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Abstract—In complex pattern recognition tasks, objects are typi-
cally characterized by means of multimodality attributes, including
categorical, numerical, text, image, audio, and even videos. In these
cases, data are usually high dimensional, structurally complex, and
granular. Those attributes exhibit some redundancy and irrele-
vant information. The evaluation, selection, and combination of
multimodality attributes pose great challenges to traditional clas-
sification algorithms. Multikernel learning handles multimodality
attributes by using different kernels to extract information coming
from different attributes. However, it cannot consider the aspects
fuzziness in fuzzy classification. Fuzzy rough sets emerge as a pow-
erful vehicle to handle fuzzy and uncertain attribute reduction. In
this paper, we design a framework of multimodality attribute re-
duction based on multikernel fuzzy rough sets. First, a combination
of kernels based on set theory is defined to extract fuzzy similar-
ity for fuzzy classification with multimodality attributes. Then, a
model of multikernel fuzzy rough sets is constructed. Finally, we
design an efficient attribute reduction algorithm for large scale
multimodality fuzzy classification based on the proposed model.
Experimental results demonstrate the effectiveness of the proposed
model and the corresponding algorithm.

Index Terms—Fuzzy rough sets, multikernel learning, multi-
modality attribute reduction, parallel computing.

I. INTRODUCTION

IN CURRENT applications, most pattern recognition tasks
involve data that are heterogeneous and exhibit multimodal-

ity. Those include categorical, numerical, image, text, audio,
and even video information. In the era of big data, it is widely
accepted that more than 80% of information is carried by het-
erogeneous and unstructured data. For example, in medical di-
agnosis systems, there exit categorical attributes of the exami-
nation index, numerical attributes of blood pressure, time series
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of electrocardiography (ECG), and images of B ultrasonic and
Computed Tomography (CT) imaging. It becomes a challeng-
ing task to evaluate, select, and combine these attributes [1].
Although doctors easily exploit such information, existing ma-
chine learning algorithms cannot process it effectively. By 2020,
data content will comprise a mixture of text, speech, still and
video images, histories of interactions with friends, information
sources and their automated proxies, and tracks of sensor read-
ings from global positioning system devices, medical devices,
and other embedded sensors in our environment [2]. Thus, it
becomes highly desirable to develop an effective representa-
tion model and an evaluation strategy for multimodality pattern
recognition tasks.

Attribute concatenation and classifier ensemble are two typ-
ical methods for handling multimodality data. The first method
concatenates different attributes into a long vector and views
them as inputs coming into a single classifier. The second
method inputs the attributes into different classifiers and then
votes or averages the outputs of these classifiers are formed. At-
tribute concatenation usually leads to ultrahigh dimensionality
and ignores the structural information of data, while ensemble
learning is sensitive to the choice of classifiers. Moreover, the
interaction information among different attributes is not fully
captured.

To avoid these problems, multikernel learning has been pro-
posed to transform heterogeneous attributes into a unified rep-
resentation framework [3]. Kernel functions are employed to
quantify similarity, and then these kernels are combined using
a certain fusion strategy. A set of kernel functions are designed
to quantify the similarity between samples described by differ-
ent types of attributes. A match kernel is used to construct an
equivalence relation [4]; a string kernel is used to calculate the
similarity of two strings in gene analysis [5]; a histogram inter-
section kernel is used to match images [6]. In recent years, many
studies have been reported on multikernel learning [7], attribute
reduction [8]–[10], and classification [11], [12]. However, these
methods do not consider the fuzziness and inconsistency inher-
ently present in multimodality data.

In traditional classification tasks, the labels of samples are
Boolean. The samples either completely belongs to one class or
another. However, in some complex cases, the samples can be
grouped into multiple labels. For example, a facial expression
is often associated with multiple emotions, where membership
functions of all generic emotions (e.g., happiness, sadness, sur-
prise, fear, anger, and disgust) are used to describe the complex
expression. We may not be able to precisely describe a facial
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expression in terms of a single class. The face might exhibit
looks angry and disgust, but at different memberships grades.
This task comes as form of a multimodality fuzzy classification.

Rough sets provide a sound model for handling inconsistent
information in classification [13]. In 1990, Dubois et al.
proposed the model of fuzzy rough sets [14]. In fuzzy rough
sets, we use a family of fuzzy sets to approximate a fuzzy class.
The difference between fuzzy upper and lower approximations
describes the inconsistency present in fuzzy classification
[15]–[18]. In 2011, Hu et al. employed kernel functions
to extract fuzzy relations and proposed the definitions of
kernelized fuzzy rough sets. These models forms a bridge
between kernel machines and rough sets [19]. It was reported,
however, that fuzzy rough sets are sensitive to noisy samples.
To alleviate this shortcoming, robust fuzzy rough sets were
developed [20]. However, the proposed models cannot be used
to cope with multimodality data.

In practice, most classification tasks come with heteroge-
neous attributes, including categorical and numerical features.
Heterogeneous attribute reduction has attracted considerable at-
tention. In 2007, Hu et al. presented a hybrid attribute reduction
method based on fuzzy rough sets and information granula-
tion [21], and in 2008, they designed a heterogeneous feature
selection algorithm based on neighborhood rough sets (NRS)
[22]. In 2014, Chen and Yang proposed an attribute reduction
algorithm to handle categorical and numerical data using a dis-
cernibility matrix based on a combination of classical and fuzzy
rough sets [23]. In 2015, Qian et al. proposed a fuzzy granular
structure distance that could effectively discriminate between
any two fuzzy granular structures [24], and developed an ef-
ficient feature selection algorithm for such hybrid data [25].
These methods consider both categorical and numerical data.
In practical applications, multimodality of data involves text,
image, audio, and even video information, where each attribute
is represented by a set of structured features.

In the era of big data, the size of multimodality data is usu-
ally very large. It is time-consuming to perform efficient at-
tribute evaluation and reduction. With this regard MapReduce
is a popular parallel computing model [26]. In 2010, Yang et al.
presented an attribute reduction method for massive data based
on MapReduce in the context of rough sets [27]. In 2012, Zhang
et al. proposed a parallel method for computing rough sets ap-
proximations [28]. These parallel algorithms scale well and ef-
ficiently handle large-scale data. However, in the above studies
the designed algorithms are able to deal only with categorical
attributes.

From the above analysis one can conclude that large-scale
multimodality attribute reduction for fuzzy classification suffers
from several essential shortcomings: 1) multikernel learning
are not valid for handling fuzzy classification tasks, and 2) no
parallel algorithm for large-scale attribute reduction exists.

To illustrate the proposed framework one can refer to Fig. 1.
In a medical system, there are patients characterized by P mul-
timodality attributes. The values of the attributes may be vec-
tors, matrices, time series, images, or protein structures. Then
each base kernel ki determines the similarity matrix between
samples with respect to the corresponding attribute. The combi-

Fig. 1. Framework of multikernel fuzzy rough sets.

nation kernel K then integrates the P similarity functions into
a unified matrix, which is used to compute multikernel fuzzy
rough sets. The proposed model will reduce to the “classical”
fuzzy rough sets if all the attribute are numerical.

In this study, we build a framework for large-scale multi-
modality attribute reduction with multikernel fuzzy rough sets.
The objective is to develop an algorithm to select the informa-
tive modalities in multimodality classification. Thus, we evalu-
ate and select a subset of modalities, where each modality may
be a vector, a matrix, or an image. This situation is different
from the one encountered in the traditional feature selection
algorithms. The proposed algorithm reduces to traditional algo-
rithms if the attributes are numerical. The contributions of this
paper are twofold. First, using logic operators, we develop a
novel combination of kernels techniques and propose a model
of multikernel fuzzy rough sets. Second, we describe a parallel
strategy to handle large-scale multimodality fuzzy data attribute
reduction based on the proposed model.

The paper is organized as follows: In Section II, we present
some preliminaries on multikernel learning and fuzzy rough
sets. In Section III, we define the combination of kernels and
propose the multikernel fuzzy rough set model. In Section IV,
the design of the multimodality attribute reduction algorithm for
fuzzy classification is described. The experiments are presented
in Section V. Finally, conclusions and future work are given in
Section VI.

II. PRELIMINARIES

In this section, we introduce multikernel learning, and then
review some definitions of rough sets, fuzzy rough sets, and
kernelized fuzzy rough sets.

A. Multikernel Learning

Multikernel learning was proposed for handling multimodal-
ity attributes by combining multiple kernels. Each kernel is used
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TABLE I
T -NORMS AND t-CONORMS

T -norm t-conorm

1 TM (a, b) = min(a, b) SM (a, b) = max(a, b)
2 TP (a, b) = a × b SP (a, b) = a + b − ab

3 TL (a, b) = max(a + b − 1, 0) SL (a, b) = min(a + b, 1)
4 Tcos(a, b) = max(ab −√1 − a2

√
1 − b2 , 0) Scos(a, b) = min(a + b − ab +

√
2a − a2

√
2b − b2 , 1)

to extract information from a certain type of attribute [29]. The
fusion of attributes can be interpreted as the combination of base
kernels. Given a training set {xi, yi}Ni=1 , where yi is the label
of sample xi for a test sample x, the discriminant function of
multikernel learning is computed as

f(x) = sign

(
N∑

i=1

αiyiKβ (xi, x) + b

)

where α is the vector of dual variables corresponding to each
separation constraint, b is the bias term for separating the hy-
perplane, and Kβ (xi, x) is computed as

Kβ (xi, x) = fβ ({km (xm
i , xm )}Pm=1)

where the combination function fβ : �P → � is a linear or non-
linear function to combine P base kernels induced from P sets
of attributes. Kernel function {km : �Dm ×�Dm → �}Pm=1
takes P attributes of sample {xm : �Dm }Pm=1 , where Dm is
the dimensionality of the corresponding attribute.

1. Linear combination

Kβ (xi, xj ) = fβ ({km (xm
i , xm

j )}Pm=1) =
P∑

m=1

βm km (xm
i , xm

j )

where βm denotes the weights of km . The combination methods
can be the linear sum (βm ∈ �), the conic sum (βm ≥ 0 ∈
�), or the convex sum (βm ≥ 0 ∈ �, and

∑P
m=1 βm = 1). The

weights of kernels can also be constrained by the lp -norm or a
trace, for example, the l1 -norm results in a sparse solution, which
can be considered as an embedded feature selection algorithm.

2. Nonlinear combination methods

Kβ (xi, xj ) = fβ ({km (xm
i , xm

j )}Pm=1) =
P∏

m=1

βm km (xm
i , xm

j )

where βm denotes the weights of km .
Multikernel learning is an effective multimodality data learn-

ing framework. Multimodality data also contain various incon-
sistencies, fuzziness, and uncertainties. However, no technique
for these problems has been proposed.

B. Fuzzy Rough Sets

Rough sets are considered a powerful model for handling in-
consistent information. IS = 〈U,C〉 is an information system,
where U is a sample set and C is a set of condition attributes.
U is partitioned into a family of equivalence classes [x]R by an
equivalence relation R derived with the attributes.

Given x, y, z ∈ U , equivalence relation R satisfies the follow-
ing conditions R(x, x) = 1, R(x, y) = R(y, x), and R(x, y) =
1, R(y, z) = 1⇒ R(x, z) = 1.

Given X ⊆ U , the lower and upper approximations of X are
defined as

RX = {[x]R |[x]R ⊆ X}
RX = {[x]R |[x]R ∩X �= ∅}

where RX is also called the positive region of X and
BNDRX = RX −RX is called the boundary of X .

In Pawlak rough sets, condition attributes are discrete, which
generate equivalence relations over U . However, most classifi-
cation tasks are described with numerical or fuzzy data, which
cannot be processed directly by Pawlak rough sets. Fuzzy rough
sets are proposed based on fuzzy relations.

Given a, b, c ∈ [0, 1], an operator T : [0, 1]2 → [0, 1] is called
the triangular norm (T -norm), if it is increasing, associa-
tive, commutative, and satisfies T (a, 1) = a. An operator S :
[0, 1]2 → [0, 1] is called a triangular conorm (t-conorm) if it
satisfies the first three conditions and S(a, 0) = a. An operator
N (negation) is decreasing and satisfies N(0) = 1, N(1) = 0.
Some common T -norm and t-conorm operators are listed in
Table I.

Given x, y, z ∈ U , the fuzzy T−equivalence relation R
satisfies the conditions R(x, x) = 1, R(x, y) = R(y, x), and
T (R(x, y), R(y, z)) ≤ R(x, z).

We first give the most general form of fuzzy rough sets. Given
a fuzzy approximation space IS = 〈U,R〉, X is a fuzzy set on
U , the lower and upper fuzzy approximations of X are defined
as [17]

RS X(x) = infy∈U S(N(R(x, y)),X(y))

RT X(x) = supy∈U T (R(x, y),X(y)).

There are two special cases worth considering. One is that
approximate computing is used to approximate fuzzy approxi-
mation space in clear conditional attributes space.

Given an approximation space IS = 〈U,R〉, X is a fuzzy set
on U , R is a Boolean relation over U . The lower and upper
fuzzy approximations are defined as [17]

RS X(x) = infy∈[x] X(y)

RT X(x) = supy∈[x] X(y).

The other one is that approximate computing is used to ap-
proximate clear approximation space in fuzzy conditional at-
tributes space.
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Given a fuzzy approximation space IS = 〈U,R〉, X is a crisp
subset of U , R is a fuzzy relation. The lower and upper fuzzy
approximations are defined as [17]

RS X(x) = infy /∈X N(R(x, y)

RT X(x) = supy /∈X R(x, y).

Given a nonempty and finite set U , a real-valued func-
tion k : U 2 → � is said to be a kernel if k is symmetric and
semipositive definite. Moser [30] showed that any kernel func-
tion k : U 2 → [0, 1] with k(x, x) = 1 is at least Tcos-transitive.
Hence, fuzzy T -equivalence relation R can be substituted by
the relation computed with a kernel function k, which satis-
fies the following conditions: k(x, x) = 1, k(x, y) = k(y, x)
and Tcos(k(x, y), k(y, z)) ≤ k(x, z). This theorem establishes
a linkages between kernel machines and fuzzy rough sets.

The kernel functions that satisfy the above conditions can
be used to extract the fuzzy Tcos-equivalence relations between
samples [19]. In fact, a collection of kernel functions, such as the
Gaussian kernel, exponential kernel, Laplacian kernel, ANOVA
kernel of radial basis function kernel, rational quadratic kernel,
circular kernel, and spherical kernel, satisfy these conditions
[31].

Given a fuzzy set X , kernelized fuzzy lower and upper ap-
proximations are defined as [19]

kS X(x) = infy∈U S(N(k(x, y)),X(y))

kT X(x) = supy∈U T (k(x, y),X(y)).

III. MULTIKERNEL FUZZY ROUGH SETS

In this section, we translate the idea of multikernel learning
to fuzzy rough sets. First, some common kernel functions for
multimodality attributes are introduced. Then, the combination
of kernels based on fuzzy operator is defined and a model of
multikernel fuzzy rough sets is proposed.

A. Kernel Functions for Multimodality Attributes

Categorical, numerical, image, text, and audio are common
data modalities. The basic attribute and the applied kernel func-
tions of these multimodality attributes are listed as follows.

1) Given a pair of samples x and y, a match kernel [4] is used
to extract equivalence relations from categorical data

k(x, y) =
{

0, if x �= y;
1, if x = y.

2) Gaussian kernel [32] is used for extracting information
from numerical data

k(x, y) = exp
(
−||x−y ||2

σ 2

)
where σ is the parameter of Gaussian kernel.

3) Histogram intersection kernel [6] is designed for comput-
ing the similarities between histograms of image data

k(x, y) =
P∑

i=1
min(xi, yi)

where xi and yi represent the number of pixels that have
colors in the i-th fixed list of P color ranges,

∑P
i=1 xi = 1,

∑P
i=1 yi = 1. A color histogram represents the distribu-

tion of colors in an image.
4) Cosine kernel [33] is used in term frequency-inverse doc-

ument frequency (TF-IDF) attributes of texts

k(x, y) = xyT

||x||||y ||

where x and y are TF-IDF vectors that are composed of
the product of a term frequency and the inverse document
frequency for each token that appears in a string of the
database.

5) Cauchy kernel [34] is used in mel-frequency cepstral co-
efficients (MFCCs) attributes of audio data

k(x, y) =
1

1 + ||x−y ||2
σ

where x and y are the cepstral coefficients.
It is easy to note that these kernels satisfy k(x, x) = 1 and
k(x, y) = k(y, x), and kernel functions k : U 2 → [0, 1]. There-
fore, these kernel functions are reflexive, symmetrical, and Tcos-
transitive according to the theory in [30]. Thus, the fuzzy rela-
tions computed with them are fuzzy Tcos-transitive relations.

B. Combination of Kernels

In rough sets, the relations derived from two attributes are
computed by using the intersection operation. In fuzzy rough
sets, the intersection operation corresponds to a T -norm opera-
tion. The min operation is a special case of T -norm. We propose
a combination of kernels based on T -norm.

MIS = 〈U, MC〉 is a multimodality information system and
MC = {M1 ,M2 , ...,MP } is a set of multimodality condition
attributes containing P different attributes; the dimensionality
of each attribute may be different.

Given a multimodality information system MIS = 〈U, MC〉,
kernel ki is computed for attribute Mi , i = 1, 2, . . . , P . The
matrix of kernel function ki is represented as⎡

⎢⎢⎢⎢⎢⎣

ki(x1 , x1) ki(x1 , x2) · · · ki(x1 , xN )

ki(x2 , x1) ki(x2 , x2) · · · ki(x2 , xN )
...

...
. . .

...

ki(xN , x1) ki(xN , x2) · · · ki(xN , xN )

⎤
⎥⎥⎥⎥⎥⎦

where ki is computed by a kernel function, such as the Gaussian

kernel k1(xi, xj ) = exp(−||xi−xj ||2
σ 2 ).

Definition 1: Given two kernels ki and kj computed with
attributes Mi and Mj . For samples x, y ∈ U four kinds of com-
bination based on the fuzzy T -norm operations are defined as

1) Min

KTm
(x, y) = min(ki(x, y), kj (x, y)). (1)

2) Product

KTp
(x, y) = ki(x, y)× kj (x, y). (2)

3) Lukasiewicz T -norm

KTl
(x, y) = max(ki(x, y) + kj (x, y)− 1, 0). (3)
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Fig. 2. Combination of kernels.

4) Tcos-norm

KTc o s (x, y) = max(ki(x, y) ∗ kj (x, y)

−
√

1− ki(x, y)2
√

1− kj (x, y)2 , 0). (4)

Theorem 1: Given ki, kj ∈ [0, 1] for Mi and Mj that satisfy
ki(x, x) = 1, kj (x, x) = 1, we have

KTm
⊆ ki,KTm

⊆ kj

KTp
⊆ ki,KTp

⊆ kj

KTl
⊆ ki,KTl

⊆ kj

KTc o s ⊆ ki,KTc o s ⊆ kj . (5)

Proof: We just take KTm
as an example. Assume that

MB = Mi

⋃
Mj . KMB

Tm
= min{ki, kj}. Therefore, ki ≥ KMB

Tm

and kj ≥ KMB
Tm

. That is, KTm
⊆ ki,KTm

⊆ kj . We can prove
the other properties in the same manner.

Fig. 2 shows an example of multimodality classification. Four
patients are described using the three attributes M1 ,M2 , and
M3 , where M1 is blood biochemical indices expressed by cat-
egorical attribute, M2 is liver function indices expressed by
a numerical attribute, and M3 is the color ultrasound images.
Thus, we consider match kernel k1 , Gaussian kernel k2 , and
histogram intersection kernel k3 to compute the fuzzy relation

between the samples, as an example, consider x1 and x2

k1(x1 , x2) = 0

k2(x1 , x2) = exp
(
−||0.3− 0.8||2

0.52

)
= 0.37

k3(x1 , x2) = min(0.3, 0.1) + min(0.4, 0.6)

+ min(0.1, 0.1) + min(0.2, 0.2) = 0.8.

We combine the three attributes with Tm , thus, we get

KTm
(x1 , x2) = min(0, 0.37, 0.8) = 0.

C. Multikernel Fuzzy Rough Sets

Given a multimodality information system MIS = 〈U, MC〉,
MB = M1 ∪M2 , k1 , k2 ∈ [0, 1] are kernel functions derived
with M1 and M2 , respectively. The fuzzy relation computed
by the combination kernels KMB

T = fT (k1 , k2) is a fuzzy T -
equivalence relation, where fT is a combination function based
on T -norm.

Definition 2: Given a multimodality information system
MIS = 〈U, MC〉, MB ⊆ MC, the fuzzy lower and upper ap-
proximations of X are defined as

KMB
T X(x) = sup

y∈U
T
(
KMB

T (x, y),X(y)
)

KMB
T X(x) = inf

y∈U
S
(
N
(
KMB

T (x, y)
)
,X(y)

)
. (6)

Theorem 2: F (U) is the family of fuzzy subsets of U . For
any fuzzy subset Xi ∈ F (U), we have the properties

KMB
T

(⋂
i∈I

Xi

)
=
⋂

i∈I
KMB

T Xi

KMB
T

(⋃
i∈I

Xi

)
=
⋃

i∈I
K

MB
T Xi. (7)

Theorem 3: Given a multimodality information system
MIS = 〈U, MC〉 and MB ⊆ MC, for ∀X ∈ F (U) the follow-
ing statements hold

KMB
T X ⊆ X

KMB
T X ⊇ X

KMB
T x(y) = KMB

T y(x)(
KMB

T (U − {y})
)

(x) =
(
KMB

T (U − {x})
)

(y)

KMB
T

(
KMB

T X
)

= KMB
T X

KMB
T

(
KMB

T X
)

= KMB
T X. (8)

MDS = 〈U, MC ∪D〉 is a multimodality decision system,
where D is a decision attribute. In Boolean classification,

for x ∈ U , di(x) = {0, x /∈ di ;
1, x ∈ di.

. In fuzzy classification, di(x)

takes values in [0, 1]. We also assume 1 ≥ di(x) ≥ 0, and∑
i di(x) = 1.
Definition 3: Given a multimodality decision system

MDS = 〈U, MC ∪D〉 and MB ⊆ MC, the fuzzy lower and



HU et al.: LARGE-SCALE MULTIMODALITY ATTRIBUTE REDUCTION WITH MULTI-KERNEL FUZZY ROUGH SETS 231

upper approximations of Boolean decision class are defined as

KMB
T di = inf

y∈D−di

(
1−KMB

T (x, y)
)

KMB
T di = sup

y∈di

KMB
T (x, y). (9)

Definition 4: Given MDS = 〈U,MC ∪D〉 and MB ⊆ MC,
the fuzzy lower and upper approximations of a fuzzy decision
class are defined as

KMB
T di(x) = sup

y∈U
T
(
KMB

T (x, y), di(y)
)

KMB
T di(x) = inf

y∈U
S
(
N(KMB

T (x, y)), di(y)
)
. (10)

Theorem 4: Given MDS = 〈U, MC ∪D〉 and
MB ⊆ MB′ ⊆ MC, we have

KMB
T di ⊆ KMB′

T di

KMB
T di ⊇ KMB′

T di. (11)

Proof: Take KTm
as an example. Assume that MB =⋃P

m=1 {Mm} and MB′ =
⋃P ′

m=1 {Mm}. As MB ⊆ MB′,
we have P ≤ P ′. KMB

Tm
= min{km}Pm=1 = A and KMB′

Tm
=

min{km}P ′m=1 =min{A, kP +1 , kP +2 , ..., kP ′}. Therefore, KMB
Tm

≥ KMB′
Tm

. The proof procedure of other methods of the com-
bination kernels based on T -norm are similar. Then, we have
KT ⊇ K ′T , that is, KMB

T di ⊆ KMB′
T di . �

Definition 5: Given MDS = 〈U, MC ∪D〉, D is a decision
attribute, and KMB

T di(x) is the membership of x to fuzzy set
KM B

T di , we have 0 ≤∑l
i=1 KMB

T di(x) ≤ 1. The membership
vector of x to decision class di in terms of MB can be expressed
as

POSMB
T (D)(x) = 〈KMB

T d1(x), KMB
T d2(x), . . . , KMB

T dl(x)〉.
(12)

Definition 6: Given MDS = 〈U, MC ∪D〉, the dependency
function of D on MB is defined as

γMB
T (D) =

|POSMB
T (D)|
|U | (13)

where
∣∣POSMB

T (D)
∣∣=∑x∈U

∑
di

inf
y∈U

S(N(KMB
T (x, y)), di(y)).

Theorem 5: Given 〈U, MC ∪D〉 and MB ⊆ MB′ ⊆ MC, we
have

POSMB
T (D) ⊆ POSMB′

T (D)

γMB
T (D) ≤ γMB′

T (D). (14)

Proof: The proof can be derived from the monotonicity of
the lower approximations.

D. Discussion on Multikernel SVM and Multikernel Fuzzy
Rough Sets

In training the multi-kernel learning model, one can define
the primal formulation of the objective function and solve its
dual form. The strong duality of the primal formulation reads as

follows

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjKβ (xi, xj )

s.t.
N∑

i=1

yiαi = 0

∀i, 0 ≤ αi ≤ C (15)

where α is dual variable. Kβ =
∑P

m=1 βm km is the combina-
tion of P base kernels km . βm is the weight of the m kernel. If
the combination of kernels Kβ is replaced by a base kernel km ,
the formulation reduces to a standard Support Vector Machine
(SVM).

In [35] and [36], Xu et al. proposed the optimization problem
for feature selection

min
0≤β≤1

ω(β)

s.t. βT e = s (16)

where ω(β) is the value of the objective function in (15). The
subset of s most informative features is chosen by minimizing
ω(β). Because of the min–max problem, the optimal solution
of β is not a discrete solution.

In order to develop a valid and sparse solution for β, the min–
max problem is transformed into the following problem with
the constraint on β [37]

min
β

max
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyj

P∑
m=1

βm km (xm
i , xm

j )

s.t.
N∑

i=1

yiαi = 0

∀i, 0 ≤ αi ≤ C

||β||1 = 1, β ≥ 0. (17)

The frequently used one-step method can not output both
the weights of the base kernels and the parameters of the base
learner in a single pass. Therefore, for training the problem a
two-step method is required, which is an iterative approach.
In each iteration, the weights of the base kernels are updated
when determining the base learner parameters, and then, the
base learner’s parameters are updated when determining the
weights of the base kernels. These two steps are repeated until
convergence has been achieved. The two-step methods consume
a considerably greater amount of time to solve optimization
problems than the one-step algorithms.

Multikernel learning leads to a sparse solution of weights of
kernels at the expense of the increased time cost. To arrive at a
smaller number of attributes and reduce the time consumed, the
greedy algorithm can be used for attribute reduction. A heuris-
tic knowledge that contains the information of the objective
function is used to evaluate and select attributes in the search
process.

Given a multimodality decision system MDS = 〈U, MC ∪
D〉, MB ⊆ MB′ ⊆ MC, the dependence function γβ (D) based
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Algorithm 1: Multimodality Fuzzy Data Attribute Reduc-
tion.
Input: MDS = 〈U,MC ∪D〉: multimodality decision

system
Output: Red: Attribute subsets

1: Red← ∅
2: while γRed

T (D) = γM C
T (D) do

3: find MB ⊆MC by maximizing γM B
T (D);

4: Red← Red ∪MB;
5: MC = MC\Red;
6: end while
7: return Red;

on Kβ is not monotone. Assume that MB =
⋃P

m=1 {Mm}
and MB′ =

⋃P ′
m=1 {Mm}. As MB ⊆ MB′, we have P ≤ P ′.

KMB
β =

∑P
m=1 βm km = A and KMB′

β =
∑P ′

m=1 βm km = A +∑P ′
m=P +1 βm km . We have the linear sum (βm ∈ �), the

conic sum (βm ≥ 0 ∈ �), and the convex sum (βm ≥ 0 ∈
� and

∑P
m=1 βm = 1). In the above three conditions, KMB

β ≥
KMB′

β may not be true. Therefore, the dependence function
γβ (D) is not monotone.

According to the analysis above, we know that the proposed
dependence function γT (D) based on the combination of ker-
nels KT is monotone. Therefore, the dependency we propose
can be used as a heuristic knowledge for designing a greedy
algorithm.

IV. MULTIMODALITY ATTRIBUTE REDUCTION FOR

LARGE-SCALE FUZZY CLASSIFICATION

We describe the proposed multimodality attribute reduction
algorithm based on multikernel fuzzy rough sets and develop its
parallel algorithm in this section.

A. Multimodality Attribute Reduction

We propose the attribute reduction algorithm to deal with mul-
timodality fuzzy classification. A kernel function is employed
to compute the fuzzy equivalence relation of the corresponding
attribute. The kernel functions are then combined with fuzzy
operators to compute the fuzzy equivalence relation of the mul-
timodality attribute subsets.

In the forward heuristic search, we start with an empty
set of attributes and select one best attribute by maximizing
(13). We design a multimodality fuzzy data attribute reduction
Algorithm 1.

B. Parallel Algorithm

The above algorithm is not efficient for large-scale task while
multimodality data are usually very large. We find that the se-
lection of the best attribute in each round can be computed in
parallel. So that a large-scale dataset can be handled. We de-
veloped a parallel computing in the framework of MapReduce.
The flowchart of the parallel algorithm is outlined in Fig. 3.

Fig. 3. Parallel attribute reduction algorithm.

Fig. 4. Classification accuracies of hepatitis versus the values of the parameter
of the Gaussian kernel.

Let us recall that MapReduce is a parallel computing model
developed by Google for handling large-scale datasets. Map
and reduce are the two basic steps in the MapReduce frame-
work [38]. Map and reduce are shown in the proposed parallel
algorithm in the form of Algorithms 2 and 3, respectively. In
Algorithm 2, each slave node computes (12) for each sample
subset of the whole U . In Algorithm 3, the results are collected
and summed with the same fixed constant c by Key′. The out-
put of the parallel algorithm is the dependency function of D in
terms of MB on U .

V. EXPERIMENTAL ANALYSIS

We report on some experiments to demonstrate the effective-
ness of the proposed methods. First, we compare the algorithm
with other algorithms considering UCI heterogeneous datasets.
Then, we compare the proposed algorithm with some multik-
ernel learning algorithms on multimodality fuzzy classification
tasks.
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Fig. 5. Classification accuracies of heart versus the values of the parameter of
the Gaussian kernel.

Algorithm 2: Map.
Input: key: Attribute subsets Red

value: Multimodality decision system MDS
Output: key′: a fixed constant c

value′: [Ri, γ
Ri (D)]

1:
∣∣POSRed

T (D)(x)
∣∣ = 0

2: for x ∈ U ′ ⊆ U do
3: Computing

∣∣POSRed
T (D)(x)

∣∣ by Eq. (12)
4: end for

Algorithm 3: Reduce.

Input: key′: a fixed constant c
V : the list of

∣∣POSRed
T (D)(x)

∣∣ from different hosts
Output: key′′: a fixed constant c

value′′: γ
1: Summing

∣∣POSRed
T (D)(x)

∣∣ from different hosts;
2: γ =

∣∣POSRed
T (D)

∣∣ /|U |;

It is notable that as to UCI datasets, each feature is considered
as an attribute. we compute the kernels with single features
and select some of the features. However, as to multimodality
datasets, we compute kernel matrices with all the features in
a modality and regard the set of features in this modality as
a single attribute. In attribute reduction, we select an attribute
each round, which means we select a modality each time.

A. UCI Datasets

Some UCI datasets [39] contain both categorical and numeri-
cal attributes so that they can be conveniently considered of mul-
timodal nature. We evaluated the performance of the attribute
reduction on five UCI datasets with heterogeneous attributes.
These datasets are listed in Table II.

In order to analyze the influence of the kernel parameter on
classification performance, we experimented with the parame-
ter of the Gaussian kernel located in the interval in [0.1, 0.95]

TABLE II
DESCRIPTION AND CLASSIFICATION ACCURACY OF FIVE HETEROGENEOUS

UCI DATASETS

Data N Categorical Numerical C CART SVM

Anneal 798 6 32 5 99.89 ± 0.35 99.89 ± 0.35
Credit 690 6 9 2 82.73 ± 14.86 81.44 ± 7.18
Heart 270 6 7 2 74.07 ± 6.30 81.11 ± 7.50
Hepatitis 155 6 13 2 91.00 ± 5.45 83.50 ± 5.35
Horse 368 7 15 2 95.92 ± 2.30 72.30 ± 3.63

with the step of 0.05. We used two methods to choose the ker-
nel function and ran the proposed attribute reduction. One is
multikernel learning, which employs a match kernel function
for categorical attributes and a Gaussian kernel function for nu-
merical attributes. The second is a single-kernel method, which
just employs the Gaussian kernel function. Four kinds of mul-
tikernel combinations, mk-Tm , mk-Tp , mk-Tl , and mk-Tcos are
compared with four single-kernel methods, sk-Tm , sk-Tp , sk-Tl ,
and sk-Tcos . The results of two datasets are shown in Figs. 4 and
5, respectively.

The experimental results show that both datasets of the mul-
tikernel method produces better performance than the single-
kernel method. The difference of classification accuracy has
nothing to do with the parameters of the Gaussian kernel and the
combination techniques of kernels. In order to maintain consis-
tency of comparison, in the following experiment the parameter
of the Gaussian kernel was set to 0.2.

We use CART and RBF-SVM in the OSU-SVM 3.00 soft-
ware package as the classification algorithms and we computed
the classification accuracy with the ten-fold cross validation. To
handle heterogeneous attributes, we introduce the match kernel
function for categorical attributes and the Gaussian kernel func-
tion for numerical attributes. We compare the proposed methods
with NRS [22] and fuzzy rough sets (GDS) [19]. The multiker-
nel fuzzy rough set methods with different T−norm are denoted
by Tm , Tp , Tl , and Tcos , respectively. The experimental results
are given in Tables III and IV, respectively. The best accuracies
are shown in boldface.

The experimental results demonstrate that Tm usually pro-
duces higher classification accuracies with fewer attributes.
However, this conclusion does not hold for all the classification
tasks. We should find the optimal operator among the candidates
based on experiment.

B. Large-Scale Datasets

We now test the parallel algorithm with some large-scale
datasets. We used four datasets in Table V, where the data sets
credit and heart are duplicated several times. We still use the
match kernel for categorical attributes and the Gaussian kernel
for numerical attributes. We ran the algorithm on a cluster of nine
nodes, where one was set as a master node and the remaining
nodes are configured as slave nodes. Each node had Intel (R)
Core (TM) i5-3470 3.2 GHz CPU and 4 GB of main memory
and the nodes were connected via an Ethernet network. The size
of slave nodes (1–3) was 500 GB, and of slave nodes (4–8) was
1 TB, the total capacity of the cluster was 6 TB.
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TABLE III
CLASSIFICATION ACCURACIES BY CART(%) AND THE NUMBER OF SELECTED ATTRIBUTES

Data NRS GDS Tm Tp Tl Tc o s

Anneal 100.00 ± 0.0(3) 100 ± 0.0(3) 100.00 ± 0.0(3) 99.89 ± 0.35(3) 99.89 ± 0.35(3) 99.89 ± 0.35(3)
Credit 82.03 ± 13.5(6) 82.28 ± 14.79(6) 84.72 ± 12.39(6) 83.59 ± 11.21(5) 83.59 ± 11.21(5) 83.96 ± 13.68(3)
Heart 75.93 ± 7.66(8) 77.41 ± 8.81(5) 74.98 ± 6.02(6) 79.63 ± 8.61(6) 78.89 ± 6.54(6) 76.52 ± 4.54(5)
Hepatitis 90.33 ± 4.57(5) 92.33 ± 6.68(5) 94.45 ± 5.36(3) 87.34 ± 6.24(2) 90.86 ± 7.68(3) 85.58 ± 4.91(2)
Horse 95.13 ± 3.96(7) 96.47 ± 1.30(4) 96.47 ± 1.30(4) 92.44 ± 6.71(1) 93.88 ± 4.52(2) 92.45 ± 3.47(1)

TABLE IV
CLASSIFICATION ACCURACIES BY RBF-SVM(%) AND THE NUMBER OF SELECTED ATTRIBUTES

Data NRS GDS Tm Tp Tl Tc o s

Anneal 100.00 ± 0.0(3) 99.89 ± 0.35(3) 100.00 ± 0.0(3) 99.89 ± 0.35(3) 99.89 ± 0.35(3) 99.89 ± 0.35(3)
Credit 85.48 ± 18.5(6) 85.92 ± 18.39(5) 85.94 ± 12.39(5) 85.77 ± 18.58(3) 85.77 ± 18.58(3) 85.48 ± 18.51(1)
Heart 83.33 ± 6.59(12) 85.93 ± 6.25(6) 80.74 ± 8.15(4) 83.33 ± 5.01(4) 78.89 ± 6.54(4) 80.00 ± 7.03(4)
Hepatitis 89.00 ± 4.46(5) 91.67 ± 6.89(3) 92.33 ± 7.38(3) 84.50 ± 6.29(1) 89.17 ± 6.54(2) 83.33 ± 3.51(3)
Horse 87.24 ± 3.61(7) 91.05 ± 3.96(5) 90.76 ± 5.71(5) 89.11 ± 4.45(1) 81.84 ± 5.12(3) 89.11 ± 4.45(1)

TABLE V
DESCRIPTION OF THE LARGE-SCALE DATASETS AND COMPUTATION TIME OF OUR PROPOSED PARALLEL ALGORITHMS

Data Instances Attributes Classes Size Computational time for different numbers of nodes used (S )

1 2 3 4 5 6 7 8

Credit 689986 15 2 45 M 47144 27516 22347 18216 16778 15092 14954 13644
Heart 269994 13 2 16 M 19352 13041 11631 10141 9769 9979 10310 9737
KDD 4898431 41 23 682 M 337660 178304 125037 101416 87915 74489 66030 64265
Poker 1000000 38 10 23 M 19443 12343 10363 9052 8926 7874 7749 7689

In this study, map was used to calculate the similarity between
a sample and its different-class samples, and therefore, all data
files need to be read. If we adopted the hadoop distributed
file system (HDFS) [40] to read files directly, reading speed
would be very slow because the HDFS data file needs to be
read when computing each sample. Considering the efficiency,
we store the data file in a distributed cache [41], and then, for
convenience inserted all the different-class samples in the array
list. The default size of a file data chunk was 64 M, which is not
suitable for small datasets. Therefore, we set the size of a file
data chunk to 4 M for these datasets the size is less than 64 M.

To measure speedup, the size of dataset is fixed and increased
the number of nodes (computers) in the experiment. The speedup
is defined as [42]

speedup(p) =
t1
tp

where p is the number of nodes (computers), t1 is the execution
time on a single node, and tp is the execution time on p nodes.

The ideal result of a parallel algorithm is a linear speedup: A
system with p times the number of computers yields a speedup of
p. However, linear speedup is difficult to achieve as the commu-
nication cost increases as the number of clusters becomes larger.
Table V shows the computational time of our proposed paral-
lel algorithms with different nodes. As the number of nodes
increases, the computational time of the parallel algorithms

Fig. 6. Speedup of the parallel system.

becomes shorter. The experimental results shown in Fig. 6 in-
dicate that the speedup improves as the size of the dataset in-
creases. Therefore, the proposed parallel algorithms can treat
large-scale data efficiently.

C. Multimodality Datasets

In this section, we compare the proposed methods with some
multikernel learning (MKL) algorithms on two multimodality
datasets: the Protein Fold Prediction dataset and NUS-WIDE-
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Fig. 7. Example images in Protein Fold Prediction dataset.

Fig. 8. Example images in NUS-WIDE-Object dataset.

TABLE VI
DESCRIPTION OF MULTIMODALITY PROTEIN FOLD PREDICTION DATASET

Attribute Data Source Dimension

1 COM Amino-acid composition 20
2 SEC Predicted secondary structure 21
3 HYD Hydrophobicity 21
4 VOL Van der Waals volume 21
5 POL Polarity 21
6 PLZ Polarizability 21
7 L1 Pseudo amino-acid composition at interval 1 22
8 L4 Pseudo amino-acid composition at interval 4 28
9 L14 Pseudo amino-acid composition at interval 14 48
10 L30 Pseudo amino-acid composition at interval 30 80
11 BLO Smith-Waterman scores with the BLOSUM 62 matrix 311
12 PAM Smith-Waterman scores with the PAM 50 matrix 311

Object dataset. Figs. 7 and 8 present some samples coming from
the two datasets. It is remarkable that multimodality attributes do
not just refer to the raw images, texts, audio, or video. Sometimes
they also mean multiple descriptors extracted from the raw data,
such as Histogram of Oriented Gradient (HOG), Scale-invariant
feature transform (SIFT) and Speed-up robust features (SURF)
[8].

The Protein Fold Prediction dataset [3] contains 694 samples
belonging to two classes. The samples are described with 12
multimodality attributes. The information of these attributes is
summarized in Table VI.

The NUS-WIDE-Object dataset [43] contains 30 000 images
of 31 classes. We use five classes dog, fish, leaf, tower, and
toy containing a total of 5 575 images in the experiment. The

TABLE VII
DESCRIPTION OF MULTIMODALITY NUS-WIDE-OBJECT DATASET

Attribute Data Source Dimension

1 CH Color histogram 64
2 CORR Color auto-correlogram 144
3 EDH Edge direction histogram 73
4 WT Wavelet texture 128
5 CM Block-wise color moments 255
6 Gaussian Random Gaussian noise 100
7 Uniform Random noise subject to uniform distribution 100
8 Chi2 Random noise subject to Chi square distribution 100
9 F-dist Random noise subject to F-distribution 100
10 Beta Random noise subject to beta-distribution 100
11 CH+N Some Gaussian noise is added to the original CH 64
12 CORR+N Some Gaussian noise is added to the original CORR 144

Fig. 9. Classification accuracies by MKL (percent) and the number of at-
tributes of the Protein Fold Prediction dateset.

Fig. 10. Classification accuracies by MKL (percent) and the number of at-
tributes of the NUS-WIDE-OBJECT dataset.

samples are described with 12 attributes. The description of
these attributes is given in Table VII.

We use MKL [3] as classification algorithm and compute the
classification performance with ten-fold cross validation. In the
experiment, we try different kernel functions and chose those
producing the best performance. As to the Protein Fold Predic-
tion dataset, we try the Gaussian kernel with different parame-
ters, and for the NUS-WIDE-Object dataset, we try the Gaussian
kernel with different parameters, histogram intersection kernel,
and linear kernel. All the kernel matrices are normalized to unit
diagonal.
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Fig. 11. Example of video with multimodality attributes and fuzzy label.

TABLE VIII
DESCRIPTION OF MULTIMODALITY CHEAVD DATASET

Attribute Data Source Dimension

1 DSIFT CM Dense SIFT covariance matrix 6272
2 DSIFT GD Dense SIFT gaussian distribution 6272
3 DSIFT LS Dense SIFTE linear subspace 6272
4 Gray CM Gray covariance matrix 4096
5 HOG CM Histogram of oriented gradients covariance matrix 1764
6 HOG GD Histogram of oriented gradients gaussian distribution 1764
7 HOG LS Histogram of oriented gradients linear subspace 1764
8 LBP CM Local binary pattern covariance matrix 59
9 RMS sma Root mean square signal frame energy 12
10 RMS sma de Root mean square signal frame energy 1st order delta coefficient 12
11 MFCC sma Mel-frequency Cepstral coefficients 144
12 MFCC sma de Mel-frequency Cepstral coefficients 1st order delta coefficient 144
13 ZCR sma Zero crossing rate of time signal 12
14 ZCR sma de Zero crossing rate of time signal 1st order delta coefficient 12
15 VP sma Voicing probability 12
16 VP sma de Voicing probability 1st order delta coefficient 12
17 F0 sma Fundamental frequency 12
18 F0 sma de Fundamental frequency 1st order delta coefficient 12

We compute the classification performance with the original
data (O) and the reduced data by two attribute reduction meth-
ods based on SimpleMKL (SMK) [37] and generalized MKL
(GMK) [44]. A two-step strategy was used to obtain the classifi-
cation accuracy after attribute reduction. First, the kernels with
weights less than or equal to 0 are removed. Attribute subsets
selected by our algorithms are used to train the MKL classifiers.
The results are shown in Figs. 9 and 10, respectively.

The results show that the classification accuracy increases
after attribute reduction is completed. The classification accu-
racy rises from 78% to 86.3% once seven attributes have been
removed. For the Protein Fold Prediction dataset, the method
Tcos produces the highest classification accuracy and selects
the least attribute in all methods. For the NUS-WIDE-Object
dataset, the method Tm produces the best performance among
all methods, while Tcos perform poorly in the same time this
model selects attributes. The reason may be that the number of
reduced attributes is too small. The other three methods pro-
posed all improve significantly on the original data and other
MKL methods.

D. Multimodality Fuzzy Classification

The CHEAVD dataset is a Chinese natural emotional visual–
audio database published by the National Laboratory of Pat-
tern Recognition Institute of Automation at Chinese Academy
of Sciences (http://www.chineseldc.org/emotion.html). The cor-
pus contains 141 min spontaneous emotional segments extracted
from 238 speakers from some films, TV programs, and talk
shows.

This dataset contains 1,981 samples of eight kinds of emo-
tions (happy, angry, surprise, disgust, neutral, worried, anxious,
sad). Each sample is described by 18 attributes. The first ten
descriptors are audio attributes and another eight are visual at-
tributes. In fact, we can extract a lot of other attributes from the
videos. The attributes are described in Table VIII. Each video
is associated with eight memberships of different emotions. We
recognize the emotions of the video segments according to the
audio and image information.

MKL [3] is also used to compute the classification accura-
cies of the original data and reduced data with five-fold cross
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Fig. 12. Classification accuracies by MKL (percent) and the number of at-
tributes of the CHEAVD dateset.

validation. As to audio attributes, the RBF kernel is used to
compute the kernel matrices with different parameters. Follow-
ing [3], the hyperparameter of Gaussian function is set as the
number of the features. As to visual attributes, one video clip
can be regarded as a set of feature vectors by extracting fea-
tures form each video frame. Based on the feature vectors, we
introduce three types of models: covariance matrix, Gaussian
distribution, and linear subspace on visual attributes to describe
the video. Finally, Riemannian kernel [45] is used to compute
the kernel matrices and the kernel matrices are normalized to
unit diagonal.

We compared the proposed method with the original data (O)
and the reduced data by two attribute reduction methods based
on SMK [37] and GMK [44]. As to SimpleMKL and generalized
MKL, we eliminate the attributes if their weights are less than or
equal to 0. Then the remaining attribute subsets are used to train
the MKL classifier. Fig. 12 gives the classification accuracies
and the number of the selected attributes.

From Fig. 12 we conclude that the classification accuracy
increases if some irrelevant attributes are removed by the pro-
posed algorithm. The method Tm produces the best performance
among all the methods, and it improves the performance from
16.9% to 21.8% when four attributes are removed. However,
SimpleMKL just selects four attributes and the accuracy drops
from 16.9% to 15.9%, and generalized MKL also just selects
four attributes and the accuracy drops to 15.85%.

VI. CONCLUSION AND FUTURE WORK

In this study, the model of multikernel fuzzy rough sets was
developed by integrating multikernel learning with fuzzy rough
sets. We have designed an algorithm of large-scale multimodal-
ity attribute reduction based on this model. First, we defined
a novel combination of kernels based on T -norm to determine
the fuzzy similarity between multimodality data. Then, we have
proposed the model of multikernel fuzzy rough sets. Finally, we
designed a parallel multimodality attribute reduction algorithm
for fuzzy classification. The experimental results show that the
proposed algorithm is effective and efficient on large-scale mul-
timodality fuzzy classification tasks.

In the era of big data, objects are usually described with
multimodality data, and are associated with complex clas-
sification scenarios, such as multilabel classification, fuzzy
classification, multigranularity classification, and hierarchical

classification [46]–[48]. A promising direction of research is to
extend this study to deal with multilabel classification and hier-
archical classification. There may be hundreds of labels in some
classification task. Furthermore, a set of labels may form a hi-
erarchical structure, and some objects could be associated with
multiple labels. For such problems, it becomes challenging to
develop efficient algorithms. Moreover, just like in fuzzy emo-
tion recognition, the classification of multimodality data may be
inherently fuzzy. The traditional classification algorithms, like
SVM and multikernel SVM, cannot deal with this category of
problems. It could be interesting to develop fuzzy classifica-
tion algorithms for such multimodality data by exploiting the
proposed multikernel fuzzy rough set.
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[11] I. M. de Diego, A. Muñoz, and J. M. Moguerza, “Methods for the com-
bination of kernel matrices within a support vector framework,” Mach.
Learn., vol. 78, no. 1/2, pp. 137–174, 2010.

[12] C. Cortes, M. Mohri, and A. Rostamizadeh, “Multi-class classification
with maximum margin multiple kernel,” in Proc. 30th Int. Conf. Mach.
Learn., 2013, pp. 46–54.

[13] Z. Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–
356, 1982.

[14] D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” Int. J.
Gen. Syst., vol. 17, no. 2/3, pp. 191–209, 1990.

[15] A. M. Radzikowska and E. E. Kerre, “A comparative study of fuzzy rough
sets,” Fuzzy Sets Syst., vol. 126, no. 2, pp. 137–155, 2002.

[16] J. S. Mi and W. X. Zhang, “An axiomatic characterization of a fuzzy
generalization of rough sets,” Inf. Sci., vol. 160, no. 1, pp. 235–249,
2004.

[17] D. S. Yeung, D. G. Chen, E. C. Tsang, J. W. Lee, and X. Z. Wang, “On
the generalization of fuzzy rough sets,” IEEE Trans. Fuzzy Syst., vol. 13,
no. 3, pp. 343–361, Jun. 2005.

[18] R. Wang, D. G. Chen, and S. Kwong, “Fuzzy-rough-set-based active
learning,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1699–1704, Dec.
2014.

[19] Q. H. Hu, D. R. Yu, W. Pedrycz, and D. G. Chen, “Kernelized fuzzy
rough sets and their applications,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 11, pp. 1649–1667, Nov. 2011.

[20] Q. H. Hu, L. Zhang, S. An, D. Zhang, and D. R. Yu, “On robust fuzzy
rough set models,” IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 636–651,
Aug. 2012.



238 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 1, FEBRUARY 2018

[21] Q. H. Hu, Z. X. Xie, and D. R. Yu, “Hybrid attribute reduction based on a
novel fuzzy-rough model and information granulation,” Pattern Recognit.,
vol. 40, no. 12, pp. 3509–3521, 2007.

[22] Q. H. Hu, D. R. Yu, J. F. Liu, and C. X. Wu, “Neighborhood rough set
based heterogeneous feature subset selection,” Inf. Sci., vol. 178, no. 18,
pp. 3577–3594, 2008.

[23] D. G. Chen and Y. Y. Yang, “Attribute reduction for heterogeneous data
based on the combination of classical and fuzzy rough set models,” IEEE
Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1325–1334, Oct. 2014.

[24] Y. H. Qian, Y. B. Li, J. Y. Liang, G. P. Lin, and C. Y. Dang, “Fuzzy granular
structure distance,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2245–2259,
Dec. 2015.

[25] Y. H. Qian, Q. Wang, H. H. Cheng, J. Y. Liang, and C. Y. Dang, “Fuzzy-
rough feature selection accelerator,” Fuzzy Sets Syst., vol. 258, pp. 61–78,
2015.

[26] W. Z. Zhao, H. F. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in Proc. 1st Int. Conf. Cloud Comput., 2009, pp. 674–679.

[27] Y. Yang, Z. R. Chen, Z. Liang, and G. Y. Wang, “Attribute reduction for
massive data based on rough set theory and mapreduce,” in Proc. Rough
Set Knowl. Technol., 2010, pp. 672–678.

[28] J. B. Zhang, T. R. Li, D. Ruan, Z. Z. Gao, and C. B. Zhao, “A paral-
lel method for computing rough set approximations,” Inf. Sci., vol. 194,
pp. 209–223, 2012.

[29] W. S. Noble et al., “Support vector machine applications in computational
biology,” Kernel Methods Comput. Biol., pp. 71–92, 2004.

[30] B. Moser, “On representing and generating kernels by fuzzy equivalence
relations,” J. Mach. Learn. Res., vol. 7, pp. 2603–2620, 2006.

[31] M. G. Genton, “Classes of kernels for machine learning: A statistics
perspective,” J. Mach. Learn. Res., vol. 2, no. 2, pp. 299–312, 2002.

[32] B. Schlkopf and A. Smola, “Learning with kernels,” in Proc. 21st Int.
Conf. Mach. Learn., 2001, pp. 639–646.

[33] S. Tata and J. M. Patel, “Estimating the selectivity of TF-IDF based cosine
similarity predicates,” ACM Sigmod Record, vol. 36, no. 2, pp. 7–12, 2007.

[34] L. Lu, B. Huang, Q. Y. Zhang, D. F. Ke, and Y. Y. Xu, “Research on
algorithm of combing LDA-based discriminant classifier and MFCC fea-
ture extraction for pure acoustic listening similarity,” Int. J. Advancements
Comput. Technol., vol. 4, no. 5, pp. 106–113, 2012.

[35] Z. L. Xu, R. Jin, J. P. Ye, M. R. Lyu, and I. King, “Non-monotonic feature
selection,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 1145–
1152.

[36] H. Q. Yang, Z. L. Xu, M. R. Lyu, and I. King, “Budget constrained non-
monotonic feature selection,” Neural Netw., vol. 71, pp. 214–224, 2015.

[37] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “Simplemkl,”
J. Mach. Learn. Res., vol. 9, pp. 2491–2521, 2008.

[38] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[39] UCI machine learning repository, 2005. [Online]. Available: http://
archive.ics.uci.edu/ml.

[40] T. White, Hadoop : The definitive Guide, vol. 215, CA, USA: Oreilly
Media, Inc., 2010, no. 11, pp. 1–4.

[41] D. Povey and J. Harrison, “A distributed internet cache,” Aust. Comput.
Sci. Commun., vol. 19, pp. 175–184, 1997.
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