27: if i == dividTag(j, 2) then
28: posNum = posNum + 1;
29: end if
30: i = i + 1;
31: end while
32: end for
33: return inConsAtt, newObjTag, newObjTagNum,

newDividTag, newDividTagNum.
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Algorithm 5: Test the initial reduct.

Input: A Simplified Decision Table S
′

= (U
′
, C ∪ D) where

U
′

= {x′
1 , x

′
2 , . . . , x

′
n}, C = {c1 , c2 , . . . , cm}, reduct

R,
initial reduct R

′
,

Output: reduct R.
1: R = R - R

′
;

2: Let {MaxCi = max(f(x
′
j , ci)), MinCi =

min(f(x
′
j , ci))

for ∀x
′
j ∈ U

′
, where ci ∈ R. Seq = {1, 2, . . . , n}.

3: for i = 1 to m do
4: if ci ∈ R then
5: for j = MinCi to MaxCi do
6: {Count[j]=0;}
7: end for
8: for j = 1 to n do
9: {Count[f(x

′
j , ci)]=Count[f(x

′
j , ci)]+1;

TempSeq[j]=Seq[j];}
10: end for
11: for k = MinCi to MaxCi do
12: {Count[k]=Count[k] + Count[k-1];}
13: end for
14: for j = n to 1 do
15: {Seq[Count[f(x

′
TempSeq[j ], ci)]] =

TempSeq[j];
Count[f (x

′
Tem pSeq[j ] , ci )] = Count[f(x

′
TempSeq[j ],

ci)]−1;}
16: end for
17: end if
18: end for
19: i = 2, endFlag = 0;
20: while i ≤ |U ′ | do
21: while f(x

′
Seq[i], cj ) = f(x

′
Seq[i−1], cj ) for all cj ∈ R

do
22: if f(x

′
Seq[i],D) 
= f(x

′
Seq[i−1],D) then

23: {R = R ∪ R
′
;

endFlag = 1;
break ;}

24: else
25: i = i + 1;
26: end if
27: end while
28: if endFlag = 1 then
29: break;
30: end if
31: i = i + 1;
32: end while
33: return R;

gorithm 5 to check its necessity. We divide Algorithm 5 into the
following two parts:

1) Steps 1 to 18, use counting sort to get U
′′
R−R ′ (R

′
is initial

reduct).

2) Steps 19–32, judging whether there exits neighbor incon-
sistent pairs. If there exits near inconsistent neighbor pairs,
we say R

′
is necessary, otherwise R

′
is unnecessary.

Algorithm 6: QNIPS.

Input: A decision table S = (U,C ∪ D), where
U = {x1 , x2 , . . . , xn}, C = {c1 , c2 , . . . , cm}, D = {d}.

Output: An attribute reduct R
1: Change S into the simplified decision table by

Algorithm 1;
2: Randomly select a conditional attribute c ∈ C as initial

reduct:R = c, c
′

= c;
objTag[i] = i, ∀i ∈ [1, |U |];
objTagNum = |U |;
dividTag(1, 1) = 1;
dividTag(1, 2) = |U |;
dividTagNum = 1;

3: while objTagNum > 0 do
4: sort with newly add conditional attribute c

′

by Algorithm 2;
5: get inConsAtt, objTag, objTagNum, dividTag,

dividTagNum by Algorithm 3
6: if objTagNum > 0 and inConsAtti

= max(inConsAtt) then
7: R = R ∪ ci , c

′
= ci ;

8: end if
9: end while

10: Test whether the initial reduct c is necessery by
Algorithm 5;

11: return R;

Here, we propose an attribute selection algorithm based on
the adjacent inconsistent pair (see Algorithm 6). It follows the
general process of attribute selection algorithm. In our method,
we select a random attribute as the initial reduct. Then, we use
forward selection method to conduct the selecting process. By
judging whether objTagNum is equal to 0 to stop the feature
selection (objTagNum = 0 means U

′′
R is consistent). Finally,

we need to check whether the initial reduct is effective. If the
initial reduct is not effective, we delete it from the reduct R. As
for Algorithm 7, it repeats the same process as Algorithm 6.

Before analyzing the time complexity, we should pay atten-
tion to several variables: objTag[], objTagNum, dividTag[][2],
and dividTagNum. Let us take Table III as an example. At first:
objTag = [1, 2, 3, 4, 5, 6, 7], objTagNum = 7, dividTag[1][1]
= 1, dividTag[1][2] = 2, dividTagNum = 1. Variable objTag[]
contains the object subscript sequentially, and objTagNum
represents the number of subscripts contained in objTag[].
dividTag contains the lower bound and upper bound of the
index of a partition in objTag, and dividTagNum denotes the
number of the partition in objTag. Let R = c1 , then if U

′
/R

= {{x1}, {x2 , x6}, {x3 , x4 , x5 , x7}}, we can get that objTag
= [1, 2, 6, 3, 4, 5, 7], objTagNum = 7, dividTag[1][1] =
1, dividTag[1][2] = 1; dividTag[2][1] = 2, dividTag[2][2]
= 3;dividTag[3][1] = 4, dividTag[3][2] = 7; dividTagNum
= 3. By Theorem 2, we know that [x1 ] do not contribute to
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Algorithm 7: QNIPS2.

Input: A decision table S = (U,C ∪ D), where
U = {x1 , x2 , . . . , xn}, C = {c1 , c2 , . . . , cm}, D = {d}.

Output: A attribute reduct R
1: Change S into the simplified decision table by

Algorithm 1;
2: Randomly select a conditional attribute c ∈ C as initial

reduct:R = c, c
′

= c;
objTag[i] = i, ∀i ∈ [1, |U |];
objTagNum = |U |;
dividTag(1, 1) = 1;
dividTag(1, 2) = |U |;
dividTagNum = 1;

3: while objTagNum > 0 do
4: sort with newly add conditional attribute c

′
by

Algorithm 2;
5: get inConsAtt, objTag, objTagNum, dividTag,

dividTagNum by Algorithm 4
6: if objTagNum > 0 and inConsAtti =

max(inConsAtt) then
7: R = R ∪ ci , c

′
= ci ;

8: end if
9: end while

10: Test whether the initial reduct c is necessery by
Algorithm 5;

11: return R;

sigNIP(R, a,D) ∀a ∈ (C − R). Hence, in Algorithms 3 or 4,
we neglect [x1 ], and we can reduce the time cost without
affecting the accuracy in calculating sigNIP(R, a,D). In other
words, what we get actually is objTag = [2, 6, 3, 4, 5, 7],
objTagNum = 6, dividTag[2][1] = 1, dividTag[2][2] = 2;
dividTag[3][1] = 3, dividTag[3][2] = 6, dividTagNum = 2.

In the following, we analyze the time complexity of the algo-
rithms.

In Algorithm 1, the time complexity of steps 3–14 is O(|U |),
so the time complexity for steps 2–14 is O(|U ||C|). As for
steps 17–34, it is clear that the time complexity is O(|U ||C|).
In summary, the time complexity of Algorithm 1 is O(|U ||C|).

In Algorithm 2, the time complexity of steps 3–16
is O(dividTag[j][2] − dividTag[j][1]). Since dividTag
represents the result of partition of objTag, and ob-
jTagNum ≤ |u′ |, which means that (dividTag[1][2] −
dividTag[1][1])+(dividTag[2][2]−dividTag[2][1]) + . . . +
(dividTag[dividTagNum][2]−dividTag[dividTagNum][1]) =
objTagNum. So, the time complexity of steps 2–17 is O(|U ′ |).
In summary, the time complexity for Algorithm 2 is O(|U ′ |).

As for Algorithm 3, the time complexity of steps
9–11 is O(|C − R|), the time complexity of steps
3–31 is O((dividTag[j][2] − dividTag[j][1]) ∗ |C − R|).
Since (dividTag[1][2] − dividTag(dividTag[2][2]−dividTag[2]
[1])+ . . . + (dividTag[dividTagNum][2]−dividTag[dividTag
Num][1]) = objTagNum. So its time complexity is
O(|U ′ ||C − R|). In summary, the time complexity of Al-

TABLE IV
WHOLE RUNNING TIME OF DIFFERENT METHODS

gorithm 3 is O(|U ′ ||C|). We can obtain the same conclusion
for Algorithm 4.

For Algorithm 5, the time complexity of steps 4–17 is O(|U ′ |),
so the time complexity for steps 3–18 is O(|U ′ |(|R| − 1)). As
for steps 19–32, the time complexity is at most (|U ′ ||R|). In
summary, the time complexity for Algorithm 5 is O(|U ′ ||R|).

For Algorithm 6, the time complexity of steps 1, 2, and
10 is O(|U ||C|), O(1), and O(|U ′ ||R|). As for steps 4 and
5, the time complexity is O(|U ′ |) and O(|U ′ ||C|), steps 6–
8 is O(1), so the time complexity of steps 3–9 is at most
O(|U ′ ||C2 |). Thus, the time complexity of Algorithm 6 is
max(O(|C||U |), O(|C|2 |U/C|)) (Note that |U ′ | = |U/C|). We
can draw the same conclusion for Algorithm 7.

V. EXPERIMENTAL STUDY

In this section, we compare two kinds of quick neighbor in-
consistent pair selection algorithms QNIPS (employ sigNIPS)
and QNIPS2 (employ sigNIPS2) with three other attribute re-
duction methods, including the reduction method based on sam-
ple selection (denoted by SPS) [46], the reduction method based
on the positive-region (denoted by xuPos) [40], and the reduc-
tion method based on the neighbor inconsistent pair selection
(denoted by NIPS) [47].

A. Experiment Setup

Twelve datasets taken from UCI1 are used to conduct exper-
iments. The details of the datasets are shown in Table V. The
hardware environment: pentium(R) D CPU 2.93 GHz, 2.00 GB
Memory. The software environment: MATLAB 7.0.

B. Experimental Comparison

For the purpose of comprehensive analysis, we assume that a
good attribute reduction method should satisfy three conditions.

1) Speed : the time cost should be as less as possible.
2) Length : the reduct obtained by the algorithm should be

as short as possible, i.e., contains as less attributes as
possible.

3) Accuracy : the reduct obtained should contain information
as much as possible.

In the following, we conduct our experimental comparison in
keeping with the above three aspects. Note that, because of its

1http://www. ics. uci.e.u/mlearn/MLRepository. html
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TABLE V
DETAILED INFORMATION OF THE DATASETS USED IN THE EXPERIMENTS

TABLE VI
CLASSIFICATION PERFORMANCE RESULT BY C4.5 CLASSIFIERS

TABLE VII
CLASSIFICATION PERFORMANCE RESULT BY NAIVEBAYES CLASSIFIERS

high space complexity, we can only get our experimental data
for SPS from four small datasets (i.e., audio, autos, breast, and
car) under our experimental environment.

1) Length: The results of comparison in the number of se-
lected attributes by different attribute reduction methods are
shown in Fig. 1. From the result presented in Fig. 1, we find that
each algorithm performs almost as well as others.

2) Accuracy: In order to conduct the comparison in perfor-
mance among these algorithms, we employ NaiveBayes and
C4.5 classifiers as the validation functions. Both NaiveBayes
and C4.5 classifiers are taken from or implemented in Weka [48].
The average value of classification accuracies and standard
deviations of classification accuracies are obtained from
ten times tenfolds crossvalidation of NaiveBayes and
C4.5, and the results are shown in Tables VI and VII,
respectively.

From Tables VI and VII, we know that there is no big
difference among these comparative methods. Compared with
QNIPS, QNIPS2 performs a little better.

3) Speed: We can find the result of comparison of the whole
running time in Table IV. One of the distinctive features in this
table is that SPS is only suitable for small datasets because of
its high space complexity. What is more, its time cost is also
much higher than other algorithms. It is clear that SPS takes
more time than other algorithms to find a reduct. To make a
better comparison among the algorithms, we can pay attention
to Fig. 2. We set the running time of QNIPS as the standard unit
in this figure, so that we can easily find the comparison result
from it. It shows that QNIPS2 is slightly slower than QNIPS. As
for algorithm NIPS, it is much slower than QNIPS and QNIPS2,
but it is quicker than xuPos when the dataset containing many
attributes. As for xuPos, it is much slower than QNIPS and
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Fig. 1. Comparison on the sizes of selected attributes.

Fig. 2. Comparison of the whole running time.

QNIPS2, and it is quicker than NIPS only if the dataset contains
a few attributes.

Actually, we can divide the attribute reduction algorithms into
two parts: preprocessing decision table and finding a reduct. As
for the first step, the compared methods have the same time
complexity. Hence, we conduct the following comparison.

1) Comparison with SPS: Fig. 3 shows the result of com-
parison of the running time of the first and second step,
respectively, among SPS, QNIPS, and QNIPS2. We still
set the running time of QNIPS as the standard unit. As
we can see from the picture, compared with SPS, the time
consumption of QNIPS and QNIPS2 can be neglected, in
both the first and the second steps. In summary, QNIPS
and QNIPS2 is much faster than SPS. Note that, since SPS
can only get reduct from dataset: audio, autos, breast, and

Fig. 3. Comparison with SPS.

Fig. 4. Comparison with xuPos.

car, so we only make the comparison based on these four
datasets.

2) Comparison with xuPos: Fig. 4 shows the results. From
the upper part of Fig. 4, we can find the comparison of
running time of the second part on each dataset among
QNIPS, QNIPS2, and xuPos. We can get the result of
comparison of total running time of all the datasets among
QNIPS, QNIPS2, and xuPos in the lower part of Fig. 4, in
which we set the running time of QNIPS as a standard unit
as well. It is obvious that QNIPS and QNIPS2 are much
quicker than xuPos in the second step. What is more, if we
pay attention to datasets audio and cane, we can draw the
conclusion that the more attributes contained in a dataset,
the less time consumed in QNIPS and QNIPS2 relative to
xuPos.

3) Comparison with NIPS: The comparison result with NIPS
is shown in Fig. 5. From the upper part of Fig. 5, we can
find the comparison of running time of the second part
on each dataset among QNIPS, QNIPS2, and NIPS. The
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TABLE VIII
COMPARISON IN DATASET: AMAZON

TABLE IX
COMPARISON IN DATASET: POKER

Fig. 5. Comparison with NIPS.

comparison result of the total running time on all datasets
is shown in the lower part of Fig. 5, in which we set
the running time of QNIPS as standard unit as well. In a
summary, it is obvious that QNIPS and QNIPS2 are much
quicker than QNIPS in the second step.

4) Comparison in large datasets: To further verify the con-
clusions drawn above, we conduct the comparison on
large datasets among different algorithms. Note that, in
Tables VIII and IX, time1 means the running time of the
first step, time2 means the running time of the second
step, total time means the whole running time. What is
more, we still set the running time of QNIPS as standard
unit. Since SPS cannot obtain results on these two large
datasets, SPS is not listed in the tables. As we can see from
Table VIII, there is no big difference among the running
time of the first step, however, the running time of the sec-
ond step varies widely. QNIPS and QNIPS2 are obviously
faster than NIPS and xuPos. From Table IX, we can draw
a similar conclusion. Note that, from Table V, we know
that dataset Amazon contains much more attributes than
dataset Poker. Through the comparison results in these two
large datasets (see Tables VIII and IX), we can still draw

the conclusion that the more attributes are contained in a
dataset, the less time is consumed in QNIPs and QUIPS2
in comparison with the above xuPos.

In summary, we can conclude thatQNIPS and QNIPS2 can
get a reduct with much less time cost than SPS, xuPos, and
NIPS.

VI. CONCLUSION

In this paper, we first propose the concepts of neighbor pair,
neighbor inconsistent relation, and neighbor consistent relation.
Based on the proposed concepts, through systematic theoret-
ical analysis, we construct two kinds of attribute significance
measures from the viewpoint of pair selection. Consequently,
we develop two quick neighbor inconsistent pair selection al-
gorithms for attribute reduction in the framework of rough sets.
The key characteristic of the proposed algorithms is that they
only need to calculate U

′
/R once, while most existing algo-

rithms based on the positive region have to calculate partition of
U

′
for |C − R| times. What is more, our algorithms only need

to deal with the equivalent classes in U
′
/R that contain at least

one neighbor inconsistent pair, i.e., part of objects in U
′
, while

others always need to consider all objects in U
′
. Experiments

have shown that our algorithms are much faster than the existing
rough set attribute reduction algorithms based on the positive
region while maintaining the same performance as the other
strategies.

Our future work aims to construct an efficient way to search
all reducts for a given decision table and apply our approach to
other kinds of information systems.
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