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Abstract. Small sample size is one of the most challenging problem-
s in face recognition due to the difficulty of sample collection in many
real-world applications. By representing the query sample as a linear
combination of training samples from all classes, the so-called collab-
orative representation based classification (CRC) shows very effective
face recognition performance with low computational cost. However, the
recognition rate of CRC will drop dramatically when the available train-
ing samples per subject are very limited. One intuitive solution to this
problem is operating CRC on patches and combining the recognition
outputs of all patches. Nonetheless, the setting of patch size is a non-
trivial task. Considering the fact that patches on different scales can
have complementary information for classification, we propose a multi-
scale patch based CRCmethod, while the ensemble of multi-scale outputs
is achieved by regularized margin distribution optimization. Our exten-
sive experiments validated that the proposed method outperforms many
state-of-the-art patch based face recognition algorithms.

1 Introduction

Face recognition (FR) has been an active research topic in computer vision and
pattern recognition for many years [1]. In spite of the tremendous achievements,
there are still many challenges caused by the large face appearance variations
of illumination, expression, pose, noise, occlusion, etc [2]. Particularly, the small
sample size (SSS) problem is one of the most fundamental and challenging issues
in FR. In many real-world applications such as smart cards, law enforcement,
surveillance and access control, the training samples of many subjects are often
very limited [3]. Unfortunately, the performance of appearance based FR meth-
ods, such as the classical Eigenface [4], Fisherface [5], LPP [6] and the variants
of them [7], degrades much with the decrease of training samples.

As a generalization and extension of the nearest neighbor, nearest line, n-
earest plane and nearest subspace classifiers, the sparse representation based
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classification (SRC) [8] scheme shows very interesting FR results. SRC repre-
sents a query face as a sparse linear combination of the training samples from all
classes, and classifies it to the class which has the least representation residual.
However, in [9] it was indicated that the costly l1-norm sparse regularization on
the representation vector in SRC is not necessary, and l2-norm regularization
can lead to similar FR results but with much lower computational cost. The col-
laborative representation based classification (CRC) was then proposed in [9] by
representing the query sample with non-sparse l2-regularization. However, both
CRC and SRC suffer serious performance degradation when the training sample
size is very small and hence the query sample cannot be well represented [10].

To solve the SSS problem, virtual samples and generic training set were used
in [11]. On the other hand, the trained classifiers will become unstable and have
poor generalization ability when the available samples are insufficient, and hence
ensemble learning has been widely applied to FR and has led to significant im-
provement in recognition rate and robustness [12][13][14]. These methods can
be roughly divided into three categories. The first category of methods is patch
(or block) based methods, which usually involve steps of local region partition,
local feature extraction and classification combination [15][14]. The recognition
rate of patch based methods is much affected by patch size, which is often set
by experimental experience [16] [12]. Considering that the global and local fea-
tures can provide complementary information, the second category of methods
combines the global and local features for classification [13][17]. Third, a very
popular category of methods uses multiple feature extractors to extract differ-
ent types of facial features, and then uses classifier fusion for classification. For
example, in [18][19], local features such as SIFT, LBP, Gabor response and gray
values are combined for face verification.

Human faces exhibit distinct structures and characteristics when observed on
different scales [13]. Combining the information on different scales could not only
lead to much FR improvement but also provide us a simple and effective way for
scale-insensitive models. How to combine multi-scale information is essentially
an ensemble learning task. AdaBoost [20] is one of the most successful ensemble
learning techniques due to its excellent performance and broad applications in
face and object detection, visual tracking, etc. The success of AdaBoost actually
attributes to margin distribution optimization [21][22][23], and AdaBoost ap-
proximately minimizes the loss criterion with l1-regularization on the coefficient
vector [20]. In [24], Shawe-Taylor gave the bound of AdaBoost’s generalization
error based on margin distribution, which shows that the loss of margin and the
norm of coefficient vector could be minimized.

In this paper, to improve the performance of CRC in SSS problem, we pro-
pose to conduct CRC on patches, and the so-called patch based CRC (PCRC)
classifies the query sample by combining the recognition outputs of all the over-
lapped patches, each of which is collaboratively represented by the corresponding
patches of training samples. Similar to those patch based methods, PCRC is a
patch size sensitive method, while the optimal patch size varies with training
sample size and databases. In order for a patch size robust scheme, we then
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propose a multi-scale PCRC (MSPCRC) method by combining the information
on different scales. MSPCRC considers PCRC on each scale as a base classifier
and learns scale weights to fuse multi-scale decisions. Scale weights are learned
by minimizing the square loss of margin, and sparse l1-norm regularization is
imposed on the weights to get better margin distribution.

The rest of this paper is organized as follows. Section 2 describes PCRC.
Section 3 presents the margin distribution optimization for multi-scale ensemble.
Section 4 conducts experiments and conclusions are made in Section 5.

2 Patch based CRC

In [9], Zhang et al. proposed to use the regularized least square model for col-
laborative representation based classification (CRC) of face images. Given a set
of training samples, denote by Xk ∈ ℜm×nk the dataset of the kth class, and
each column of Xk is a sample of class k. Suppose that we have c classes of sub-
jects, and let X = [X1,X2, ...,Xc]. Given a query sample y, the collaborative
representation of it is

â = argmin
a
{‖y −Xa‖2

2
+ λ ‖a‖2

2
} (1)

The solution of CRC is â = (XTX + λ · I)−1XTy. The classification of CRC
is performed by checking which class yields the minimal regularized reconstruc-
tion error. The recognition output of the query sample y is Indentity(y) =
argmink{rk}, where rk = ‖y −Xk · âk‖2/‖âk‖2 and â = [â1; â2; ...; âc].

When the linear system determined by dictionary X is under-determined,
the linear representation of the query sample over X can be very accurate while
regularization on a is necessary for a unique and stable solution [10]. Once
the available samples per subject are very limited, CRC may fail because the
linear representation of the query sample y may not be accurate. To alleviate
this problem, patch based CRC (PCRC) can be introduced. As shown in Fig.
1, the query image y is firstly divided into a set of overlapped block patches
{y1,y2, ...,yq}. Then each patch yj is represented over local dictionary Mj ,
which is extracted from X at the corresponding location to patch yj . Since the
linear system determined by local dictionary Mj tends to be under-determined,
the patch based representation is more accurate than the whole image based
representation. Finally, plurality or linear weighted combination can be applied
to the many patch based recognition outputs for a final classification.

For each local patch, the local features such as LBP and Gabor features
can be used in PCRC. Considering that the focus of this paper is to validate
the effectiveness of PCRC strategy instead of local features, for simplicity and
clarity the raw gray value features in each patch are used. For patch yj , its
representation over Mj is obtained by

ρ̂j = argmin
ρj
{‖yj −Mjρj‖

2

2
+ λ ‖ρj‖

2

2
} (2)

Mj is a local dictionary. Denote by Mjk the sub-dictionary of the kth class,
and each column of Mjk is a patch of class k. Then Mj = [Mj1,Mj2, ...,Mjc].
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Fig. 1. Diagram of patch based collaborative representation for face classification.

The recognition output zj of patch yj is Identity(yj)= argmink{rjk}, where
rjk = ‖yj −Mjk · ρ̂jk‖2/‖ρ̂jk‖2 and ρ̂j = [ρ̂j1; ρ̂j2; ...; ρ̂jc].

The classification outputs of all patches can then be combined. Majority vot-
ing [15], linear weighted combination [12], kernel plurality [14] and probabilistic
model [13] can be employed for the combination. As shown in [15] and [17],
the weighted combination leads to little improvement compared to the simple
majority voting. Hence, we use the majority voting for the final decision making.

3 Multi-scale ensemble
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Fig. 2. Impact of patch size on PCRC (1-5 represent the training sample size per
subject).

In the proposed PCRC, the patch size, or we call it the patch scale in this
paper, will have a great impact on the recognition performance and it is not a
trivial work to pre-define an optimal scale for a database. Fig. 2 shows the FR
accuracy under different patch sizes and training sample sizes on the Extended
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Yale B and LFW databases. One can have the following observations. First, the
optimal scale varies with the number of training samples per subject. Second,
for different databases, the optimal scale also varies a lot. This difficulty can be
solved by fusing the multi-scale PCRC results adaptively, via which we can not
only be free of the scale selection problem but also exploit the complementary
information across scales to improve the FR accuracy and robustness. To this
end, we propose an ensemble learning method to combine multi-scale information
optimally.
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Fig. 3. Flow chart of multi-scale learning for PCRC

The flowchart of the proposed method is given in Fig. 3. On different scales
with various patch sizes, we can get the recognition outputs by PCRC. We then
find a set of optimal weight w to fuse the outputs. In this paper, we propose to
learn w from the training samples by optimizing margin distribution.

3.1 The objective function for ensemble optimization

The multi-scale ensemble of PCRC outputs can be considered as a special clas-
sification task. Suppose there are two scales and two classes labeled as +1 and
-1. For a given sample, on each scale we can have a classification output, +1
or -1, and thus the classification output on the two scales of each sample has
four possible situations, as shown as the four vertexes in Fig. 4(a). Given a set
of training samples, we aim to find a classification line f = sgn(w1z1 + w2z2)
that crosses the origin to make all the given samples correctly classified, where
z1 and z2 represent the classification outputs on the two scales and w1 and w2

represent the weights. As to the task in Fig. 4(a), if samples on vertexes {A2, A4}
belong to the first class (+1) and samples on vertexes {A1, A3} belong to the
second class (-1), there are several classification lines that can correctly classify
all the samples. Similar to feature selection [25], the importance of one scale is
proportional to the weight value assigned to it.

For binary classification problems, given a set of samples S = {(xi, zi)}, i =
1, 2, ...n, zi ∈ {+1,−1} and s scales, the recognition results on s different scales
form a space H ∈ ℜn×s. Let w = [w1, w2, ..., ws] be the scale weight vector and
∑s

j=1
wj = 1.
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Fig. 4. Illustration of the multi-scale ensemble learning problem.

Definition 1. Given a sample xi ∈ S, the recognition outputs on s different s-
cales are {hij}, j = 1, 2, ..., s. The discriminant function is f = sgn(

∑s

j=1
wjhij).

The margin of sample xi can be defined as [26]:

ε(xi) = zi
∑s

j=1
wjhij (3)

Obviously, if ε(xi) > 0, then sample xi ∈ S is correctly classified; if ε(xi) < 0,
then sample xi ∈ S is misclassified; if ε(xi) = 0, we cannot decide the label of
sample xi. It is similar to linear classifiers (e.g., LSVM). Since Definition 1 is
only suitable for binary classification, we define the following decision matrix in
order for multi-class classification tasks.

Definition 2. As to multi-class classification, given a sample xi ∈ S, the recog-
nition outputs on s different scales are {hij}, j = 1, 2, ..., s. The decision matrix
D = {dij}, i = 1, 2, ..., n, j = 1, 2, ..., s, is defined as:

dij = g(zi, hij) =

{

+1, if zi = hij

−1, if zi 6= hij
(4)

where zi is the label of sample xi.

Clearly, dij = +1 means that xi is correctly classified on the jth scale. Oth-
erwise, it is misclassified.

Definition 3. Given a sample xi ∈ S, the classification outputs on s different
scales are {hij}, j = 1, 2, ..., s. The ensemble margin of xi ∈ S can be defined as:

ε(xi) =
∑s

j=1
wjdij (5)

Ensemble margin reflects the misclassification degree in classifier fusion. Sam-
ples with positive margin are correctly classified. As shown in Fig. 4(b), +1 and
-1 represent the elements in the decision matrix D, and then the margin of sam-
ples on vertex B2 is 1 (i.e., correctly classified on all scales) , while the margin of
samples on vertex B3 is -1 (i.e., misclassified on all scales). The margin of samples



Multi-scale Patch based Collaborative Representation 7

on vertexs B1 and B4 is between -1 and +1. In this case, how should we choose
the scale weights to get better combination result? We should make the ensemble
margin as larger as possible by scale weight learning. Margin maximization is
usually converted into a loss minimization problem [27][20][22].

If the ensemble margin of a sample xi is ε(xi), then the ensemble loss of
sample xi is

lxi
= l(ε(xi)) = l(

∑s

j=1
wjdij) (6)

We adopt the square loss used in CRC [9], SRC [8], LS-SVM [27] and least
square regression [28]. For a sample set S, the ensemble square loss is

l(S) =
∑n

i=1
lxi

=
∑n

i=1
[1− ε(xi)]

2

=
∑n

i=1
[1−

∑s

j=1
wjdij ]

2
= ‖e−Dw‖2

2

(7)

where e is a vector whose elements are 1 and length is s.

3.2 Constrained l1-regularized optimization

To learn the optimal scale weights, we should minimize the ensemble loss in Eq.
(7). However, there may be many solutions that can minimize the loss for the
given task, as illustrated in Fig. 4. Clearly, we should regularize the objective
function in Eq. (7) in order for a unique and robust solution. In [20], Saharon
et al. showed that AdaBoost approximately minimizes its loss criterion with
l1-regularization imposed on the coefficient vector. In [23], it was shown that
AdaBoost optimizes margin distribution rather than minimum margin. Shawe-
Taylor gave the bound on generalization error based on margin distribution for
linear classifiers (f = wx + b) and showed that both the square loss (when
∑s

j=1
wj = 1 and x ∈ {+1,−1}) and the norm of w should be minimized to

improve the generalization ability [24].
Inspired by the principle of AdaBoost, we propose the following constrained

l1-regularized least square optimization to minimize the ensemble loss and solve
the weights:

ŵ = argminw{‖e−Dw‖2
2
+ τ ‖w‖

1
}

s.t.
∑s

j=1
wj = 1, wj > 0, j = 1, 2, ..., s

(8)

where τ is the regularization parameter.
For the constraint

∑s

j=1
wj = 1, it equals to ew = 1, where e = [1; 1; ...; 1]

is a column vector, and then

‖e−Dw‖
2

2
= ‖e−Dw + 1− ew‖

2

2
= ‖[e; 1]− [D, e]w‖

2

2
(9)

Let ê = [e; 1], D̂ = [D, e], then we can get

ŵ = argmin
w
{
∥

∥

∥
ê− D̂w

∥

∥

∥

2

2

+ τ‖w‖
1
} s.t. wj > 0, j = 1, 2, ..., s (10)
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Since the size of the decision matrix is very small (e.g., the size of decision
matrix for the LFW database is 632×7 when the training sample size per subject
is 5 and 7 scales are selected), w can be easily solved by some representative
l1-minimization approaches [29]. In this paper l1 ls is used for its accuracy and
stable solution [30]. The proposed ensemble learning algorithm for multi-scale
PCRC (MSPCRC) is summarized in Table 1. After scale weight learning, for a
query sample xi, the recognition output is zi = argmaxk{

∑

wj |hij = k}.
It should be noted that though the form of multi-scale ensemble in Eq. (10) is

similar to the step of coding in CRC (Eq. (1)) and SRC, their physical meanings
are different. The square loss in CRC and SRC is the reconstruction error while
in multi-scale ensemble learning the square loss is the function of classification
margin. The l1-norm regularization used in SRC is to sparsify the coding coef-
ficient to enhance classification accuracy, while the l1-norm regularization used
in multi-scale ensemble learning is to suppress the effect of less-useful scales.

Table 1. The algorithm of multi-scale ensemble learning for PCRC

1: Choose s patch sizes δ = {δ1, δ2, ..., δs}
2: Get recognition outputs {hij} by PCRC
3: Get the decision matrix

dij = g(zi, hij) =

{

+1, if zi = hij

−1, if zi 6= hij

4: Learn scale weights

ŵ = argminw

∥

∥

∥
ê− D̂w

∥

∥

∥

2

2

+ τ ‖w‖
1
s.t. wj > 0, j = 1, 2, ..., s

4 Experimental Analysis

We use the Extended Yale B [31], Multi-PIE [32] and AR [33] databases in
controlled environments together with the LFW database [34] in uncontrolled
environments to test the FR performance of the proposed method.

The baseline CRC, SRC and NN methods, and the state-of-the-art patch
based methods including BlockFLD [16], Volterrafaces [15] and patch based n-
earest neighbor (PNN) classifier [14] are used for comparison. As the average
accuracy improvement of kernel plurality [14] compared to vote is only about
1%, we report the result of PNN and Volterrafaces with majority voting. For
Volterrafaces, the best recognition performance is reported with different kernel
sizes and patch sizes. As linear kernel outperforms quadratic kernel on all the four
databases, we only report the performance of liner kernel for Volterrafaces. For
BlockFLD [16], the performance of CS2 (combine outputs of different blocks),
which is better than CS1 (combine projected blocks as a feature), is reported.

In all the following experiments, the program is run for 20 times on each
database and the average results are reported. Seven scales are used in our
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MSPCRC method and the patch sizes are 4×4, 6×6, 8×8, 10×10, 12×12, 14×14,
16×16. In single scale based PCRC and PNN, the patches are overlapped and
the patch size is set as 10×10 (overlap is 5 pixels). The parameter λ used in SRC,
CRC, PCRC and MSPCRC are set as 0.001, 0.005, 0.001 and 0.001, respectively.
Parameter τ (Eq. (10)) is set as 0.1 for MSPCRC. For BlockFLD, we tried three
different sizes (4×4, 8×8, 10×10 for 32×32 image and 10×10,15×15, 20×20 for
80×80 image) and report the result of the best size 8×8 (32×32 image) and
10×10 (80×80 image) for all the databases.

For scale weight learning, we divide the training set into subset1 (one image
per individual is selected) and subset2 (the rest of the training set). Then samples
from subset1 are classified by PCRC using subset2 as the training set on seven
scales so that the weights can be learned. Obviously, as least two samples per
subject are needed to learn the scale weights. Hence, we first test the performance
of PCRC and MSPCRC with 2 to 5 training samples per subject. Then when
there is only one sample per person, only the result of PCRC is reported.

The Matlab code of the proposed method can be downloaded at: http :
//www4.comp.polyu.edu.hk/ cslzhang/code.htm.

4.1 Extended Yale B database

The Extended Yale B face database [31] contains 38 human subjects under 9
poses and 64 illumination conditions. All frontal-face images marked with P00
were used in our experiment. The face images are resized to 32×32. We randomly
choose 2∼5 samples from the first 32 images for training and choose 5 samples
from the other 32 images for test. The experimental results are shown in Table
2. It can be clearly seen that MSPCRC achieves the highest recognition rate on
all experiments with the training sample size increasing from 2 to 5. Compared
to PCRC, MSPCRC leads to much better results, validating the effectiveness of
multi-scale ensemble learning.

Table 2. Recognition accuracy (%) on the extended Yale B database

Method 2 3 4 5

CRC[9] 61.3±16.6 74.0±15.5 81.4±17.6 87.8±13.7
SRC[8] 64.2±17.2 74.2±15.2 82.6±16.8 89.0±12.5
NN 49.8±17.3 55.8±16.6 63.7±17.2 68.4±16.8

PNN[14] 60.8±14.4 65.6±15.1 73.8±15.8 79.7±14.6
BlockFLD[16] 79.5±8.4 83.8±7.8 88.3±5.4 90.7±5.5
Volterra[15] 69.8±12.9 79.5±12.3 84.0±9.6 86.4±9.6

PCRC 75.7±12.6 82.8±12.4 88.7±8.4 92.0±8.2
MSPCRC 83.0±9.2 88.4±10.1 92.5±6.8 95.0±6.6
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4.2 Multi-PIE database

The Multi-PIE database [32] contains a total of more than 750,000 images from
337 individuals, captured under 15 viewpoints and 19 illumination conditions
in four recording sessions. A subset that contains images of 164 subjects from
session 3 is selected, and there are 10 images with neutral expression and 10
images with smile expression per person. To make the FR problem more chal-
lenging, we randomly choose 2∼5 samples per subject from images with neutral
expression for training and randomly choose 3 samples from images with smile
expression for test. The face images are resized to 32×32. The FR results are
listed in Table 3. Similar to the results on the Extended Yale B database, PCRC
and MSPCRC lead to much improvement in FR rate compared with the other
methods. MSPCRC is always better than PCRC since it combines the multi-scale
decisions.

Table 3. Recognition accuracy (%) on the Multi-PIE database

Method 2 3 4 5

CRC[9] 62.6±13.8 74.3±6.3 78.5±5.2 80.4±3.7
SRC[8] 61.9±14.0 73.2±8.9 78.6±6.5 80.8±4.2
NN 54.9±14.5 64.7±12.1 71.9±9.9 74.5±8.8

PNN[14] 54.4±14.9 63.2±14.0 72.3±10.7 76.7±8.8
BlockFLD[16] 66.1±6.9 71.1±5.7 76.4±4.6 79.2±3.2
Volterra[15] 52.2±11.3 57.6±7.6 62.4±6.0 65.4±4.8

PCRC 68.8±10.9 76.0±6.2 79.4±4.8 81.3±3.7
MSPCRC 72.4±10.5 79.6±5.9 83.6±4.0 84.6±2.6

4.3 AR database

The AR face database [33] contains over 4,000 color face images of 126 people,
including frontal views of faces with different facial expressions, lighting condi-
tions and occlusions. As in [9], a subset with only illumination and expression
changes that contains 50 male subjects and 50 female subjects was chosen from
the AR dataset in our experiments. For each subject, we randomly choose 2∼5
samples from session 1 for training and choose 3 samples from session 2 for test.
The face images are resized to 32×32.

The recognition accuracy on the AR database is shown in Table 4. The pro-
posed methods show superior performance to all the other methods. Different
from the results on the Extended Yale B and Multi-PIE databases, multi-scale
ensemble learning in MSPCRC only leads to a little improvement over PCR-
C. That is because in this experiment the average weight value (over different
training sample sizes) for scale 10×10 is about 0.9, which indicates that 10×10
is a very suitable patch size for PCRC in the AR database.
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Table 4. Recognition accuracy (%) on the AR database

Method 2 3 4 5

CRC[9] 69.9±12.6 80.6±10.4 83.8±9.6 89.1±6.2
SRC[8] 69.7±14.8 79.0±10.6 83.5±8.9 88.2±5.7
NN 48.5±9.5 54.7±9.0 58.5±9.1 63.2±7.0

PNN[14] 72.7±14.2 82.4±9.3 87.6±8.0 92.2±6.0
BlockFLD[16] 71.5±11.5 78.6±9.8 84.2±8.7 87.6±4.2
Volterra[15] 65.4±12.0 74.9±11.1 79.8±10.5 85.2±6.8

PCRC 82.2±11.3 87.7±9.4 89.9±8.5 92.9±6.7
MSPCRC 82.3±11.5 87.8±10.5 90.2±9.1 93.6±7.6

4.4 LFW database

The LFW database [34] contains images of 5,749 different individuals in un-
constrained environment. LFW-a is a version of LFW after alignment using
commercial face alignment software [35]. We gathered the subjects including no
less than ten samples and then get a dataset with 158 subjects from LFW-a.
For each subject, 2∼5 samples are randomly chosen for training and another 2
samples for test. The images are firstly cropped to 121×121 and then resized
to 32×32. The FR rates on the LFW dataset are listed in Table 5. One can
see that PCRC and MSPCRC work much better than other methods, while the
recognition performance is greatly improved by MSPCRC.

Table 5. Recognition accuracy (%) on the LFW database

Method 2 3 4 5

CRC[9] 24.7±2.1 31.9±2.4 37.8±2.6 42.0±3.2
SRC[8] 24.4±2.4 32.7±3.2 38.7±2.4 44.1±2.6
NN 9.3±1.7 11.4±1.8 13.0±1.7 14.3±1.9

PNN[14] 23.1±2.4 28.1±3.1 33.2±3.1 37.4±2.7
BlockFLD[16] 18.0±2.1 22.3±2.1 26.2±2.6 28.4±2.5
Volterra[15] 26.0±3.0 32.0±3.4 36.4±3.3 40.3±2.7

PCRC 32.0±1.9 37.0±2.8 40.2±2.5 42.9±2.6
MSPCRC 35.0±1.6 41.1±2.8 46.0±3.0 49.0±2.9

4.5 Single sample per person (SSPP)

As there is only one sample per person, the proposed ensemble learning cannot
be conducted. We report the recognition accuracy of PCRC on one scale for
all the databases. The images are resized to 32×32 and 80×80, and the cor-
responding patch size is set as 8×8 and 20×20, respectively, for PCRC. When
the image size is 80×80, the neighbor patches are used to construct the local
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dictionary. Since volterrafaces cannot deal with SSPP problem, its performance
is not reported. BlockFLD (CS2) [16], AGL [11] and FLDA single [36], which
are methods specially designed for SSPP problem are compared. The results are
listed in Table 6. The performance of PCRC is much better than SRC, CRC,
NN, PNN, FLDA single, and BlockFLD. Compared with AGL (adaptive generic
learning) method, which uses an additional generic set to learn the projection
matrix, the proposed PCRC shows better performance on the MPIE, AR and
LFW databases without using any additional information apart from the train-
ing set.

Table 6. Recognition accuracy (%) for SSPP

32×32 Yale B Multi-PIE AR LFW

CRC[9] 39.8±20.5 47.2±19.0 42.9±14.6 15.5±22.0
SRC[8] 38.7±20.5 48.2±18.6 44.9±14.8 14.7±1.9
NN 35.4±19.8 42.9±17.0 35.4±12.0 7.0±1.6

PNN[14] 45.1±18.3 40.1±17.7 54.4±19.5 15.8±2.0
BlockFLD[16] 63.1±15.0 56.9±9.7 52.1±19.8 11.8±1.4

FLDA single[36] 39.9±21.4 43.5±14.8 37.2±10.4 6.7±1.5
AGL[11] 75.9±12.2 58.9±14.8 52.1±15.9 14.3±1.4
PCRC 66.5±16.3 59.1±13.3 65.4±20.9 21.1±2.2

80×80 Yale B Multi-PIE AR LFW

CRC[9] 42.0±20.2 49.2±18.2 46.8±17.2 14.6±2.4
SRC[8] 39.3±19.6 48.3±16.7 42.0±13.3 12.6±1.8
NN 37.2±20.2 44.5±17.3 36.8±12.3 7.0±1.5

PNN[14] 57.9±18.6 49.1±17.3 61.0±19.3 16.0±2.3
BlockFLD[16] 65.7±13.3 51.9±5.6 41.9±17.8 4.9±1.3

FLDA single[36] 41.2±20.9 39.3±10.5 32.9±12.0 8.7±1.8
AGL[11] 79.1±12.7 58.5±24.8 51.7±16.7 12.6±2.1
PCRC 76.7±17.4 69.5±10.4 69.5±22.6 25.0±1.8

5 Conclusion

In order for a more effective face recognition when the number of training samples
per class is small, in this paper we proposed a patch based CRC (PCRC) method
and consequently the multi-scale version of it, i.e., MCPCRC, by margin distri-
bution optimization. The query image was partitioned into a set of overlapped
patches and each patch is collaboratively represented over the corresponding set
of patches of all training samples. The classification outputs of all patches were
then combined by voting. However, the patch size will have a great impact on
the final classification result of PCRC. Therefore, we proposed to use multiple
patch sizes and then optimally combine the multi-scale outputs by margin dis-
tribution optimization with l1-norm regularization. Our experimental results on
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controlled and uncontrolled face databases showed that MSPCRC outperforms
not only much the CRC and SRC benchmarks, but also state-of-the-art patch
based methods such as BLDA and Volterrafaces, especially when the training
samples size is very small.
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