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Abstract

For real-world applications, data are often associated with
multiple labels and represented with multiple views. Most
existing multi-label learning methods do not sufficiently con-
sider the complementary information among multiple views,
leading to unsatisfying performance. To address this issue, we
propose a novel approach for multi-view multi-label learn-
ing based on matrix factorization to exploit complementar-
ity among different views. Specifically, under the assump-
tion that there exists a common representation across differ-
ent views, the uncovered latent patterns are enforced to be
aligned across different views in kernel spaces. In this way,
the latent semantic patterns underlying in data could be well
uncovered and this enhances the reasonability of the com-
mon representation of multiple views. As a result, the con-
sensus multi-view representation is obtained which encodes
the complementarity and consistence of different views in la-
tent semantic space. We provide theoretical guarantee for the
strict convexity for our method by properly setting parame-
ters. Empirical evidence shows the clear advantages of our
method over the state-of-the-art ones.

Introduction
Multi-label classification, which assigns one example with
multiple classes, is of significant interest due to its ubiq-
uity in real-world applications. For example, in computer
vision, an image may simultaneously contain more than one
type of objects; in web page categorization, a news web
page may cover different topics, such as sports, business
and entertainment. For this problem, multi-label learning ap-
proaches (Boutell et al. 2004; Tsoumakas and Katakis 2006;
Zhang and Zhou 2007; Gong et al. 2016) have been pro-
posed over the past decade, such as the early representative
methods: binary relevance (BR) (Tsoumakas and Katakis
2006) and label powerset (LP) (Boutell et al. 2004). By di-
rectly transforming the multi-label learning task into mul-
tiple binary classification tasks, BR neglects the correla-
tion among labels. LP regards each subset of multiple la-
bels as a different class of single-label classification. Al-
though taking the label correlation into consideration, this
model lacks of mining the complex label correlation and
can not be applied for the task with large label set. Multi-
label k-nearest neighbour (MLkNN) (Zhang and Zhou 2007)
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is one of classic and effective multi-label methods, which
builds a Bayesian model by using the k-nearest neighbour
method to obtain the prior and likelihood, and then uti-
lizes the max posterior to assign labels for testing exam-
ple. Some more recent methods focus on other issues in
multi-label classification, e.g., label noise (Yu et al. 2014;
Yang, Jiang, and Zhou 2013).

Although diverse methods have been proposed in the lit-
erature, there still exist the following limitations. On one
hand, most existing multi-label learning methods only con-
sider single view data, however, each individual view cannot
characterize different labels comprehensively since different
views encode different properties of data, which implies the
practical necessity of multi-view learning (Xu, Tao, and Xu
2013; Liu et al. 2017; Cao et al. 2015; Zhang et al. 2015).
On the other hand, learning with plenty of unlabeled data
has shown its power in many real applications. However,
most existing multi-label classification models are fully su-
pervised thus they are unable to explore the unlabeled sam-
ples. Although a few semi-supervised multi-label learning
methods (Liu, Jin, and Yang 2006; Wang, Tu, and Tsotsos
2013) have been developed, these models are not specifi-
cally targeted on the multi-view semi-supervised multi-label
learning. The most recent and related method in (Liu et al.
2015) also utilizes matrix factorization and common rep-
resentation. However, it has the following two limitations:
firstly, the common representation among multiple views is
learned without constraining the bases of different views,
which weakens the reasonability of the common represen-
tation; secondly, the common representation learning and
multi-label learning (label completion) are performed in two
separated steps, thus the prediction performance could not
be well guaranteed.

In this paper, we propose a new multi-view multi-label
learning approach termed as Latent Semantic Aware Multi-
view Multi-label Learning (LSA-MML). As shown in Figure
1, given the input data with multiple views, our method si-
multaneously seeks a predictive common representation of
multiple views and the corresponding projection model be-
tween the common representation and labels. The bases of
V different views, {B(v)}Vv=1, can be considered as latent
semantic components. With the common representation P,
the jth bases of different views, i.e, {bv

j}Vv=1, encode the
same latent semantic, therefore, these bases across different
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Figure 1: Method overview. The common representation P is learned by exploring the complementarity of multiple views and
scarce labeled samples (solid circles and squares) jointly. The latent semantic basis matrices (i.e., B(v)s) of different views are
aligned in kernel spaces, which guarantees the reasonability of the consensus representation P.

views should be consistent with each other. We align these
bases of different views with Hilbert-Schmidt Independence
Criterion (HSIC) in kernel space, which well addresses the
comparability of different views, thus a consensus coeffi-
cient matrix (common representation) P for different views
is induced. To solve our problem, we provide the theoretical
analysis for the convexity and the instruction for parameter
setting to guarantee the strict convexity. Extensive empirical
results on benchmark datasets demonstrate that the proposed
method outperforms the state-of-the-art methods.

Related Work

From the last decade, multi-label classification has received
intensive attention (Boutell et al. 2004; Zhang and Zhou
2007; Yang, Jiang, and Zhou 2013). Generally, existing
multi-label methods can be roughly categorized into three
lines. The first-order strategy deals with multi-label learning
in label-by-label manner, i.e., dividing the multi-label prob-
lem into multiple binary classification tasks or its variants
(Zhang and Zhou 2007; Clare and King 2001). The second-
order methods introduce the pairwise relations between the
labels for the multi-label classification, such as the ranking
between the relevant label and irrelevant label (Elisseeff and
Weston 2002; Fürnkranz et al. 2008; Ghamrawi and McCal-
lum 2005). CLR (Fürnkranz et al. 2008) firstly transforms
the multi-label learning problem into label ranking problem
by introducing the pairwise comparison, and then constructs
binary classifiers to solve the multi-label ranking problem.
Rank-SVM (Elisseeff and Weston 2002) conducts multi-
label classification by adopting the ranking loss as cost func-
tion in SVM. The high-order strategy builds more complex
relations among labels for multi-label learning (Read et al.
2011; Tsoumakas and Vlahavas 2007). The representatives
include the chain-based method (Read et al. 2011) which

transforms the multi-label data to a chain of binary classi-
fiers, and the label-set-based methods (Boutell et al. 2004;
Tsoumakas and Vlahavas 2007) that divide the entire label
set into multiple overlapping subsets and train one classi-
fier for each subset. Due to the ubiquity of data with multi-
ple views, multi-view learning has been an active research
field and shown its effectiveness in a wide range of ap-
plications (Xu, Tao, and Xu 2013). Recently, a few multi-
view multi-label classification methods (Luo et al. 2013;
Liu et al. 2015) were proposed to exploit the complemen-
tarity of different types of features for the improved classi-
fication performance. The method in (Luo et al. 2013) in-
troduces multi-view vector-valued manifold regularization
to integrate multi-view features. The method in (Liu et al.
2015) seeks a common low-dimensional representation un-
der the matrix factorization framework and then conducts
classification based on matrix completion. Both the two re-
cent methods (Luo et al. 2013; Liu et al. 2015) perform clas-
sification in the transductive semisupervised manner.

LSA-MML: Our Classification Model

Suppose there are L labeled data points {xl,yl}Ll=1 and U
unlabeled data points {xu}Nu=L+1, where N = L+U . These
instance-label pairs are stacked in two matrices, i.e., X =
(x1, ...,xN ) and Y = (Yl,Yu) = (y1, ...,yN ). Since we
employ the transductive learning manner to simultaneously
exploit unsupervised samples, our objective function turns
out to be the following general form

minM(X; Ŷ) + λS(Yl, Ŷ), (1)

where Ŷ is the completed label matrix to be predicted,
which is learned with data X and a few known labels in Yl.
Specifically, to obtain the completed label matrix Ŷ, we aim
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to uncover the underlying structure from data themselves X
by the first term M(X; Ŷ), which is guided by the labeled
data Yl in the second term S(Yl, Ŷ).

Considering the data with multiple views, we generalize
the above formulation as

minM(X(1), · · · ,X(v); Ŷ) + λS(Yl, Ŷ). (2)

Under the assumption that different views share the latent
common representation, i.e., X(v) = B(v)P, we have

minM(X(1), · · · ,X(v);P) + λ1Ω(B
(1), · · · ,B(V ))

+λ2P(P, Ŷ) + λ3S(Yl, Ŷ),
(3)

where P ∈ R
K×N is the consensus multi-view represen-

tation which encodes the complementary information from
different views. B(v) ∈ R

Dv×K is the basis matrix cor-
responding to the vth view. Accordingly, the first term
searches a comprehensive multi-view representation, and the
second term guarantees the reasonability of using a common
representation for different views since it aligns the bases of
different views in the latent semantic space. The last term
delivers the label information on the estimated label matrix
and based on which the third term ensures the predictive
property of the common multi-view representation. There-
fore, the complemented label matrix Ŷ benefits from both
multi-view data (P) and supervised label information (Yl).

Specifically, by using common multi-view representation
under matrix factorization framework, we have

M(X(1), · · · ,X(v);P) =

V∑
v=1

||X(v) −B(v)P||2F , (4)

where || · ||F is the well-known Frobenius norm of matrix.
For different views, the latent bases should be consistent
across different views. To this end, we penalize the inde-
pendence of bases between different views with

Ω(B(1), · · · ,B(V )) =
∑
v �=w

IND(B(v),B(w)), (5)

where the aim of the regularization IND(·, ·) is to enhance
the dependence of these bases between different views.
Since these bases are in different feature spaces, hence,
we introduce HSIC to constrain the consistence across
different views in kernel spaces. Specifically, we define
IND(B(v),B(w)) = −HSIC(B(v),B(w)) in our method.

Hilbert-Schmidt Independence Criterion (Gretton et
al. 2005). We give the brief description about HSIC as fol-
lows. Let us define a mapping φ(x) from x ∈ X to ker-
nel space F such that the inner product between vectors
in that space is given by a kernel function k1(xi,xj) =
〈φ(xi), φ(xj)〉. Let G be a second kernel space on Y with
kernel function k2(yi,yj) = 〈ϕ(yi), ϕ(yj)〉. The empirical
version of HSIC is induced as:
Definition 1. Consider a series of N independent observa-
tions drawn from pxy, Z := {(x1,y1), ..., (xN ,yN )} ⊆
X × Y , an estimator of HSIC, written as HSIC(Z,F ,G), is
given by:

HSIC(Z,F ,G) = (N − 1)−2tr(K1CK2C), (6)

where tr(·) is the trace of a square matrix. K1 and K2

are the Gram matrices with k1,ij = k1(xi,xj), k2,ij =
k2(yi,yj). cij = δij − 1/N centers the Gram matrix to
have zero mean in the feature space.

Since HSIC well measures the independence of two vari-
ables (Quadrianto, Song, and Smola 2009), we employ it to
maximize the dependency between the bases of two views.
Note that, according Eq (6), the HSIC in our method can be
considered as the penalization for the disagreement of dif-
ferent views in terms of similarity graphs of bases, as shown
in Fig .1.

In practice, to ensure the predictive property in terms of
labels, the third and fourth terms are integrated as the fol-
lowing formula

Δ = λ2P(P, Ŷ) + λ3S(Yl, Ŷ) = ||(WP−Y)S||2F , (7)

where Ŷ = WP and Y = [Yl,Yu]. W is the prediction
model and S is the filtering matrix used to select the labeled
samples with Sii = 1 if the ith sample is labeled and 0
otherwise. This ensures that the multi-view consensus rep-
resentation should be predictive corresponding to the known
labels. Accordingly, the final form of our objective function
turns out to be

min
B(v),P,W,αv

V∑
v=1

αr
v||X(v) −B(v)P||2F + β||(WP−Y)S||2F

+ γ
∑
v �=w

IND(B(v),B(w))

s.t. αv ≥ 0,

V∑
v=1

αv = 1; ||b(v)
.j ||2 ≤ 1,

(8)
where αv > 0 is used to automatically weight different
views and r > 1 is used to avoid a trivial solution that only
considers one view and adjusts the complementarity of mul-
tiple views (Wang et al. 2007). β > 0 and γ > 0 are tradeoff
factors. B(v) is constrained since without constraint P can
be pushed arbitrarily close to zero only by re-scaling P/s
and B(v)s (s > 0) while preserving the same loss.

To summarize, our model has the following merits: 1) our
model focuses on seeking the comprehensive common repre-
sentation of multiple views by enforcing the latent semantic
bases of different views to be consistent; 2) our model can be
considered as a bi-direction factorization, where the multi-
view common representation P bridges the factorizations
between the multi-view input and the label matrix, where
the label matrix can be regarded as the description of data
in the view of explicit semantic labels; 3) the label correla-
tions are implicitly encoded by the common representation
based on the uncovering latent semantic bases and the rela-
tions among them.

Optimization

Alternating Optimization Algorithm

We adopt the alternating minimization strategy to solve
the optimization problem, which is comprised of four sub-
problems solved as follows:
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Update P with fixed {αv}Vv=1, W and {B(v)}Vv=1. We
should minimize the following objective function

L(P) =

V∑
v=1

αr
v||X(v) −B(v)P||2F + β||(WP−Y)S||2F .

(9)
By taking the derivative with respect to P and setting it to
zero, then we obtain

V∑
v=1

αr
v

(− (B(v))TX(v) + (B(v))TB(v)P
)

+β
(
WTWPSST −WTYSST ) = 0.

(10)

We solve the problem by separating the labeled and unla-
beled parts thanks to the diagonal property of S. For the la-
beled part, we have

V∑
v=1

αr
v

(− (B
(v)
l )TX

(v)
l + (B

(v)
l )TB

(v)
l Pl

)

+β
(
WT

l WlPl −WT
l Yl

)
= 0.

(11)

where the subscript l and u indicate variables corresponding
to labeled and unlabeled data, respectively. Accordingly, we
can update Pl with the following rule

Pl =

V∑
v=1

αr
v(B

(v)
l )TX

(v)
l + βWT

l Yl

V∑
v=1

αr
v(B

(v)
l )TB

(v)
l + βWT

l Wl

. (12)

For the unsupervised part, we have

V∑
v=1

αr
v(B

(v)
u )TB(v)

u Pu =

V∑
v=1

αr
v(B

(v)
u )TX(v)

u . (13)

Accordingly, we can update Pu by the following rule

Pu =
( V∑
v=1

αr
v(B

(v)
u )TB(v)

u

)−1
(

V∑
v=1

αr
v(B

(v)
u )TX(v)

u ). (14)

After obtaining Pl and Pu, the common representation cor-
responding to all data, i.e., P, is obtained as P = [Pl,Pu].

Update B(v) with fixed αv ,W and P. We should mini-
mize the following objective function

L(B(v)) = αr
v||X(v) −B(v)P||2F − γ

V∑
w=1
w �=v

HSIC(B(v),B(w))

s.t. ||b(v)
.j ||2 ≤ 1.

(15)
We optimize B(v)-subproblem by following the work in (Gu
et al. 2014), which introduces an auxiliary variable S(v).
Then, we have the following objective

L(B(v)) = αr
v||X(v) −B(v)P||2F − γ

V∑
w=1
w �=v

HSIC(B(v),B(w))

s.t. B(v) = S(v), ||s(v).j ||2 ≤ 1.
(16)

We optimize (16) with alternating direction method of mul-
tipliers (ADMM). By removing the equality constraint, it
turns out to be
L(B(v),S(v),T(v)) = αr

v||X(v) −B(v)P||2F

− γ

V∑
w=1
w �=v

HSIC(B(v),B(w)) + μ||B(v) − S(v)
r +T(v)

r ||2F

s.t. ||s(v).j ||2 ≤ 1,

(17)

where μ > 0 is the penalty hyperparameter. The optimal
solution of (17) can be obtained with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(v)
r+1 = argmin

B(v)
αr
v||X(v) −B(v)P||2F

− γ
∑
w �=v

HSIC(B(v),B(w)) + μ||B(v) − S(v)
r +T(v)

r ||2F

S
(v)
r+1 = argmin

S(v)
μ||B(v)

r+1 − S(v)
r +T(v)

r ||2F , s.t.||s(v).j ||2 ≤ 1

T
(v)
r+1 = T(v)

r +B
(v)
r+1 − S

(v)
r+1, update μ if appropriate,

(18)
where s

(v)
.j indicates the jth column of S. Note that,

Theorem 1 (in subsection 3.2) guarantees the subproblem
L(B(v)) to be convex and thus the optimal solution could be
obtained.

Update W with fixed αv , P and B(v). We minimize the
following objective function

L(W) = β||(WP−Y)S||2F . (19)

Accordingly, we obtain the following updating rule

W = YSSTPT (PSSTPT )
−1

. (20)

Update α with fixed B(v) and P. We employ a Lagrange
multiplier λ to take the constraint into consideration, obtain-
ing the following Lagrange function

Q(α, λ) =

V∑
v=1

αr
v||X(v) −B(v)P||2F − λ(

V∑
v=1

αr
v − 1).

(21)
By setting the derivative of Eq. (21) with respect to α and λ
to 0, then we have the following updating rule

αv =

(
1

||X(v)−B(v)P||2
F

)1/r−1

( V∑
v=1

( 1

||X(v)−B(v)P||2
F

)
1/r−1)−1

. (22)

According to the above updating rules, we can alternatively
update these variables until convergence condition (i.e., the
difference of the objective function value between two con-
secutive iterations is smaller than 10−6) is reached.

Algorithm Analysis

© Convexity analysis. Note that, due to the HSIC term in-
volved, it is generally not convex due to the negative sign.
This leads to a question: is the following function convex?

L(B(v)) = αr
v||X(v) −B(v)P||2F

− γ

V∑
w=1
w �=v

HSIC(B(v),B(w)) + μ||B(v) − S(v)
r +T(v)

r ||2F . (23)
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The optimal solution could be obtained if the function
L(B(v)) is strictly convex, which is also a prerequisite for
the convergence of the holistic optimization. Therefore, we
provide the guarantee for the convexity of L(B(v)) under
proper parameter setting as follows:

Theorem 1. The subproblem L(B(v)) is convex given the
parameter setting μ ≥ 4D(V − 1)γ, where V and D are
number of views and D = max1≤v<V ({D(v)}Vv=1).

Proof 1. The convexity of L(B(v)) depends on whether its
Hessian matrix �2L(B(v)) is semi-positive definite or not
(Boyd and Vandenberghe 2004). Since the first term is con-
vex and we can gives the condition for strict convexity for the
last two terms, thus, we only should guarantee the convexity
of

Lc(B
(v)) = −γ

V∑
w=1
w �=v

HSIC(B(v),B(w))

+ μ||B(v) − S(v)
r +T(v)

r ||2F .

(24)

Fortunately, the Hessian matrix �2Lc(B
(v)) can be easily

computed as:

∇2Lc(B
(v)) = μI− γ

V∑
w=1
w �=v

CB(w)TB(w)C = A. (25)

For convenience, we denote L = −
V∑

w=1
w �=v

CB(w)TB(w)C.

According to the Gerschgorin theorem (Varga 2009), all the

eigenvalues η of A lie in |η − μ/γ − lii| ≤
K∑

j=1;j �=i

|lij |,
where K is the number of latent components as mentioned
above. After transformation, the value of μ/γ has to satisfy
the following constraint:

μ/γ ≥ max
1<i<K

(

K∑
j=1;j �=i

|lij | − lii). (26)

It is easy to show that |lij | ≤ 4(V − 1), therefore, the lower
bound of μ/γ is 4K(V − 1). Accordingly, we can set μ =
4K(V −1)γ or even larger to ensure the constraint satisfied
in practice.

According to Theorem 1, the convexity of L(B(v)) and
the subsequent optimal solution is ensured.

© Complexity and convergence analysis. There are
four main sub-problems in our optimization procedure, i.e.,
P, B(v), W and αv . For simplicity, we suppose the dimen-
sionality of each view is D. The complexity of these sub-
problems are O(K2D+KDN +K3), O(L(K2D+K3)),
O(CN2+CNK+K3) and O(DKN) respectively, where
L is the iteration number in ADMM algorithm for updat-
ing P. Since there are closed-form (optimal) solutions for
updating P, B(v), W and weight vector α, the objective is
non-decreasing with iterations. Therefore, our algorithm can
be guaranteed to converge to a stationary point, which is also
empirically validated in experiment as shown in Figure 3.

Experiments

Experiment Settings

Datasets & features. In this section, we evaluate our LSA-
MML and compare it with state-of-the-art methods on three
benchmark multi-label datasets, i.e., Corel5k (Duygulu et al.
2002), ESP Game (Von Ahn and Dabbish 2005) and PAS-
CAL VOC’ 07 (Everingham 2006). The detailed statistics
information of these datasets is summarized in Table 1. We
employ the standard partitions for training and testing sets 1

as described in Table 1.

Table 1: Statistics of datasets.

dataset #instance #training #testing #label

Corel5k 4999 4500 499 260
ESP Game 20770 18689 2081 268

PASCAL VOC 9963 5011 4952 20

There are three types of features, i.e., two types of lo-
cal features: DenseSift (Lowe 2004) and DenseHue (Wei-
jer and Schmid 2006), and one type of global features: Gist
(Oliva and Torralba 2001) used in our experiments, where
each type of features can be regarded as one view. The di-
mensionalities of DenseSift, DenseHue and Gist are 1000,
100 and 512, respectively. To comprehensively evaluate the
effectiveness of label information, we randomly select a
subset of labeled samples from the training sets with ratio
∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Due to randomness, we conduct
each experiment 10 runs and report the average results with
standard deviations.
Compared methods. We compare our method with sev-
eral state-of-the-art multi-label classification methods. The
first line is the traditional single view multi-label meth-
ods, while the second line takes advantage of all differ-
ent views. Specifically, for the traditional single view meth-
ods, we report the best performance on the best single view
(BestView). Moreover, we also conduct experiments for
these methods by concatenating all views (VConcate). The
traditional single view multi-label methods include binary
relevance (BR) (Tsoumakas and Katakis 2006) and label
powerset (LP) (Boutell et al. 2004) that act as the base-
lines. LP utilizes C4.5 as the base classifier and RAkEL
is based on LP. There are some advanced comparisons
in our experiments: the lazy multi-label methods based
on k-nearest neighbor (ML-kNN) (Zhang and Zhou 2007)
which is a simple but rather effective method, the ensemble
methods such as random k-labelsets (RAkEL) (Tsoumakas,
Katakis, and Vlahavas 2011), ensemble of classifier chains
(ECC) (Read et al. 2011) and multi-label classification us-
ing ensembles of pruned sets (EPS) (Read, Pfahringer, and
Holmes 2008). We compare our method with two pieces of
work highly related with ours, i.e., multiview vector-valued
manifold regularization (MV3MR) (Luo et al. 2013) and
low rank multi-view matrix completion (LrMMC) (Liu et
al. 2015). The two methods both belong to the category of
multi-view multi-label learning in semi-supervised manner.

1lear.inrialpes.fr/people/guillaumin/data.php
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Table 2: Results (mean±standard deviation) on Corel5k, ESP Game and PASCAL VOC.

Dataset Corel5k ESP Game PASCAL VOC
Method View R-Loss↓ Ave-Pre↑ R-Loss↓ Ave-Pre↑ R-Loss↓ Ave-Pre↑

BR BestView .266±.002 .268±.004 .264±.000 .229±.003 .407±.007 .372±.009
VConcate .360±.022 .214±.006 .360±.002 .198±.004 .396±.008 .393±.003

LP BestView ..696±.008 .046±.003 .495±.002 .057±.000 .420±.008 .296±.003
VConcate .678±.007 .067±.011 .491±.000 .058±.002 .411±.005 .311±.008

RAkEL BestView .389±.005 .243±.004 .380±.005 .208±.005 .247±.005 .499±.005
VConcate .350±.004 .304±.007 .308±.003 .254±.003 .237±.003 .515±.000

EPS BestView .347±.005 .289±.004 .358±.005 .223±.005 .239±.00 .494±.004
VConcate .344±.004 .378±.007 .352±.003 .223±.003 .228±.000 .507±.002

ECC BestView .150±.006 .372±.005 .182±.001 .294±.001 .203±.001 .253±.001
VConcate .150±.000 .382±.010 .179±.001 .309±.001 .195±.002 .552±.001

MLkNN BestView .126±.002 .406±.003 .182±.002 .294±.001 .180±.002 .564±.001
VConcate .123±.002 .424±.009 .167±.002 .272±.002 .164±.001 .586±.001

MV3MR MultiView .135±.005 .425±0̇00 .183±.001 .267±.002 .181±0̇03 .568±.003
LrMMC-1 MultiView .112±.000 .382±0̇04 .158±.001 .258±.003 .217±0̇02 .463±.002
LrMMC-2 MultiView .101±.000 .425±0̇04 .153±.001 .264±.003 .163±0̇02 .532±.002

Ours BestView .123±.010 .419±.014 .183±.001 .267±.002 .206±.005 .528±.006
MultiView .103±.002 .462±.003 .161±.001 .345±.001 .149±.001 .610±.001

Rank —— 2 1 3 1 1 1

For LrMMC, we use LrMMC-2 to indicate the method with
data preprocessing for label unbalance issue as the authors
did in their work while LrMMC-1 indicates using the origi-
nal training data.
Parameter setting. We conduct parameter tuning on valida-
tion sets by following the same settings in (Luo et al. 2013;
Liu et al. 2015). In specific, each data set is first partitioned
into training and test set. Following the methods (Luo et al.
2013; Liu et al. 2015), 20% samples are then randomly se-
lected from the test set as validation set for parameter tun-
ing, and the rest is used for evaluating the classification
performance of each algorithm. We select the value from
{2, 3, 4, 5} for r and from {0.01, 0.1, 1, 10, 100} for β and
γ. For optimization convenience, the inner product kernel is
employed so there is no kernel parameter. To address the ran-
domness in selecting samples, we have repeated the above
procedure 10 times and reported the averaged results.

Two evaluation metrics that mostly used for multi-label
classification (Zhang and Zhou 2007) are employed. For the
Ranking loss (R-Loss), smaller value indicates better clas-
sification performance, while larger value of Average preci-
sion (Ave-Pre) means better performance. Limited by space,
please refer the work in (Schapire and Singer 2000) for the
details of these evaluation metrics.

Experiment Results

Comparison with state-of-the-arts. Table 2 demonstrates
the classification comparison of different methods on bench-
mark datasets with 80% labeled samples used. We report
the results under a part of training samples (instead of all
training samples), since the performances (with average re-
sults and standard deviations) under different random parts
of training samples could better characterize the compari-
son.

Based on the results in these tables, several observations
are obtained as follows: 1) In a big picture, our algorithm
almost achieves the best performance on all datasets, which
clearly demonstrates the advantages of our method in ex-
ploring multi-view multi-label data. 2) It is clear that for
each traditional single view multi-label method, the view
concatenating strategy always obtains better performances
than those of the best single view. This validates the effec-
tiveness of multi-view learning over single view learning,
since the complementarity among different views is of great
importance. 3) We reported both the results of using the best
single view and multiple views of our method, and the per-
formance of using multiple views clearly outperforming that
of single view validates that the multi-view treatment is es-
sential for the performance. 4) The performance is rather
stable with random initiation. Taking the experiment on the
dataset Corel5k for example, we run our method 10 times
with random initialization, and the standard deviation is 0.02
(same setting as in Table 2). Moreover, we also employed
SVD for each single view as initialization (for each B(v)) in
our code, and the performance is similar to that of random
initialization.
Comparison with different ratios of training samples.
To further evaluate the effectiveness of our method in uti-
lizing scarce labeled samples, we provide the comparison
for the competitive methods in terms of Ranking Loss and
Average Precision with different labeled data ratios (from
20% ∼ 100%). Based on the results in Figure 2, the follow-
ing observations are obtained: 1) With the increment of the
ratio of labeled samples, the performances for all the algo-
rithms are getting better, which confirms the valuableness of
scarce labeled samples. 2) Compared with other algorithms,
our model usually achieves the best result for different su-
pervised ratio on all these datasets. This demonstrates that
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(a) Corel5k (b) ESP Game (c) PASCAL

Figure 2: The 1st to 3rd columns correspond to the performances with increase of the ratio of labeled samples. The method
named as “Single” denotes LSA-MML with the best single view.

(a) Corel5k (b) ESP Game (c) PASCAL

Figure 3: Convergence curves on benchmark datasets.

our model can achieve better performance given the same
amount of labeled samples, and empirically validates the ef-
fectiveness of our multi-view multi-label model.
Convergence experiments. As shown in Figure 3, we give
the convergence experiments on the three datasets. Clearly,
the results empirically prove that our algorithm can converge
fast within a small number of iterations for all the datasets,
and this is generally consistent with the theoretical analysis.

Conclusion

In this paper, we have proposed a new multi-label learn-
ing method, i.e., Latent Semantic Aware Multi-view Multi-
label Learning, to fully take advantage of multiple views of
data. Supervised by the limited label information, our model
could well learn the common representations by simulta-
neously enforcing the consistence of latent semantic bases
among different views in kernel spaces. Furthermore, differ-
ent from the two-step manner (Liu et al. 2015), in our model

the common representation learning and label prediction are
in a unified framework, where they can improve each other
iteratively. We also provided the instruction for parameter
setting to guarantee the strict convexity of our algorithm. Ex-
periments on different benchmark datasets clearly validated
the superiority of our method over state-of-the-art ones for
multi-view multi-label classification. There are several di-
rections for the future work. First, exploring more general
correlations between common representations and labels is
challenging but of great interest. Second, due to the appeal-
ing performance of deep learning, extending our model with
deep model will be our future work.
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