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Moving Object Detection in Video via Hierarchical
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Abstract—In conventional wisdom of video modeling, the back-
ground is often treated as the primary target and foreground is
derived using the technique of background subtraction. Based on
the observation that foreground and background are two sides
of the same coin, we propose to treat them as peer unknown
variables and formulate a joint estimation problem, called
Hierarchical modeling and Alternating Optimization (HMAOQ). The
motivation behind our hierarchical extensions of background and
foreground models is to better incorporate a priori knowledge
about the disparity between background and foreground. For
background, we decompose it into temporally low-frequency and
high-frequency components for the purpose of better characteriz-
ing the class of video with dynamic background; for foreground,
we construct a Markov random field prior at a spatially low
resolution as the pivot to facilitate the noise-resilient refinement at
higher resolutions. Built on hierarchical extensions of both mod-
els, we show how to successively refine their joint estimates under
a unified framework known as alternating direction multipliers
method. Experimental results have shown that our approach
produces more discriminative background and demonstrates
better robustness to noise than other competing methods. When
compared against current state-of-the-art techniques, HMAO
achieves at least comparable and often superior performance
in terms of F-measure scores, especially for video containing
dynamic and complex background.

Index Terms—Hierarchical modeling, dictionary learning,
joint estimation, alternating direction multipliers method
(ADMM).

I. INTRODUCTION

EPARATING foreground (moving objects) from back-
S ground is a fundamental problem in various com-
puter vision and video processing applications including
object tracking [1], [2], video surveillance [3], [4], behavior
recognition [5], category prediction [6] and so on. Historically,
background (BG) modeling has received more attention than
foreground (FG) modeling partially because it is relatively
easier to model the BG especially in the absence of camera
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Fig. 1.  The proposed Hierarchical Modeling and Alternating Optimiza-
tion (HMAO) framework for FG-BG separation (red color highlights the
difference between ours and previous approaches).

motion. Based on a good estimation of BG, it is relatively easy
to solve the problem of FG segmentation by subtracting BG
from the videos (e.g., so-called background subtraction [33]).
To enforce the smoothness constraint of object boundaries dur-
ing FG segmentation, different models have been constructed
in the literature - e.g., regional continuity [25], [26], total
variation norm [34] and spatio-temporal sparsity [31].

However, such a background subtraction framework can
be challenged from several perspectives. First, a background-
first approach would introduce unnecessary bias in background
model to foreground segmentation. In fact, given the binary
nature of video segmentation, resolving uncertainty with one
immediately resolves the other. During each round of iteration,
background estimate is successively refined by video analysis
as shown by the blue color in Fig. 1, while foreground estimate
is updated by prior constraints without resorting to input
video at all [25], [26], [31], [34]. As highlighted by the red
color in Fig. 1, a more principled way is to segment the
foreground based on both background subtraction and video
analysis results; in other words, BG and FG are treated as
peer unknown variables (both successively refined at each
iteration). Second, even if one acknowledges the priority of
BG (e.g., it usually contain a lot more pixels than FG),
the complexity of accurately modeling BG is high. Irregular
motion (e.g., rippling water, waving leaves, fluttering flags)
and textures (e.g., meadowland with varying depths and illumi-
nations) in the physical world are two primary interfering fac-
tors, which make BG modeling a long-standing open problem.
In view of various limitations with BG modeling, obtaining
FG by BG subtraction is arguably ad-hoc and far from being
optimized.

In this paper, we propose to take a hierarchical approach
toward modeling BG/FG and formulate FG-BG separation as

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-7961-5320
https://orcid.org/0000-0001-7765-8095
https://orcid.org/0000-0003-2067-2763

2022

a joint optimization problem. In our femporally hierarchical
model, BG consists of two components: averaging and detail
targeting at characterizing low-frequency and high-frequency
components respectively; our two-component model can be
interpreted as the combination of previous work on dynamic
background models [23] and texture background model [35]
in order to more accurately characterize complex BG in the
physical world. As an example, Fig. 2 shows that regularly
changing patterns in the BG (water scene) correspond to
the averaging component; while irregularly changing patterns
(e.g., intensity variations arising from ripples and reflections)
the detail component. Furthermore, while building a Markov
random field model for the FG, we have taken a spatially hier-
archical approach of starting from a low-resolution and propa-
gating the class label from low-resolution to high-resolution in
a supervised manner. This way we can improve the robustness
of FG modeling to noise (including the errors caused by BG
estimation). By treating BG and FG as a pair of peer variables,
we formulate a joint optimization problem and solve it by the
Alternating direction multipliers method (ADMM) [36]. The
main contributions of this paper are summarized as follows:

o Hierarchical modeling of BG. To better characterize
dynamic structures in natural scenes, we sequentially esti-
mate temporally low-frequency and high-frequency com-
ponents of BG which respectively model the averaging
and detail patterns. We argue that modeling detail patterns
of BG (instead of treating them as outliers) improves
the accuracy especially for the class of video containing
dynamic background and self-repeating textures.

o Hierarchical modeling of FG. To improve robustness
to noise (including potential errors in BG estimate),
we propose to first detect FG at a low resolution (LR) and
hierarchically refine such estimation at spatially higher
resolutions. To propagate label information from LR to
HR, rank-1 constraint of the BG and /{-norm constraint
of the FG are jointly enforced by graph cut techniques.

o Treating FG and BG as peer variables. Despite the exist-
ing joint optimization framework for FG-BG separation
(e.g., DECOLOR [25]), BG s often viewed as the
primary and carries more weight than FG. We propose
to treat FG and BG as peer unknown variables and
update their estimates by alternating optimization. Unlike
conventional approaches, FG is also refined by exploiting
additional information from video (e.g., label informa-
tion) as highlighted by the red color in Fig. 1.

Our approach based on Hierarchical Modeling of BG/FG
and Alternating Optimization (HMAO) has been experimen-
tally verified on two popular video datasets for moving object
detection: I2R and CDNet 2014. The proposed HMAO has
been compared against seven leading algorithms whose codes
are publicly available. It has been found that HMAO has
achieved at least comparable and often superior performance
to other competing approaches in terms of F-measure perfor-
mance. Especially for those video containing dynamic back-
ground, HMAO demonstrates improved robustness to complex
background and accuracy for moving object detection.

The remainder of this paper is organized as follows.
Section II briefly reviews existing works on statistical and
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sparsity-based BG models. Section III provides the formula-
tion of joint optimization problem and the derivation of the
solution algorithm. Section IV reports our experimental results
including the comparison between this work and other compet-
ing approaches. Finally, Section V provides some concluding
remarks and outlines the direction for future research.

II. RELATED WORKS ON BACKGROUND MODELING

Existing works on modeling/estimating BG from video
can be classified into two categories: statistical models and
sparsity-based models.

A. Statistical Models

Statistical background models in the literature often employ
individual pixel values or pixels within a region as input
features. For example, individual pixel values were mod-
eled by Gaussian distributions in 1997 [11] and by Mixture
of Gaussian (MOG) in [7]; in the following years, other
Gaussian-based algorithms [8], [9] have also reported good
performance. Along this line of research, Kernel density
estimation (KDE) was proposed to model the local pixel value
variations in [16]; a uniform kernel with variable size was
developed in [18] and density estimation was combined with
support vector machine (SVM) in [20]. When separating BG
from FG, the codebook of clustered pixel value series robust to
environmental changes was considered in [14]; its multi-scale
and multilayer extensions appeared in [21] and [15] respec-
tively. In [23], radial basis function neural network was used
to model pixel value series; a universal algorithm named
Visual Background Extractor (ViBe) was proposed in [19]
and later improved in [37]. Similar strategy also appeared in
Pixel-Based Adaptive Segmenter (PBAS) [38]. The consensus
of sample was employed in SAmple CONsensus (SACON)
algorithm in [39], which later became the consensus of
word [17] and the consensus of lightness [40].

Region-based approaches are mostly based on the obser-
vation that neighboring pixels are not independent from
each other in video. Local binary patterns (LBP), which is
insensitive to illumination changes, has been widely used to
capture textured BG [35]; Local difference patterns (LDP)
was later introduced to tackle the characterization of dynamic
background [41]; Markov random field (MRF) was employed
to estimate similarities between regions in [22]. More recently,
Self Organized Maps (SOM) was developed for adapting
dynamic background in [42]; region cues were introduced
into Gaussian Mixture Model (GMM) to produce a regional
spatially-consistent background model in [10]. Last but not
the least, proper combination of different features or statis-
tics often achieves improved performance - e.g., an efficient
background model integrating six kinds of local features
demonstrated superior performance in [43] when compared
with conventional local models.

B. Sparsity-Based Models

Sparsity-based BF models are often related to the idea
of projecting high-dimensional data onto a lower dimen-
sional subspace. Among early attempts, Principal component
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Fig. 2. The framework of the hierarchical background (input: video sequence and detected foreground; output: averaging component and detail component).
Note that regularly changing patterns in BG are modeled by the averaging component; irregularly changing patterns in BG, caused by the variations in the

background, are modeled by the detail component.

analysis (PCA) was proposed for modeling the BG in [24]-
i.e., keep only the eigenbackgrounds associated with the few
largest eigenvalues. Later a video frame was decomposed
into the combination of a low-rank matrix and a sparse one
in [44]; rank-1 constraint was used to derive an efficient BG
estimation algorithm in [26]. More recently, tensor-Based low-
rank framework was analyzed in [29]; the low-rank model was
integrated with sparse subspace clustering in [32] based on
the assumption that BG be spanned across multiple manifolds.
Based on a similar low-rank hypothesis, other researchers have
worked on the constraints for the FG matrix - e.g., Total
Variation (TV) penalty on sparse deviations was employed to
better handle noisy FG data in [45]; this framework was later
improved in [34]. In [25], Markov Random Field (MRF) prior
was introduced for better suppressing noise components and
small background motion; in [28], structured sparsity-inducing
norm was proposed to model the FG component.

In sparsity-based models, robustness is an issue that has
attracted increasingly more attention in recent years. In [46],
the robustness of BG modeling was improved by sparse signal
recovery - i.e., a new frame can be represented by the sparse
linear combination of a few preceding frames plus a sparse
outlier term; in [30], BG was modeled by robust dictionary
learning. This framework was further improved by maintaining
historical pixels in [47] and by incorporating a spatio-temporal
group sparsity constraint in [31]. Besides the above local and
spatial models, other works concentrate on exploring extra
information from video to improve the robustness - e.g.,
in [48], superpixel was proposed as the prior information in the
background substraction framework; in [49], extra information
such as the Gaussian and Laplacian images of raw video data
have also proven effective.

III. FORMULATION OF HIERARCHICAL MODELING AND
ALTERNATING OPTIMIZATION MODEL

We introduce some necessary notations first. For a given
video [Dy,...,Dy] € RIX/*3XN (N is the number of
frames), background is denoted by [By,...,By] and fore-
ground is denoted by [Fi, ..., Fy]. The binary FG mask is
Q:Q=[Q,...,Qn] € RI**N where Q; j.n = 1 if pixel
(i, j,n) is in foreground and €; ; , = 0 if pixel (i, j, n) is in
background. In other words, € denotes the support of FG
regions; the complement of Q (Q) denotes the support of
BG regions. We assume that video is decomposed of short
group of pictures (GOP) [Dyy), ..., D] each containing f
frames and K = N/f is the number of GOPs. Since the
operations are identical for all picture groups D(x), we drop the
subscript (k) and use D € R/*/>*3%/ to denote an arbitrary
Dy (k = 1,..., K) for notational simplicity; similarly B
represents an arbitrary BG group B).

A. Hierarchical Background

We propose a hierarchical representation for the BG
(as shown in Fig. 3) by decomposing it into low-frequency
and high-frequency components - i.e.,

B=B"+¥, M)
where, /1, denote high-frequency and low-frequency respec-
tively. The motivation behind such hierarchical decomposition
of BG is two-fold.

First, low-frequency component (B!) corresponds to con-
stant or regularly changing patterns in the BG. For pixel
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Fig. 3. The proposed hierarchical background model. The background of
each frame is composed by one averaging background layer and one detail
background layer.

values Bf’j’:’n (n=1,...,N),! weassume that intensity values
are either constant or vary slightly. Throughout this paper,
we name the center of N pixel values as “chief values”
(conceptually similar to “historical pixels” in [47]). As shown
in Fig. 2, we use the tensor product of chief value tensor (B'*)
and changing tendency tensor (7") to model the low-frequency

component of BG - i.e.,
B = B x4 T. 2)

Here, B/* € R/*/>3x1 is a frame decomposed of the chief
values from all locations, T € RN*! is a first-order matrix
indicating the changing tendency for the entire frame, and
“x4” is the 4—mode product that denotes multiplying a tensor
by a matrix [52] (a brief introduction is given in Appendix).
Note that we require ||T'||> = 1 in order to ensure: 1) changing
tendency will not be influenced by averaging pixel values;
2) BG intensity is only reflected by chief values.

Since the changing tendencies of different pixels are usually
independent in video, the choices of 7 are not unique. Here,
we assume that the maximum number of different choices for
T is Nr and introduce a selecting variable (/; ; € RV 1) for
pixel at location (i,j) (i = 1,...,1; j =1,...,J). Then
Eq. (2) can be rewritten pixel-wisely - i.e.,

B =B x4 (T xLij)=B xalijxsT, (3)

where [;; € RNtxL 1 = [Ty,...,T;] € RV*Nt i the
candidate set of changing tendency matrices.

By contrast, long-term changing tendencies are usually dif-
ficult to model. For example, consider a fixed physical position
of a flowing river, running water often makes the long-term
changing tendency irregular due to complicated interaction
between reflection surface and light source. To alleviate this

difficulty, we propose to model each GOP locally - i.e., 2
B =B xalijxaT, |Tl2=1,
[ eRNTXL T e RINT . (4)

IWe use (:) to denote all indexes in this dimension - e.g., (i, j, :, n) means
(i, j, 1 :3,n) or the RGB value at position (i, j) in the n-th frame.

2You should notice that, from here, as is illustrated in the first paragraph
of Sec. IIl, B is used for representing an arbitrary BG group B and
D denotes an arbitrary picture group Dxy. Similarly, here, T refers to
the changing tendency that intended for an arbitrary group Tgop. So, B
(BI,Bh) e RIXIX3Xf p e RIXIX3XS and T e RIXNT in the rest of the

paper.
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(a) (b)

Fig. 4. The estimated changing tendency matrices (7') of Canoe (CDnet
dataset) and ShoppingMall (I2R dataset). (a) Canoe. (b) ShoppingMall.

According to (4), the changing tendency of entire video data
is segmented into pixel-wise and short-term representation.
In Fig. 4, we have shown the estimated latent changing
tendency matrix 7 for some exemplar video.

For chief value tensor of each GOP (Bl*), we assume that
the BG should be constant (i.e., the chief values from different
GOPs to be the same) except for unexpected illumination
variations. It follows that most illumination changes can be
characterized by the previous changing tendency matrix 7.
After vectorizing the chief value tensor (i.e., transforming each
B'* into a vector B/* ), we conclude that the global chief value

vec

matrix B . is low-rank - i.e., Bl . satisfies the rank constraint

rank(B%,) =12

Second, high-frequency components (B?) reflect details or
irregularly changing patterns in the BG. In order to model
those irregular patterns, we propose to cluster pixel-wise
residuals of each GOP and use the centroid of each cluster
as the representative codeword. First, we obtain the residual

(E") representation by
E'=B-B. ®)

Then we orthogonally project the residuals onto the linear
space spanned by non-FG pixels; or equivalently, we consider
Pﬁ(Eh) decomposed of detail BG and noise only. Since the
deviation between a FG detection result and the ground truth
is inevitable, detailed features missed by FG detection can still
be counted as leftover noise in the detail BG, which improves
the robustness of BG estimation (as shown in Fig. 2).

It should be noted that we take the principal component
of the residuals as the detail BG instead of treating them
as outliers (unlike those in conventional models). We argue
that most dynamic and self-repeating textures - e.g., rippling
water, waving leaves and fluttering flags - are actually a
part of video background (instead of moving objects in FG).
To model these dynamic textures, we simply cluster short-term
residuals on a pixel-by-pixel basis - i.e., self-repeating texture
leads to periodic residual values; while random noise produces
stochastic residual values. Therefore we can search the most

3We adopt the rank-1 constraint for its effectiveness and simplicity. It’s
possible to use a low-rank constraint instead - i.e., the corresponding solution

of B will take the SVD (rather than average) of the background matrix.
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Fig. 5.
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Background subtraction results (bottom line) of frames in different resolutions. Here the low resolution frames are obtained by averaging every

P-by-P pixels in the original frames. From left to right: P = 1 (original frames); P =2; P =4; P = 8.

frequent short-term residuals by

min IPGEL; .. —gcll, st gc€ Q. (6)

where Q is the quantization codebook sized by R3*/*C and
C is the size of codebook.

Next we quantize high-frequency components (Bf’j j,:,:) and
represent them using trained codebooks. For non-FG regions
such as shown in Fig. 2, the high-frequency component of
BG is represented by the corresponding center of residual
sequences. However, in FG region where BG is covered by FG
objects, residual representation becomes meaningless (because
its theoretically impossible to recover those missing pixels
in the BG). For simplicity, we empirically choose the most
frequent centroid to replace them (can be interpreted as a
strategy of inpainting). The high-frequency component of BG
is then quantized by
if B}, eQ

argming > [|(Eg)} ;.. —qcll. if E};.. €Q.
Eg

@)

: h
) argming ”E,‘,j,;,; —qcll,

Ljne T

where Eg denotes arbitrary GOP that is in the non-foreground
regions, g, is the assigned centroid recording Bf.f I and c is
the number of codebook centroids.

Putting things together, we can rewrite the complete BG
model as follows
Bi,j,:,: = Bi:kj,: X4 Ii,j x4 T + Blh,j,Z,Z

s.t.rankBX ) =1, |Tlh=1. (8

Frame Detail 1 Detail 2 Detail 3
Averaging Detail 4 Detail 5 Detail 6

Fig. 6. HMAO with a multi-layer structure (1 averaging layer and 6 detail
layers). Note that the pixel values of all detail layers are enlarged by 5 times
for better visualization.

Note that the idea of decomposing video background into
a combination of averaging and detail background can be
extended in a multi-resolution manner. More specifically,
by iteratively clustering the residual, we can build up a
multi-layer decomposition of the BG - i.e., B = B" + B!l +
B/2+B3 4. ... This way, the detail in the i-th layer is obtained
by clustering the residual of B” +B!! +.. . +B%-1. An example
is given in Fig. 6, where a 6-layer decomposition of detail BG
is presented.

B. Hierarchical Foreground Detection

Conventional approaches toward FG modeling mostly focus
on the enforcement of spatial continuity constraints [25], [47],
which cannot effectively discover concealed FG regions mis-
classified as noise. Since noise can be more salient than
the concealed FG objects in the residual, it is difficult to
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overcome this limitation within the conventional framework
of BG subtraction. As illustrated in Fig. 1, a more effective
strategy is to explore the latent supervising information from
raw video and use it to enforce the constraint about FG
regions. To implement this strategy, we advocate a hierarchical
approach of starting from a down-sampled version of the
given video and propagating the labeling of FG detection
from low-resolution to high-resolution in a supervised man-
ner. There are three specific issues to be addressed in our
hierarchical approach.
First, we propose to propagate FG label information in
a hierarchical manner to improve the robustness to noise.
As shown in Fig. 5, we obtain a low-resolution (LR) represen-
tation of video by spatial averaging (noise components are less
salient than FG objects after averaging). In most videos with
dynamic BG, noise typically associates with isolated pixels
or small patches, which become gradually less salient as the
resolution decreases; by contrast, FG objects often remain
as continuous and salient regions even at low resolutions. Let
us denote the low-resolution video by D' and low-resolution
foreground by Q' respectively. To detect the foreground from
a LR video, we set up a model based on rank-1 hypothesis of
BG and the /;-norm constraint of FG as follows
Jnin, D" — B —F" (|7 + ul|F" 1.
s.t. rank(B") = 1; )

where the /j-norm constraint can be enforced by a
soft-thresholding operator. Then we can infer the FG region
Q' from Q" at a high resolution (HR) pixel-wisely.

Meantime, we assume the pursued FG regions should be
similar - i.e.,

ming [|Q — Q. (10)

Note that the hierarchical constraint Q" is robust to the noise,
but it might not perform well in identifying the contour of FG.

Since the efficiency of the soft-thresholding operator is
determined by the parameter (u), we need to carefully select
the parameter x in Eq. (9) so that the FG regions are detected
with high confidence. Since the extracted non-FG regions
are often error-prone, we propose to refine constraint (10)
by allocating different weights for FG and non-FG regions
respectively - i.e.,

CQ) = Q- Q" |gir_; +v1Q— Q" | gir—y. (A1)

where v = 1/3 reflects our confidence about the detected FG
regions (it is hand-crafted).

Second, we propose to construct a spatio-temporal Markov
random field (MRF) model as the FG prior. For each pixel,
we consider its eight surrounding neighbors within the same
frame and two adjacent neighbors in the previous/next frames
which should be labeled the same as the current pixel. We have
adopted the following notation for neighboring pixels (&)

Gili—x|+1j—yl+In—zl =1, (12)
and the following objective function

i Qi jn — Qe y . 13
rrgn%n ijn = Quycl (13)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Such spatio-temporal MRF is a good fit for pixels within
moving objects; however, it requires extra attention while
dealing with the boundary of different regions (i.e., discon-
tinuities). To address this issue, we note that the difference
between intensity values of neighboring pixels is typically
large suggesting the existence of object boundaries. Therefore,
one can leverage the intensity difference into the formulation
of a weighted objective function (similar to the idea of
edge-stopping in classical Perona-Malik diffusion [13])

mgizn z exp(op — a(Di,j,:,n - Dx,y,:,z))”Qi,j,n - Qx,y,z”-
G
(14)

For notational simplification, we can use f(a) to denote
exp?0~¢Mijn=Dry.2) and rewrite Eq. (14) into

i Q;jin— Qyll. 15
mén%f(a)ll i — eyl (15)

Third, a physical constraint arising from Pauli’s exclusion
principle dictates that BG is often occluded by FG objects -
i.e., D = PgB + F where B is the extracted hierarchical BG.
Additionally, the size of FG region should also be limited to
a certain range; in other word, the region is constrained by a
lp-norm - i.e.,

m&n 1Rllo, s.t., D= PgB+F. (16)
Putting things together, we can rewrite the overall objective

function of FG as follows
rﬁg%f@nﬂi, jn = Quyell + BRI +7 CQ)

s.t., D= PgB+F. (17)

C. Formulation and Optimization of HMAO

Based on the above BG and FG models, we propose to for-
mulate FG-BG separation as the following joint optimization
problem:

Bmé%{z F@IQi jn — Dyl + 7 CQ) + B0
O L
+ D IBij.: — B xalij x4 T =Bl |},
i,]

sit.rankB%) =1, |T|a=1, D=PsB+F. (18)

In the above framework, the newly employed components
are the changing tendency T, the detail background layer B”
and the low-resolution foreground priori knowledge C(£2).
To estimate the contribution of each component, some ablation
tests are shown in Table I.

In the table, H-CT stands for HMAO without changing
tendency (CT) part; H-DB is HMAO without detail back-
ground (DB); H-CT-DB means HMAO without hierarchical
background (CT and DB); H-LF corresponds to HMAO with-
out hierarchical foreground priori (LF). Actually, changing
tendency (CT) is the least effective component. The hierarchi-
cal foreground contributes a little more than the hierarchical
background with regard to the average performance.
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TABLE I
ABLATION TEST OF EACH COMPONENT IN HMAO ON I2R DATASET

Video HMAO  H-CT H-DB H-CT-DB  H-LF
WaterSurface  0.9293  0.8728  0.9257 0.8716 0.9060
Fountain 0.8380  0.8017  0.8343 0.8056 0.7503
Campus 0.8050  0.7770  0.8005 0.7733 0.7372
Curtain 0.8995  0.5751  0.8931 0.6177 0.7480
Hall 0.6830  0.6801  0.6815 0.6260 0.5040
Average 0.8310  0.7413  0.8270 0.7388 0.7291

As to Eq. (18), we note that its objective function is non-
convex, which is difficult to solve in general. A more tractable
approach is to alternatively solve the two subproblems of
estimating BG and FG using Alternating direction multipliers
method (ADMM) [36].

1) Estimation of Background: Once foreground (F) is avail-
able along with an estimated FG region (Q2), B can be updated
by minimizing the following objective function

: ! h
min 2 IBij.: — B xalijxaT —B; |l
iJ

sit. rankB%) =1, |Tla=1, D=PsB+F. (19

or equivalently,
min > || Pg(D = F)ij.. — B xalij xa T =B, |

i,J
s.t. rank(Bf)*ec) =1,

T2 = 1. (20)

The above problem can be solved in the following three steps:
First, we consider the low-frequency BG as the primary
part of the hierarchical model - i.e.,

min D" [|(D = F); j.. — B . x4 Lij x4 T||
i,J

21

Recall that low-frequency components are decomposed of
chief values and changing tendencies, which can then be
solved alternatively - i.e., once chief values are estimated,
changing tendencies of the averaging background can be
updated by

min z IT;; =T x I jll, Ti; € RS *1
i,jeQ

where T; ; = D —F); ;.. x3 (B,-,j,c)f1 (“x3” is the 3—mode
product). Then the result is projected onto the subspace such
that ||T||, = 1. To solve T, Eq. (22) is a standard dictionary
learning problem and can be solved by heuristic algorithms.
Similarly, solving I is a sparse coding problem with the

constraint [|Z; ;|1 = 1.
Second, as to estimate the chief values in low-frequency
components, assuming that V; ; =T x [; ; € R/*1, we have

(23)

(22)

B xalij xa T =B x4 Vi,

Then we can obtain chief value matrices for all GOPs by
. !

min > (D —F); ;.. — B,

x4 Vil (24)
i,jeQ

By enforcing the constraint that these matrices should be
similar to each other, we compute the global optimal matrix by
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averaging the estimated BG across non-FG regions - i.e., for
eachB By, k=1,...,K),

> Bl 2L

ki, j,keQ ki, j,keQ

!
Bi,*j,: = (25)

Third, residual of the low-frequency components are cal-
culated by

E'=D-F-B. (26)

Then the detail background can be solved by Equation (7).

2) Estimation of Foreground: We first estimate the latent
FG label (Q"") by solving Eq. (9), which can also be obtained
by alternatively solving B and F". More specifically, once
B" is solved, F'" is given by F" = 7,,(DY — BI) where 7,
is the soft-thresholding operator. Then the rank-1 BG can be
calculated by B"* = z,ly:l(fo — FZ’)/N and we set Bil’ =
B™* n=1,...,N. Last, Q" can be obtained by pixel-wise
upsampling the FG region of LR video.

When BG (B) and reconstructed FG (Q"") are available,
FG detection problem becomes

Iéljigrzl{y C@Q) + Il + D f(@)1Qi 0 — Qu,y clI},

s.t. D= PgB+F. ¢ (27)
The above problem can be reformulated as
min {const + D (B = 1Dijn — Bij ) )i jn
L, ],n
+7 D CQijn) + D F@)Qijn — Quycll). (28)
i,j,n G

Now it is easy to find that the objective function is decom-
posed of two parts - i.e., the constraints for each point Q; ; ,
and the constraints for arbitrary pair (€;;, and Q).
Reformulating this problem as a graph function by regarding
each point as a node, we can obtain an energy function for the
entire FG; accordingly the optimization problem in Eq. (28) is
translated into an energy minimization one and can be solved
by standard graph cut techniques [53].

3) Algorithm: Putting the above two building blocks
together, we obtain a moving object detection algorithm for
video based on alternating the estimations of BG and FG.
The complete flow-chart of the proposed HMAO algorithm
(Algorithm 1) is shown below. It should be noted that unlike
existing approaches in the literature, FG estimation is also
refined along with BG estimation by exploiting additional
information from input video at each iteration as highlighted
by the red color in Fig. 1. When both BG and FG are modeled
individual hierarchically, we argue that alternating optimiza-
tion becomes more effective because it has the potential of
jointly and successively refining the spatio-temporal estimation
of BG/FG in a closed loop. In summary, improved capability
of modeling complex video data (e.g., those with dynamic
BG) and robustness to noise interference are the key salient
features of the proposed HMAO approach (Algorithm 1).

The computational bottleneck of Algorithm 1 lies in
solving Eq. (28) by graph cuts. It can be shown that energy
minimization via graph cuts has the cost of
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Grundtruth
Fig. 7.

HMAO OMoGMF

TVRPCA
Results of background extraction. From left to right: true background, HMAO, OMoGMF, TVRPCA, GFL, LSD, DECOLOR. From top to bottom:
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boats, overpass (overp), canoe, fountain (fount), watersurface (water) and winterDriveway (winter).

1

1

4
©

F-measure
o
*® - &

o
3
F-measure

F-measure

¥~ diningroom
= highway
watersurface |

¥~ diningroom
= highway
watersurface |

0.6
=@ fountain

= office

=¥ cubicle

=@ fountain
= office
=¥ cubicle

=y~ diningroom
= highway
06 watersurface | 06F
=@ fountain
= office
=¥~ cubicle
05 : : : : . . 05 : -
13 14 1.5 1.6 1.7 1.8 1.9 2 0 0.2 0.4
alpha
(a)
Fig. 8.
(5 x IJN)Y(IJN)?> = O3J3N3). As reported by the

experimental results of the next section, the overall running
time of Algorithm 1 is comparable to that of LSD [28]
(lower than that of GFL [54] but higher than that of
DECOLOR [25]). GPU-based acceleration techniques might
lead to more efficient implementation of Algorithm 1 but it
is outside the scope of this work.

IV. EXPERIMENTAL RESULTS

In this section, we report our experimental results and
compare the proposed algorithm against previous techniques.
In our experiments, the following parameter setting has been

beta

(b)

1.4 1.6
gamma

©

0.6 0.8 1.2 1.8 2 22

Effects of the parameters from the Formula (28). (a) a. (b) £. (c) y.

adopted: the size of GOP is f = 4 and P = 4. The benchmark
datasets include I2R dataset [50] and ChangeDetection dataset
2014 (CDnet) [51].

A. Comparison to Model Variants

In order to understand the relative contribution of various
parameters of our model, we have conducted an empirical
study as follows. The exemplar videos are taken from I2R
dataset and CDnet 2014 dataset in our experiment of parameter
tuning.

First, we target at the process of dictionary learning
designed for encoding changing tendencies of different pixels
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Algorithm 1 Algorithm for HMAO

Input: D € RIXJX3XN,
output: B and 2.
while not converged do (outer loop) :
Background:
1) while not converged do (inner loop 1) :
(1) changing tendency matrix (7'):
solve T' by problem (22),
and project it into the subspace ||T'||2 = 1.
(2) chief value matrix:
solve each B'* by problem (24)
then, by Eq. (25).
end while (inner loop 1);
2) low-frequency background:
B!, . =Bl xall;xaT
3) high-frequency background:
build codebook (Q)) by Eq. (6), then obtain B by Eq. (7).
4) hierarchical background:
B=B!+B"
Foreground:
5) low-resolution foreground
while not converged do (inner loop 2) :
(1) solve low-resolution background by
BI"* = ), (DY ~ FIf)/N.
and B =B!™ n=1,...,N.
(2) solve low-resolution foreground by:
FI" = 7,(DY — BlY).
end while (inner loop 2);
6) Entire foreground:
solving problem (28) by graph cuts.
end while (outer loop).

F-measure
F-measure

Fig. 9.  Performances of HMAO with different sizes of dictionary and
codebook. (a) Nr. (b) Ng.

in the averaging background (as shown in Fig. 4). In practice,
the changing tendencies of different pixels are usually finite.
As manifested in Fig. 9 (a), Ny = 15 is enough and a
larger dictionary size may lead to over-fitting, where some
individual changing tendencies are also recorded. Second,
the detail background is modeled by clustering the residuals
of low-frequency background. The performance of HMAO
with different clustering numbers is shown in Fig. 9 (b). The
resulting curves resemble those in Fig. 9 (a) and we have found
Ng = 15 is large enough.

Second, we have empirical tuned the parameters o, f
and y in formula (28). Specifically, a is the weight for
the spatio-temporal Markov random field (MRF) constraint,
£ means the expectation of the sparsity of the foreground
regions and y reflects the confidence of the obtained low
resolution background. As can be found from Fig. 8, too large
or too small choices will degrade the performance of HMAO
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Fig. 10. Performances of multi-layers structure. (a) the averaging residual
value in each layer. (b) F-measure vs. layer number.

algorithm. Although the optimal values of these parameters
vary from video to video, we manage to approximate nearly
optimized parameters for most videos, which are given by
o =1.65 =0.6and y = 1.6.

Third, we have studied multi-layer structure for the detail
background. By iteratively clustering the residuals, we can
solve each B!Y,i =1,2,3,.... The corresponding results are
given in Fig. 10. Figure (a) represents the magnitude of values
in different layers. It’s obvious that the data in the first layer
are far more notable than those from other layers; the second
layer is still noticeably higher than the rest. In Figure (b),
the best performance is observed for using only 1 detail layer
on 4 videos (highway, diningroom, fountain, office); for two
other videos (watersurface and cubicle) whose background are
dynamic, some information of the background still exist in
the second detail layer. Therefore, we can opt to use at most
2 detail layers (for handling video with dynamic background)
in practical tasks once we have prior knowledge about the
video. In our experiments, the detail layer number is set as 1.

B. Comparison on Background Estimation

In this section, we will report the comparison result
of BG extraction between this work and some recently
proposed methods - i.e., OMoGMF (OMoG) [12], TVR-
PCA (TVRP) [34], GFL [54], DECOLOR (DECO) [25] and
LSD [28]. The parameters of the benchmark algorithms are
the default values that accompany the release of their source
codes. In this comparative study, we have focused on test
videos are those with dynamic background in CDnet and I2R
because they are more challenging.

It can be seen from Fig. 7 that most algorithms suffer from
the weakness of missing a significant portion of the details
in the extracted background. For example, on ‘boats’ and
‘canoe’ datasets, the ripples on the water are often treated
as outliers and accordingly misclassified as FG; on ‘overpass’
dataset, details of the recovered waving leaves are blurry due
to the limitations of background models. By contrast, HMAO
effectively distinguishes regular or self-repeating details in the
background from noises and therefore produces the most dis-
criminative backgrounds. The extracted background of HMAO
is the closest to the ground truth (as shown in the left
column in Fig. 7) because the proposed two-layer hierarchical
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Fig. 11.
TABLE 1I

RMSE OF THE EXTRACTED BACKGROUNDS SHOWN IN F1G. 7
Video HMAO OMoG TVRP GFL LSD DECO
boats 0.0515 0.1042 0.0580 0.1196  0.0996  0.0813
canoe 0.0421  0.1228 0.0879  0.1050 0.2568  0.1978
fount 0.0571 0.0438  0.0314 0.0720  0.0202  0.0297
overp 0.0289  0.0591 0.0312 0.0350 0.0591 0.0479
water 0.0265 0.0766  0.0371  0.0419 0.2884  0.2577
winte 0.0416  0.0444  0.0311 0.0344 0.0399 0.0619
Average  0.0413 0.0751  0.0461  0.0680  0.1258  0.1127

modeling of background more faithfully characterizes various
uncertainty sources for video containing dynamic background.
To objectively evaluate the accuracy of background extrac-
tion, we have compared the difference between the extracted
background (B) and the groundtruth (B*) as measured by
Root Mean Square Error (RMSE) - ie., RMSE = |B —
B*||z/|IB*||F, as shown in Table II. It can be observed that
HMAO achieves the lowest RMSE on the average (four out of
six). Even though the advantages of HMAO are obvious for the
class of video containing dynamic background, HMAO does
still have weakness when dealing with some real datasets - e.g.,
‘fountain’ dataset. In HMAO, we model the detail background
by clustering the pixel-wise short-term residuals because we
assume that the textures of the background result in certain
regular residual value series. Unfortunately this assumption
fails to model the pathological case of a fountain which
produces irregular (more like stochastic) residual values.
Additionally, we have conducted the comparison on some
complex scenes under cluttered background- i.e., the clutter
category from the Scene Background Modeling.Net (SBMnet)
dataset.* The results of BG extraction are shown in Fig. 11.

4http://www.scenebackgroundmodeling.net/
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Results of background extraction on SBMnet dataset.

We can find that the problem of BG extraction becomes more
challenging when BG pixels are less visible than FG ones.
In some extreme cases, all competing algorithms fail to extract
the background - e.g., the board in the first column and the
car in the forth column. However, we can still observe that,
relatively speaking, HMAQO noticeably outperform others on
this difficult dataset- e.g., more revealed areas on the board
in the first column, the disclosure of the car/chair in the
fourth/sixth column.

C. Comparison on Foreground Estimation

In this section, we will show how the supervised information
extracted from low-resolution video helps the robustness to
noise in foreground estimation. In our experiments, by care-
fully choosing parameters, we can obtain the most confident
regions of foreground objects from LR video (Column 4
in Fig. 12 and Fig. 13), which is fairly robust to the
noise. Direct foreground estimation results (Column 3 in
Fig. 12 and Fig. 13) obtained by background subtraction can
find some part of foreground objects, but a significant portion
of noise components are misclassified as the background.
Additionally, one can observe that some noise components
are caused by the inaccuracy of background models - e.g.,
the trunk region of the tree in Fig. 12. Therefore it is natural
to improve the estimation results by combining the strengths of
those two approaches (Column 3 and 4). In our hierarchical
foreground model, weights for some foreground regions are
strengthened based on the supervised information (passed
from LR), while those for the background are weakened
accordingly. Thanks to the propagation of FG estimation from
LR to HR in a hierarchical fashion, almost all neighboring
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Fig. 12.  Foreground estimation results on WaterSurface dataset. From
left to right: input image frame, groundtruth, foreground estimation without
supervised information, detected foreground in low-resolution video, final
results of HMAO.
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Fig. 13. Foreground estimation results on Canoe dataset. From left to right:
input image frame, groundtruth, foreground estimation without supervised
information, detected foreground in low-resolution video, final results of
HMAO.

foreground regions are successfully detected and noise inter-
ference are suppressed almost completely.

D. Comparisons With Other Algorithms

In our study, we have compared the proposed HMAO with
seven current state-of-the-art algorithms whose codes have
been made publicly available - ie., TVRPCA> [34],
GFL® [54], DECOLOR’ [25], LSD? [28], PCP [44],

5 http://yangliang.github.io/code/TVRPCA .rar

6http:// idm.pku.edu.cn/staff/wangyizhou/code/code_bs_cvprl5.rar

7 https:/fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/my-uploads/
codes/decolor.zip

8 http://www.ee.oulu.fi/~xliu/research/Isd/LSD.zip
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OMoGMF’ [12] and SOIR [26]. The parameter settings
of the algorithms are the default settings or are optimized
following the suggestions discussed in the corresponding
papers. Our extensive comparison results have been organized
into the following five subsections.

1) Short-Term Moving Object Detection: Our comparisons
of short-term moving object detection are conducted on
the I2R dataset, which contains 9 videos. For each video,
the ground-truth (manually-segmented foreground regions)
of 20 frames are provided in the dataset. In our experiments,
we have used these 20 frames with ground truth to test
the short-term performance of the proposed moving object
detection algorithm. The sequences and detection results are
shown in Fig. 14. For each video, we have randomly chosen
I from 20 test frames to compare the detection results of
all competing algorithms. As can be seen from the figure,
the difficulties of foreground detection are mainly caused by
the interference of unwanted noise and the blurring of object
contours. It can be observed that GFL, OMoGMF, LSD and
PCP have misclassified some noises as FG regions. These four
algorithms can find the approximate outlines of foreground
objects but all miss some salient parts inside the objects.
By contrast, DECOLOR, HMAO, SOIR and TVRPCA have
shown better performances due to their robust and accurate
BG models. However, DECOLOR can not perform well in
finding detailed object contours due to its strong MRF prior
for FG; while TVRPCA tends to break the object boundary
(the opposite to DECOLOR). When compared with the ground
truth, only HMAO produces the most satisfying results com-
bining the strengths of DECOLOR and TVRPCA.

To quantitatively evaluate the performances of the different
algorithms, we have computed the F-measure, which is derived
from the precision and recall and defined by

2 x precision x recall
F-measure =

— (29)

precision + recall
The detection results in terms of Recall (R), Precision (P)
and F-measure (F) are given in Table III. In addition to the
mentioned algorithms, TLSFSD [29] whose F-measure results
are available in the paper is also included here. We can see
from the results that HMAO clearly shows advantages on
some videos, especially those with dynamic backgrounds -
e.g., ‘Campus’, ‘Curtain’ and ‘WaterSurface’. Although the
backgrounds of ‘Bootstrap’ and ‘ShoppingMall’ datasets are
not dynamic, steadily moving pedestrians in the video lead to
irregularly changing illumination in the scene, which make
these video resemble those with dynamic background. Not
surprisingly HMAO also achieves satisfying performances on
these videos. For sequences ‘Hall’ and ‘Fountain’, HMAO
produces highly comparable performance to the competing
ones.

2) Long-Term Moving Object Detection: Our comparisons
of long-term moving object detection are performed on the
6 dynamic background videos from CDnet 2014 dataset.
In this dataset, hand-segmented foreground regions of all video
frames are provided. In our experiments, a video sequence

9http://gr.xjtuedu.cn/c/documenLlibrary/getfﬁle?folderld=2456216&name
=DLFE-97966.zip
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OMoGMF PCP DECOLOR TVRPCA SOIR

Results of foreground detection on I2R dataset. The selected frames (top to bottom) are b02514 (Bootstrap), trees1831 (Campus), Curtain22847

(Curtain), Escalator3585 (Escalator), Fountain1494 (Fountain), airport2180 (Hall), ShoppingMall1606 (ShoppingMall), WaterSurfacel577 (WaterSurface) and

SwitchLight2019 (Lobby).

TABLE III
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE F-MEASURE ON I2R DATASET
HMAO GFL LSD OMoGMF PCP DECOLOR | TVRPCA | TLSESD |  SOIR

video }; F l; F 1; F l; F 113 F l; F 1; F 1; F l; F
Bootstrap | o0 | 072 | 0811 0m2 | 0% 1 oes | 00| 0es | 00 | osa | 09 [0ss | 01 | oe2 | 0 | 03 | 030 | 06
Campus | 00> | 081 | 023 L o6 | 08 | ost | 0% 1043 | 020 foaa | 000 | 077 | 020 [ 070 | 03T | ogo | 0 | 047
Curtain | 057 | 0.90 | 08 1 oso | 055 b osi | 0% | osa | 07 Foeo | 003 [ 078 | 05 1 ogs | 000 | 083 | 0oL | 084
Bscalator | o0 | 0.62 | 02 | 063 | 04l [ o5 [ 09 | 057 | 030 Fos7 | 060 1 ogs | 082 foga | 068 1o | D721 00
Fountain | (20 | 084 | 087 | 074 | 020 | 067 | 080 | 070 | 093 [oss | 005 | o83 | 03T [ ozs | 0% | osa | 087 | 083
o [0 v [ 08 Lo [0 [ [0 [ow [0 oo [ 05 [ ow [ 5 [0 [ 25 [os [ £ 0w
ShopMall 8:5’2 0.71 8:2% 0.71 8:22 0.67 8:2(5’ 0.70 8:2‘5‘ 0.69 82;21 0.67 8:23 0.65 8:;; 0.74 8:23 0.67
Watsface | o2 | 093 | 000 | 085 | 050 | 088 [ 028 |06 | 050 [ 078 | 090 | 084 | 0 | 089 | 050 | 089 | 0% | 086
o [ o [0 oo |05 [om [ 43 [rs [ 5 [oes [ 424 [om [ 033 o [ o0 o [ 33 0w
Average!! | 0.78 [ 067 [ 067 [ 0.69 062 [ 071 [ 070 [ 076 [ 070

10 The results of TLSFSD are from [29].
1 The average of the results in terms of F-measure.

composed of 220 continuous frames are selected for long-term
detection performance evaluation. The sequences and com-
parison results are shown in Fig. 15. One can observe that

modeling foreground objects of these videos is much more
challenging. The most difficult task for foreground detection
is ‘fountain01’, where the foreground regions are really small
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Fig. 15.
in001164 (fountain0O1), in000750 (fountain02), in2371 (overpass).
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Results of background extraction on CDnet dataset. The selected frames (top to bottom) are in007869 (boats), in000951 (canoe), in002067 (fall),

TABLE IV
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE F-MEASURE ON CDNET2014 DATASET

HAMAO GFL ) OMoGMF PCP DECOLOR | TVRPCA SOIR
video ]; F 1; F ]; F E F l; F 1; F 1; F 1; F
boats ggg 0.62 8'2‘7‘ 0.35 \ 8'2‘9‘ 0.60 8'% 031 8%? 0.30 8"3‘? 0.35 8‘2? 0.35 ggg 0.53
canoe 82; 0.82 g'gg 0.44 \ 8';71 0.65 8'2; 0.67 8"23 033 8'22 0.63 8'2? 0.58 8'23 0.45

: 033 0.61 036 030 037 0.6 0.40 0.8
fall oL 047 | 091 ] 043 \ 030 | 046 | 020 | 038 | 038 | 0ar | 020 Foar | 030 L est | 025 | 038

) 0.04 0.05 0.04 011 0.03 0.03 0.06 0.08
fountain01 | 0% | 0.08 | 093 | 0.00 \ ooa [ 008 | 010 | 0aa | 005 1006 | 00 | 005 | 0% | oar | 00 | 03

) 072 067 0351 080 051 071 0.89 0.73
fountain02 | 72 | 0.78 | 07 | 0.67 \ oL o6 | 030 | osz | 02 Josa | D70 L ors | 080 [ omn | 07 | oss

overpass 8'32 0.85 8‘23 0.75 \ g'ig 0.60 8'2é 0.58 8'22 0.69 8’52 0.79 8'?8 0.77 8?; 0.69
Average | 060 | 046 | 050 | 043 | 039 | 049 | 051 | 046

while the area of the fountain is large. For this challenging
sequence, all algorithms fail to return the correct foreground
regions; for other videos, the challenge is less severe and the
foreground objects can be approximately detected by most
algorithms. However, heavy noises in the videos are still
the major difficulties for most algorithms. Overall, HMAO
performs well on most datasets, except misclassifying the
fountain (fountainO1) and leaves (fall) as FG objects.
Objective performance evaluation in terms of Recall (R),
Precision (P) and F-measure (F) is given in Table IV. It is
easy to see that the advantage of HMAO is obvious for videos
containing dynamic background - e.g., ‘boats’, ‘canoe’ and
‘overpass’. In those videos, the details of dynamic background
are approximately self-repeating; therefore our hierarchical
background model produces more detail components in BG
extraction and more accurate FG regions accordingly. For
‘fountain02’ sequence, the performance of HMAO is at least
comparable to that of other algorithms; while for ‘fall’ and

‘fountain01’ sequences, HMAO is slightly inferior to TVR-
PCA and OMoGME. As discussed above, these two sequences
are the cases where our hierarchical model fails (the dynamic
motion in background is less regular). Nevertheless, we note
that the average performance of HMAO is still noticeably
better than all other competing algorithms.

3) Comparison With Online Algorithms: In this section,
we provide more comparison against online methods such as
GRASTA [55] and incPCP [56]. The suggested frame number
for warm-start of OMoGMF, GRASTA and incPCP are 30,
100 and 1, respectively. Objective comparison results in terms
of F-measure are shown in Table V.

As is shown in the table, the suggested numbers of frames
for warm-start are usually effective enough. Especially in
incPCP, which only requires 1 frame for warm-start and
related parameters are given accordingly, more frames results
in worse performances. Then, the performances of incPCP
are actually influenced by the selected initialization frame.
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TABLE V
COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE AVERAGE F-MEASURE

. OMoGMF GRASTA incPCP
video | HMAO 635750 [ 70 | 70 [ 100 | 130 [ 160 | T | 3 [ 10 | 20
Bootstrap | 0.73 [ 0.64 [ 0.65 [ 0.64 [ 0.65 [ 0.81 [ 0.82 [ 0.82 [ 0.82 | 0.66 [ 0.61 | 0.53 [ 0.50
Campus | 0.82 | 041 | 043 | 043 | 042 | 032 | 0.30 | 0.30 | 0.30 | 0.43 | 0.47 | 0.39 | 0.37
Curtain 0.89 | 0.85 | 0.84 | 0.82 | 0.70 | 0.54 | 0.68 | 0.75 | 0.76 | 0.74 | 0.55 | 0.52 | 0.43
Escalator | 0.67 | 0.55 | 0.57 | 0.57 | 0.56 | 0.50 | 0.55 | 0.56 | 0.56 | 0.61 | 0.55 | 0.52 | 0.48
Fountain | 0.83 | 0.69 | 0.70 | 0.69 | 0.71 | 0.53 | 0.68 | 0.69 | 0.68 | 0.71 | 0.60 | 0.41 | 0.30
Hall 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.51 | 0.60 | 0.61 | 0.60 | 0.59 | 0.53 | 0.45 | 0.43
ShopMall | 0.75 | 0.70 | 0.70 | 0.70 | 0.70 | 0.46 | 0.66 | 0.67 | 0.67 | 0.75 | 0.70 | 0.54 | 0.38
Watsface | 0.93 | 0.86 | 0.86 | 0.86 | 0.85 | 0.81 | 0.82 | 0.82 | 0.83 | 0.79 | 0.71 | 0.66 | 0.60
Lobby 0.80 | 0.76 | 0.75 | 0.73 | 0.72 | 0.28 | 0.50 | 0.49 | 0.49 | 0.85 | 0.45 | 0.30 | 0.29
boats 0.64 | 029 | 031 | 0.32 | 030 | 0.23 | 0.28 | 0.28 | 0.28 | 0.40 | 0.31 | 0.21 | 0.15
canoe 0.85 | 0.54 | 0.67 | 0.60 | 0.62 | 0.33 | 0.39 | 0.33 | 0.33 | 0.55 | 0.29 | 0.24 | 0.21
fall 0.47 | 037 | 038 | 0.38 | 0.39 | 0.28 | 0.34 | 0.34 | 0.34 | 0.36 | 0.38 | 0.35 | 0.36
fountain01 | 0.08 | 0.13 | 0.14 | 0.14 | 0.14 | 0.08 | 0.10 | 0.09 | 0.09 | 0.15 | 0.15 | 0.11 | 0.09
fountain02 | 075 | 0.52 | 0.52 | 0.52 | 0.52 | 0.33 | 0.52 | 0.51 | 0.50 | 0.65 | 0.57 | 0.47 | 0.44
overpass | 0.85 | 0.58 | 0.58 | 0.56 | 0.57 | 0.51 | 0.66 | 0.67 | 0.66 | 0.65 | 0.57 | 0.58 | 0.55
Average | 0.71 ] 0.57 [ 0.58 | 0.58 | 0.57 [ 0.43 [ 0.53 | 0.53 | 0.53 [ 0.59 [ 0.50 [ 0.42 | 0.37

TABLE VI

COMPARISON OF THE FOREGROUND DETECTION RESULTS IN TERMS OF THE AVERAGE F-MEASURE ON CDNET 2014 DATASET

Category  HMAO GFL LSD OMoGMF PCP DECOLOR TVRPCA SOIR
badWeather  0.79  0.74 0.85 072  0.68 0.76 0.86 0.80
baseline 0.82 075 0.6 0.67 0.64 0.76 0.74 0.69
cameraJiter ~ 0.63 075 0.63 0.57 0.65 0.78 0.78 0.56
intermitOM 072 0.68 0.67 0.65 0.61 0.67 0.67 0.60
lowFramerate ~ 0.60  0.59  0.57 0.58 0.50 0.47 0.33 0.36
nightVideos ~ 0.36  0.44 0.43 042 037 0.39 0.44 0.37
shadow 0.86 0.76 0.75 070  0.71 0.86 0.75 0.73
thermal 0.84 052 0.50 0.75 0.72 0.64 0.79 0.59
turbulence 046 036 029 052 026 0.44 0.39 0.51
Average 0.68 062 06l 062 057 0.64 0.64 0.58
TABLE VII
TIME CONSUMPTION OF THE ALGORITHMS (THE UNIT IS SECOND)
HMAO GFL _ LSD OMoGMF PCP DECOLOR TVRPCA SOIR
6547.0 12289.7 52643 194 3034 164.9 18984  60.7

In all the employed videos, the first frame usually con-
tains no foreground object, which just meets the demand of
incPCP. In OMoGMF and GRASTA, the performances of
the algorithms are stable when enough number of frames for
warm-start is arranged. Therefore, although online algorithms
are more time-saving than HMAO, they are less effective than
HMAO.

4) Comparisons for Other Categories: Furthermore,
we have conducted the comparisons on all other categories
in CDnet 2014 dataset (the only exclusion is PTZ category
because it’s not our target to model the videos with different
kinds of zooms). Similarly, we still select 220 continuous
frames from each video for evaluation. The average
F-measures for each video and benchmark method are reported
in Table VI. As can be observed from the table, HMAO
still outperforms the rest in most categories - e.g., ‘baseline’,

‘intermittentObjectMotion” and ‘thermal’. Meanwhile, there
are still some cases that HMAO fail to work effectively. For
example, HMAO is not robust to camera jitter by natural,
because no specialized component is designed for jittering
camera motion. Besides, HMAO perform the worst on
‘nightVideos’, which is the case that our assumption (the
principal component of the residuals as the detail BG) fail
to work. Instead, residuals are mainly composed by the
constantly changing illumination and shadows. Eventually,
we can find that, in terms of the overall average F-measure,
HMAOQO has achieved superior performance to all the other
competing approaches.

5) Running Time Comparison: Finally, we report the run-
ning time comparison for each method, which is shown in
Table VII. Here, the experimental results are obtained by
averaging the running times of all 9 videos in I2R dataset.
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We can see that OMoGMF is the fastest and GFL is the
slowest; by contrast, HMAO, TVRPCA and LSD have similar
complexity, which is only slightly higher than that of conven-
tional PCA-based algorithms (PCP and DECOLOR).

V. CONCLUSIONS

In this paper, we have proposed a joint optimization model
with hierarchical background and hierarchical foreground esti-
mation. In the proposed model, hierarchical background and
foreground models are developed targeting at better incorporat-
ing our a priori knowledge about those two layers. Experimen-
tal results have shown that our framework reflects the natural
data organization in video containing dynamic background
and achieves comparable and often superior performances to
current state-of-the-art techniques.

In view of the rapid advances in the field of deep learn-
ing and deep neural networks, one cannot help wondering
if data-driven (learning-based) approaches will outperform
model-based approaches including this work. Deep learning
for FG/BG separation is still at its infancy and there are
several technical challenges (e.g., training data, computa-
tional burden and memory requirement) to overcome. Thus,
a feasible approach is to employ some middle ground -
i.e., hybrid approaches of combining both model-based and
learning-based ones, which will be explored as our follow-up
work.

APPENDIX

In this Appendix, we provide some background material
related to the rigorous definition of 4-mode product. More
general definition and details of n-mode product can be
referred to Sec. 2.5 in [52].

The n-mode product of an arbitrary tensor X €
with a given matrix T € R/ *Kn ig of size Kix---xK,_1x
J X Kyq1 x --- x Ky. Element-wise,

RK|><~~~><KN

Ky
(X X Ty o1l -y = Z Xky - kn—thnsi—ky Ljkys  (30)
kn=1
where k, € [1,---,K,], je[l,---,J].
Specifically, we have B* € R/*/>*3x1 and T € R¥*!. Then
the 4-mode product of B and T is of size I x J x 3 x N.
Assuming T = [Ty, Ta, ..., Tyl, we have

& &3
(B X4 T)k1k2k3n = Bk1k2k3T”’

where n € [1,--- , N].
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